Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Development ; 148(15)2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34383884

RESUMO

Organ morphogenesis is driven by a wealth of tightly orchestrated cellular behaviors, which ensure proper organ assembly and function. Many of these cell activities involve cell-cell interactions and remodeling of the F-actin cytoskeleton. Here, we analyze the requirement for Rasip1 (Ras-interacting protein 1), an endothelial-specific regulator of junctional dynamics, during blood vessel formation. Phenotype analysis of rasip1 mutants in zebrafish embryos reveals distinct functions of Rasip1 during sprouting angiogenesis, anastomosis and lumen formation. During angiogenic sprouting, loss of Rasip1 causes cell pairing defects due to a destabilization of tricellular junctions, indicating that stable tricellular junctions are essential to maintain multicellular organization within the sprout. During anastomosis, Rasip1 is required to establish a stable apical membrane compartment; rasip1 mutants display ectopic, reticulated junctions and the apical compartment is frequently collapsed. Loss of Ccm1 and Heg1 function mimics the junctional defects of rasip1 mutants. Furthermore, downregulation of ccm1 and heg1 leads to a delocalization of Rasip1 at cell junctions, indicating that junctional tethering of Rasip1 is required for its function in junction formation and stabilization during sprouting angiogenesis.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neovascularização Fisiológica/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Comunicação Celular/fisiologia , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Junções Intercelulares/metabolismo , Junções Intercelulares/fisiologia , Proteínas de Membrana/metabolismo , Morfogênese/fisiologia , Peixe-Zebra/fisiologia
2.
Semin Cell Dev Biol ; 120: 32-43, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34154883

RESUMO

The vertebrate cardiovascular system is made up by a hierarchically structured network of highly specialised blood vessels. This network emerges during early embryogenesis and evolves in size and complexity concomitant with embryonic growth and organ formation. Underlying this plasticity are actin-driven endothelial cell behaviours, which allow endothelial cells to change their shape and move within the vascular network. In this review, we discuss the cellular and molecular mechanisms involved in vascular network formation and how these intrinsic mechanisms are influenced by haemodynamic forces provided by pressurized blood flow. While most of this review focusses on in vivo evidence from zebrafish embryos, we also mention complementary findings obtained in other experimental systems.


Assuntos
Vasos Sanguíneos/fisiologia , Células Endoteliais/metabolismo , Hemodinâmica/fisiologia , Morfogênese/fisiologia , Humanos
3.
J Cell Sci ; 134(1)2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33323504

RESUMO

Steinberg's differential adhesion hypothesis suggests that adhesive mechanisms are important for sorting of cells and tissues during morphogenesis (Steinberg, 2007). During zebrafish vasculogenesis, endothelial cells sort into arterial and venous vessel beds but it is unknown whether this involves adhesive mechanisms. Claudins are tight junction proteins regulating the permeability of epithelial and endothelial tissue barriers. Previously, the roles of claudins during organ development have exclusively been related to their canonical functions in determining paracellular permeability. Here, we use atomic force microscopy to quantify claudin-5-dependent adhesion and find that this strongly contributes to the adhesive forces between arterial endothelial cells. Based on genetic manipulations, we reveal a non-canonical role of Claudin-5a during zebrafish vasculogenesis, which involves the regulation of adhesive forces between adjacent dorsal aortic endothelial cells. In vitro and in vivo studies demonstrate that loss of claudin-5 results in increased motility of dorsal aorta endothelial cells and in a failure of the dorsal aorta to lumenize. Our findings uncover a novel role of claudin-5 in limiting arterial endothelial cell motility, which goes beyond its traditional sealing function during embryonic development.


Assuntos
Proteínas de Junções Íntimas , Junções Íntimas , Animais , Claudina-4 , Claudina-5/genética , Claudinas , Células Endoteliais , Peixe-Zebra , Proteínas de Peixe-Zebra
4.
Development ; 144(8): 1554-1565, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28264837

RESUMO

The cardiovascular system forms during early embryogenesis and adapts to embryonic growth by sprouting angiogenesis and vascular remodeling. These processes require fine-tuning of cell-cell adhesion to maintain and re-establish endothelial contacts, while allowing cell motility. We have compared the contribution of two endothelial cell-specific adhesion proteins, VE-cadherin (VE-cad/Cdh5) and Esama (endothelial cell-selective adhesion molecule a), during angiogenic sprouting and blood vessel fusion (anastomosis) in the zebrafish embryo by genetic analyses. Different combinations of mutant alleles can be placed into a phenotypic series with increasing defects in filopodial contact formation. Contact formation in esama mutants appears similar to wild type, whereas esama-/-; ve-cad+/- and ve-cad single mutants exhibit intermediate phenotypes. The lack of both proteins interrupts filopodial interaction completely. Furthermore, double mutants do not form a stable endothelial monolayer, and display intrajunctional gaps, dislocalization of Zo-1 and defects in apical-basal polarization. In summary, VE-cadherin and Esama have distinct and redundant functions during blood vessel morphogenesis, and both adhesion proteins are central to endothelial cell recognition during anastomosis.


Assuntos
Antígenos CD/metabolismo , Vasos Sanguíneos/embriologia , Vasos Sanguíneos/metabolismo , Caderinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Morfogênese , Neovascularização Fisiológica , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Animais , Comunicação Celular , Polaridade Celular , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Junções Intercelulares/metabolismo , Mutação/genética , Pseudópodes/metabolismo
5.
Development ; 143(13): 2249-60, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27381223

RESUMO

Vascular networks are formed and maintained through a multitude of angiogenic processes, such as sprouting, anastomosis and pruning. Only recently has it become possible to study the behavior of the endothelial cells that contribute to these networks at a single-cell level in vivo This Review summarizes what is known about endothelial cell behavior during developmental angiogenesis, focusing on the morphogenetic changes that these cells undergo.


Assuntos
Células Endoteliais/citologia , Neovascularização Fisiológica , Animais , Fusão Celular , Células Endoteliais/metabolismo , Humanos , Modelos Biológicos , Morfogênese , Transdução de Sinais
6.
PLoS Biol ; 13(4): e1002126, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25884426

RESUMO

During embryonic development, vascular networks remodel to meet the increasing demand of growing tissues for oxygen and nutrients. This is achieved by the pruning of redundant blood vessel segments, which then allows more efficient blood flow patterns. Because of the lack of an in vivo system suitable for high-resolution live imaging, the dynamics of the pruning process have not been described in detail. Here, we present the subintestinal vein (SIV) plexus of the zebrafish embryo as a novel model to study pruning at the cellular level. We show that blood vessel regression is a coordinated process of cell rearrangements involving lumen collapse and cell-cell contact resolution. Interestingly, the cellular rearrangements during pruning resemble endothelial cell behavior during vessel fusion in a reversed order. In pruning segments, endothelial cells first migrate toward opposing sides where they join the parental vascular branches, thus remodeling the multicellular segment into a unicellular connection. Often, the lumen is maintained throughout this process, and transient unicellular tubes form through cell self-fusion. In a second step, the unicellular connection is resolved unilaterally, and the pruning cell rejoins the opposing branch. Thus, we show for the first time that various cellular activities are coordinated to achieve blood vessel pruning and define two different morphogenetic pathways, which are selected by the flow environment.


Assuntos
Fusão Celular , Endotélio Vascular/embriologia , Animais , Animais Geneticamente Modificados , Neovascularização Fisiológica , Peixe-Zebra/embriologia
7.
Development ; 140(13): 2776-86, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23698350

RESUMO

The formation and lumenization of blood vessels has been studied in some detail, but there is little understanding of the morphogenetic mechanisms by which endothelial cells (ECs) forming large caliber vessels aggregate, align themselves and finally form a lumen that can support blood flow. Here, we focus on the development of the zebrafish common cardinal veins (CCVs), which collect all the blood from the embryo and transport it back to the heart. We show that the angioblasts that eventually form the definitive CCVs become specified as a separate population distinct from the angioblasts that form the lateral dorsal aortae. The subsequent development of the CCVs represents a novel mechanism of vessel formation, during which the ECs delaminate and align along the inner surface of an existing luminal space. Thereby, the CCVs are initially established as open-ended endothelial tubes, which extend as single EC sheets along the flow routes of the circulating blood and eventually enclose the entire lumen in a process that we term 'lumen ensheathment'. Furthermore, we found that the initial delamination of the ECs as well as the directional migration within the EC sheet depend on Cadherin 5 function. By contrast, EC proliferation within the growing CCV is controlled by Vascular endothelial growth factor C, which is provided by circulating erythrocytes. Our findings not only identify a novel mechanism of vascular lumen formation, but also suggest a new form of developmental crosstalk between hematopoietic and endothelial cell lineages.


Assuntos
Embrião não Mamífero/metabolismo , Veias/embriologia , Veias/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Caderinas/genética , Caderinas/metabolismo , Movimento Celular/genética , Movimento Celular/fisiologia , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
8.
Development ; 138(19): 4199-205, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21896630

RESUMO

Coordination between adjacent tissues plays a crucial role during the morphogenesis of developing organs. In the embryonic heart, two tissues - the myocardium and the endocardium - are closely juxtaposed throughout their development. Myocardial and endocardial cells originate in neighboring regions of the lateral mesoderm, migrate medially in a synchronized fashion, collaborate to create concentric layers of the heart tube, and communicate during formation of the atrioventricular canal. Here, we identify a novel transmembrane protein, Tmem2, that has important functions during both myocardial and endocardial morphogenesis. We find that the zebrafish mutation frozen ventricle (frv) causes ectopic atrioventricular canal characteristics in the ventricular myocardium and endocardium, indicating a role of frv in the regional restriction of atrioventricular canal differentiation. Furthermore, in maternal-zygotic frv mutants, both myocardial and endocardial cells fail to move to the midline normally, indicating that frv facilitates cardiac fusion. Positional cloning reveals that the frv locus encodes Tmem2, a predicted type II single-pass transmembrane protein. Homologs of Tmem2 are present in all examined vertebrate genomes, but nothing is known about its molecular or cellular function in any context. By employing transgenes to drive tissue-specific expression of tmem2, we find that Tmem2 can function in the endocardium to repress atrioventricular differentiation within the ventricle. Additionally, Tmem2 can function in the myocardium to promote the medial movement of both myocardial and endocardial cells. Together, our data reveal that Tmem2 is an essential mediator of myocardium-endocardium coordination during cardiac morphogenesis.


Assuntos
Endocárdio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Proteínas de Membrana/fisiologia , Miocárdio/metabolismo , Proteínas de Peixe-Zebra/fisiologia , Animais , Clonagem Molecular , Cruzamentos Genéticos , Feminino , Hibridização In Situ , Masculino , Proteínas de Membrana/genética , Microscopia de Fluorescência/métodos , Modelos Genéticos , Morfogênese , Mutação , Distribuição Tecidual , Transgenes , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
9.
Vasc Biol ; 5(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36260739

RESUMO

Remodelling of cell-cell junctions is crucial for proper tissue development and barrier function. The cadherin-based adherens junctions anchor via ß-catenin and α-catenin to the actomyosin cytoskeleton, together forming a junctional mechanotransduction complex. Tension-induced conformational changes in the mechanosensitive α-catenin protein induce junctional vinculin recruitment. In endothelial cells, vinculin protects the remodelling of VE-cadherin junctions. In this study, we have addressed the role of vinculin in endothelial barrier function in the developing vasculature. In vitro experiments, using endothelial cells in which α-catenin was replaced by a vinculin-binding-deficient mutant, showed that junctional recruitment of vinculin promotes endothelial barrier function. To assess the role of vinculin within blood vessels in vivo, we next investigated barrier function in the vasculature of vcl knockout zebrafish. In the absence of vinculin, sprouting angiogenesis and vessel perfusion still occurred. Intriguingly, the absence of vinculin made the blood vessels more permeable for 10 kDa dextran molecules but not for larger tracers. Taken together, our findings demonstrate that vinculin strengthens the endothelial barrier and prevents vascular leakage in developing vessels.

10.
Cardiovasc Res ; 119(5): 1234-1249, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36536484

RESUMO

AIMS: Dysregulated immune response contributes to inefficiency of treatment strategies to control hypertension and reduce the risk of end-organ damage. Uncovering the immune pathways driving the transition from the onset of hypertensive stimulus to the manifestation of multi-organ dysfunction are much-needed insights for immune targeted therapy. METHODS AND RESULTS: To aid visualization of cellular events orchestrating multi-organ pathogenesis, we modelled hypertensive cardiovascular remodelling in zebrafish. Zebrafish larvae exposed to ion-poor environment exhibited rapid angiotensinogen up-regulation, followed by manifestation of arterial hypertension and cardiac remodelling that recapitulates key characteristics of incipient heart failure with preserved ejection fraction. In the brain, time-lapse imaging revealed the occurrence of cerebrovascular regression through endothelial retraction and migration in response to the ion-poor treatment. This phenomenon is associated with macrophage/microglia-endothelial contacts and endothelial junctional retraction. Cytokine and transcriptomic profiling identified systemic up-regulation of interferon-γ and interleukin 1ß and revealed altered macrophage/microglia transcriptional programme characterized by suppression of innate immunity and vasculo/neuroprotective gene expression. Both zebrafish and a murine model of pressure overload-induced brain damage demonstrated that the brain pathology and macrophage/microglia phenotypic alteration are dependent on interferon-γ signalling. In zebrafish, interferon-γ receptor 1 mutation prevents cerebrovascular remodelling and dysregulation of macrophage/microglia transcriptomic profile. Supplementation of bone morphogenetic protein 5 identified from the transcriptomic approach as a down-regulated gene in ion-poor-treated macrophages/microglia that is rescued by interferon-γ blockage, mitigated cerebral microvessel loss. In mice subjected to transverse aortic constriction-induced pressure overload, typically developing cerebrovascular injury, neuroinflammation, and cognitive dysfunction, interferon-γ neutralization protected them from blood-brain barrier disruption, cerebrovascular rarefaction, and cognitive decline. CONCLUSIONS: These findings uncover cellular and molecular players of an immune pathway communicating hypertensive stimulus to structural and functional remodelling of the brain and identify anti-interferon-γ treatment as a promising intervention strategy capable of preventing pressure overload-induced damage of the cerebrovascular and nervous systems.


Assuntos
Disfunção Cognitiva , Hipertensão , Camundongos , Animais , Peixe-Zebra/metabolismo , Modelos Animais de Doenças , Macrófagos/metabolismo , Interferon gama/metabolismo
11.
Dev Biol ; 356(2): 323-36, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21621531

RESUMO

Pou5f1/Oct-4 in mice is required for maintenance of embryonic pluripotent cell populations. Zebrafish pou5f1 maternal-zygotic mutant embryos (spiel ohne grenzen; MZspg) lack endoderm and have gastrulation and dorsoventral patterning defects. A contribution of Pou5f1 to the control of bmp2b, bmp4 and vox expression has been suggested, however the mechanisms remained unclear and are investigated in detail here. Low-level overexpression of a Pou5f1-VP16 activator fusion protein can rescue dorsalization in MZspg mutants, indicating that Pou5f1 acts as a transcriptional activator during dorsoventral patterning. Overexpression of larger quantities of Pou5f1-VP16 can ventralize wild-type embryos, while overexpression of a Pou5f1-En repressor fusion protein can dorsalize embryos. Lack of Pou5f1 causes a transient upregulation of fgf8a expression after mid-blastula transition, providing a mechanism for delayed activation of bmp2b in MZspg embryos. Overexpression of the Pou5f1-En repressor induces fgf8, suggesting an indirect mechanism of Pou5f1 control of fgf8a expression. Transcription of vox is strongly activated by Pou5f1-VP16 even when translation of zygotically expressed transcripts is experimentally inhibited by cycloheximide. In contrast, bmp2b and bmp4 are not activated under these conditions. We show that Pou5f1 binds to phylogenetically conserved Oct/Pou5f1 sites in the vox promoter, both in vivo (ChIP) and in vitro. Our data reveals a set of direct and indirect interactions of Pou5f1 with the BMP dorsoventral patterning network that serve to fine-tune dorsoventral patterning mechanisms and coordinate patterning with developmental timing.


Assuntos
Padronização Corporal , Fatores de Crescimento de Fibroblastos/genética , Proteínas de Homeodomínio/genética , Fator 3 de Transcrição de Octâmero/fisiologia , Proteínas Repressoras/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/embriologia , Animais , Sítios de Ligação , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 7/genética , Cicloeximida/farmacologia , Regulação da Expressão Gênica no Desenvolvimento , Fator 3 de Transcrição de Octâmero/metabolismo , Filogenia , Transdução de Sinais , Ativação Transcricional , Proteínas de Peixe-Zebra/metabolismo
12.
Cell Rep ; 39(2): 110658, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35417696

RESUMO

Blood vessel morphogenesis is driven by coordinated endothelial cell behaviors. Active remodeling of cell-cell junctions promotes cellular plasticity while preserving vascular integrity. Here, we analyze the dynamics of endothelial adherens junctions during lumen formation in angiogenic sprouts in vivo. Live imaging in zebrafish reveals that lumen expansion is accompanied by the formation of transient finger-shaped junctions. Junctional fingers are positively regulated by blood pressure, whereas flow inhibition prevents their formation. Using fluorescent reporters, we show that junctional fingers contain the mechanotransduction protein vinculin. Furthermore, genetic deletion of vinculin prevents finger formation, a junctional defect that could be rescued by transient endothelial expression of vinculin. Our findings suggest a mechanism whereby lumen expansion leads to an increase in junctional tension, triggering recruitment of vinculin and formation of junctional fingers. We propose that endothelial cells employ force-dependent junctional remodeling to counteract external forces in order to maintain vascular integrity during sprouting angiogenesis.


Assuntos
Células Endoteliais , Mecanotransdução Celular , Vinculina , Junções Aderentes/metabolismo , Animais , Caderinas/metabolismo , Células Endoteliais/metabolismo , Junções Intercelulares/metabolismo , Neovascularização Fisiológica , Vinculina/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
13.
Dev Biol ; 341(1): 56-65, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19895803

RESUMO

During embryonic development, the vertebrate vasculature is undergoing vast growth and remodeling. Blood vessels can be formed by a wide spectrum of different morphogenetic mechanisms, such as budding, cord hollowing, cell hollowing, cell wrapping and intussusception. Here, we describe the vascular morphogenesis that occurs in the early zebrafish embryo. We discuss the diversity of morphogenetic mechanisms that contribute to vessel assembly, angiogenic sprouting and tube formation in different blood vessels and how some of these complex cell behaviors are regulated by molecular pathways.


Assuntos
Vasos Sanguíneos/embriologia , Morfogênese , Peixe-Zebra/embriologia , Animais , Embrião não Mamífero/metabolismo
14.
Curr Top Dev Biol ; 143: 281-297, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33820624

RESUMO

The cardiovascular system is the first organ to become functional during vertebrate embryogenesis and is responsible for the distribution of oxygen and nutrients to all cells of the body. The cardiovascular system constitutes a circulatory loop in which blood flows from the heart through arteries into the microvasculature and back through veins to the heart. The vasculature is characterized by the heterogeneity of blood vessels with respect to size, cellular architecture and function, including both larger vessels that are found at defined positions within the body and smaller vessels or vascular beds that are organized in a less stereotyped manner. Recent studies have shed light on how the vascular tree is formed and how the interconnection of all branches is elaborated and maintained. In contrast to many other branched organs such as the lung or the kidney, vessel connection (also called anastomosis) is a key process underlying the formation of vascular networks; each outgrowing angiogenic sprout must anastomose in order to allow blood flow in the newly formed vessel segment. It turns out that during this "sprouting and anastomosis" process, too many vessels are generated, and that blood flow is subsequently optimized through the removal (pruning) of low flow segments. Here, we reflect on the cellular and molecular mechanisms involved in forming the complex architecture of the vasculature through sprouting, anastomosis and pruning, and raise some questions that remain to be addressed in future studies.


Assuntos
Artérias , Neovascularização Fisiológica , Morfogênese , Neovascularização Fisiológica/fisiologia
15.
Dev Biol ; 316(2): 312-22, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18342303

RESUMO

The formation of intersegmental blood vessels (ISVs) in the zebrafish embryo serves as a paradigm to study angiogenesis in vivo. ISV formation is thought to occur in discrete steps. First, endothelial cells of the dorsal aorta migrate out and align along the dorsoventral axis. The dorsal-most cell, also called tip cell, then joins with its anterior and posterior neighbours, thus establishing a simple vascular network. The vascular lumen is then established via formation of vacuoles, which eventually fuse with those of adjacent endothelial cells to generate a seamless tube with an intracellular lumen. To investigate the cellular architecture and the development of ISVs in detail, we have analysed the arrangement of endothelial cell junctions and have performed single cell live imaging. In contrast to previous reports, we find that endothelial cells are not arranged in a linear head-to-tail configuration but overlap extensively and form a multicellular tube, which contains an extracellular lumen. Our studies demonstrate that a number of cellular behaviours, such as cell divisions, cell rearrangements and dynamic alterations in cell-cell contacts, have to be considered when studying the morphological and molecular processes involved in ISV and endothelial lumen formation in vivo.


Assuntos
Embrião não Mamífero/citologia , Embrião não Mamífero/fisiologia , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Divisão Celular , Fusão Celular , Endotélio Vascular/citologia , Endotélio Vascular/embriologia , Endotélio Vascular/fisiologia , Plasmídeos , Peixe-Zebra/genética
18.
Vascul Pharmacol ; 112: 8-16, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30423447

RESUMO

Branching morphogenesis is a fascinating process whereby a simple network of biological tubes increases its complexity by adding new branches to existing ones, generating an enlarged structure of interconnected tubes. Branching morphogenesis has been studied extensively in animals and much has been learned about the regulation of branching at the cellular and molecular level. Here, we discuss studies of the Drosophila trachea and of the vertebrate vasculature, which have revealed how new branches are formed and connect (anastomose), leading to the establishment of complex tubular networks. We briefly describe the cell behaviour underlying tracheal and vascular branching. Although similar at many levels, the branching and anastomosis processes characterized thus far show a number of differences in cell behaviour, resulting in somewhat different tube architectures in these two organs. We describe the similarities and the differences and discuss them in the context of their possible developmental significance. We finish by highlighting some old and new data, which suggest that live imaging of the development of capillary beds in adult animals might reveal yet unexplored endothelial behaviour of endothelial cells.


Assuntos
Vasos Sanguíneos/citologia , Drosophila/citologia , Células Endoteliais/citologia , Células Epiteliais/citologia , Neovascularização Fisiológica , Traqueia/citologia , Peixe-Zebra/anatomia & histologia , Animais , Vasos Sanguíneos/metabolismo , Comunicação Celular , Diferenciação Celular , Movimento Celular , Proliferação de Células , Forma Celular , Drosophila/metabolismo , Células Endoteliais/metabolismo , Células Epiteliais/metabolismo , Camundongos , Morfogênese , Fenótipo , Transdução de Sinais , Traqueia/metabolismo , Peixe-Zebra/metabolismo
19.
Mol Biol Cell ; 30(2): 209-218, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30462579

RESUMO

Tyrosine kinase inhibitors are widely used in the clinic, but limited information is available about their toxicity in developing organisms. Here, we tested the effect of tyrosine kinase inhibitors targeting the ErbB receptors for their effects on developing zebrafish ( Danio rerio) embryos. Embryos treated with wide-spectrum pan-ErbB inhibitors or erbb4a-targeting antisense oligonucleotides demonstrated reduced locomotion, reduced diameter of skeletal muscle fibers, and reduced expression of muscle-specific genes, as well as reduced motoneuron length. The phenotypes in the skeletal muscle, as well as the defect in motility, were rescued both by microinjection of human ERBB4 mRNA and by transposon-mediated muscle-specific ERBB4 overexpression. The role of ErbB4 in regulating motility was further controlled by targeted mutation of the endogenous erbb4a locus in the zebrafish genome by CRISPR/Cas9. These observations demonstrate a potential for the ErbB tyrosine kinase inhibitors to induce neuromuscular toxicity in a developing organism via a mechanism involving inhibition of ErbB4 function.


Assuntos
Embrião não Mamífero/metabolismo , Desenvolvimento Muscular/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Junção Neuromuscular/embriologia , Inibidores de Proteínas Quinases/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptor ErbB-4/antagonistas & inibidores , Proteínas de Peixe-Zebra/antagonistas & inibidores , Peixe-Zebra/embriologia , Animais , Sequência de Bases , Embrião não Mamífero/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Morfolinos/farmacologia , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Células Musculares/efeitos dos fármacos , Células Musculares/metabolismo , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Mutação/genética , Neurogênese/genética , Junção Neuromuscular/efeitos dos fármacos , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptor ErbB-4/genética , Receptor ErbB-4/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
20.
Nat Commun ; 9(1): 3545, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-30171187

RESUMO

Angiogenesis and vascular remodeling are driven by extensive endothelial cell movements. Here, we present in vivo evidence that endothelial cell movements are associated with oscillating lamellipodia-like structures, which emerge from cell junctions in the direction of cell movements. High-resolution time-lapse imaging of these junction-based lamellipodia (JBL) shows dynamic and distinct deployment of junctional proteins, such as F-actin, VE-cadherin and ZO1, during JBL oscillations. Upon initiation, F-actin and VE-cadherin are broadly distributed within JBL, whereas ZO1 remains at cell junctions. Subsequently, a new junction is formed at the front of the JBL, which then merges with the proximal junction. Rac1 inhibition interferes with JBL oscillations and disrupts cell elongation-similar to a truncation in ve-cadherin preventing VE-cad/F-actin interaction. Taken together, our observations suggest an oscillating ratchet-like mechanism, which is used by endothelial cells to move over each other and thus provides the physical means for cell rearrangements.


Assuntos
Actinas/metabolismo , Antígenos CD/fisiologia , Caderinas/fisiologia , Movimento Celular/fisiologia , Células Endoteliais/fisiologia , Pseudópodes/fisiologia , Animais , Animais Geneticamente Modificados , Comunicação Celular/fisiologia , Embrião não Mamífero , Junções Intercelulares/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa