Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 41(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38736374

RESUMO

Nonvisual opsins are transmembrane proteins expressed in the eyes and other tissues of many animals. When paired with a light-sensitive chromophore, nonvisual opsins form photopigments involved in various nonvisual, light-detection functions including circadian rhythm regulation, light-seeking behaviors, and seasonal responses. Here, we investigate the molecular evolution of nonvisual opsin genes in anuran amphibians (frogs and toads). We test several evolutionary hypotheses including the predicted loss of nonvisual opsins due to nocturnal ancestry and potential functional differences in nonvisual opsins resulting from environmental light variation across diverse anuran ecologies. Using whole-eye transcriptomes of 81 species, combined with genomes, multitissue transcriptomes, and independently annotated genes from an additional 21 species, we identify which nonvisual opsins are present in anuran genomes and those that are also expressed in the eyes, compare selective constraint among genes, and test for potential adaptive evolution by comparing selection between discrete ecological classes. At the genomic level, we recovered all 18 ancestral vertebrate nonvisual opsins, indicating that anurans demonstrate the lowest documented amount of opsin gene loss among ancestrally nocturnal tetrapods. We consistently found expression of 14 nonvisual opsins in anuran eyes and detected positive selection in a subset of these genes. We also found shifts in selective constraint acting on nonvisual opsins in frogs with differing activity periods, habitats, distributions, life histories, and pupil shapes, which may reflect functional adaptation. Although many nonvisual opsins remain poorly understood, these findings provide insight into the diversity and evolution of these genes across anurans, filling an important gap in our understanding of vertebrate opsins and setting the stage for future research on their functional evolution across taxa.


Assuntos
Anuros , Evolução Molecular , Opsinas , Animais , Opsinas/genética , Opsinas/metabolismo , Anuros/genética , Filogenia , Olho/metabolismo , Transcriptoma , Adaptação Fisiológica/genética
2.
Mol Biol Evol ; 41(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38573520

RESUMO

Visual systems adapt to different light environments through several avenues including optical changes to the eye and neurological changes in how light signals are processed and interpreted. Spectral sensitivity can evolve via changes to visual pigments housed in the retinal photoreceptors through gene duplication and loss, differential and coexpression, and sequence evolution. Frogs provide an excellent, yet understudied, system for visual evolution research due to their diversity of ecologies (including biphasic aquatic-terrestrial life cycles) that we hypothesize imposed different selective pressures leading to adaptive evolution of the visual system, notably the opsins that encode the protein component of the visual pigments responsible for the first step in visual perception. Here, we analyze the diversity and evolution of visual opsin genes from 93 new eye transcriptomes plus published data for a combined dataset spanning 122 frog species and 34 families. We find that most species express the four visual opsins previously identified in frogs but show evidence for gene loss in two lineages. Further, we present evidence of positive selection in three opsins and shifts in selective pressures associated with differences in habitat and life history, but not activity pattern. We identify substantial novel variation in the visual opsins and, using microspectrophotometry, find highly variable spectral sensitivities, expanding known ranges for all frog visual pigments. Mutations at spectral-tuning sites only partially account for this variation, suggesting that frogs have used tuning pathways that are unique among vertebrates. These results support the hypothesis of adaptive evolution in photoreceptor physiology across the frog tree of life in response to varying environmental and ecological factors and further our growing understanding of vertebrate visual evolution.


Assuntos
Opsinas , Pigmentos da Retina , Humanos , Animais , Opsinas/genética , Anuros/genética , Duplicação Gênica , Microespectrofotometria
3.
Genome Biol Evol ; 16(5)2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38619022

RESUMO

New World mabuyine skinks are a diverse radiation of morphologically cryptic lizards with unique reproductive biologies. Recent studies examining population-level data (morphological, ecological, and genomic) have uncovered novel biodiversity and phenotypes, including the description of dozens of new species and insights into the evolution of their highly complex placental structures. Beyond the potential for this diverse group to serve as a model for the evolution of viviparity in lizards, much of the taxonomic diversity is concentrated in regions experiencing increasing environmental instability from climate and anthropogenic change. Consequently, a better understanding of genome structure and diversity will be an important tool in the adaptive management and conservation of this group. Skinks endemic to Caribbean islands are particularly vulnerable to global change with several species already considered likely extinct and several remaining species either endangered or threatened. Combining PacBio long-read sequencing, Hi-C, and RNAseq data, here we present the first genomic resources for this group by describing new chromosome-level reference genomes for the Puerto Rican Skink Spondylurus nitidus and the Culebra Skink S. culebrae. Results indicate two high quality genomes, both ∼1.4 Gb, assembled nearly telomere to telomere with complete mitochondrion assembly and annotation.


Assuntos
Genoma , Lagartos , Lagartos/genética , Animais , Cromossomos/genética , Viviparidade não Mamífera/genética , Feminino , Região do Caribe
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa