RESUMO
Dapagliflozin, a sodium-glucose co-transporter-2 inhibitor and semaglutide, a glucagon-like peptide 1 receptor agonist, have both demonstrated efficacy in glycemic control, reducing blood pressure, body weight, risk of renal and heart failure in type 2 diabetes mellitus. In this observational, real-world, study we aimed to investigate the efficacy of the combination therapy with those two agents over glycemic control. We thus obtained the data of 1335 patients with type 2 diabetes followed by 11 Diabetes centers in Lombardia, Italy. A group of 443 patients was treated with dapagliflozin alone, the other group of 892 patients was treated with the combination therapy of dapagliflozin plus oral semaglutide. We analyzed changes in glycated hemoglobin from baseline to 6 months of follow-up, as well as changes in fasting glycemia, body weight, body mass index, systolic and diastolic pressure, heart rate, creatinine, estimated glomerular filtration rate and albuminuria. Both groups of patients showed an improvement of glycometabolic control after 6 months of treatment; indeed, the treatment with dapagliflozin plus oral semaglutide showed a reduction of glycated hemoglobin of 1.2% as compared to the 0.5% reduction observed in the dapagliflozin alone group. Significant changes were observed in body mass index, fasting plasmatic glucose, blood pressure, total cholesterol, LDL and albumin to creatinine ratio, with a high rate (55%) of near-normalization of glycated hemoglobin. Our real world data confirmed the potential of the oral combination therapy dapagliflozin with semaglutide in inducing pharmacological remission of type 2 diabetes mellitus.
Assuntos
Diabetes Mellitus Tipo 2 , Peptídeos Semelhantes ao Glucagon , Glucosídeos , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Compostos Benzidrílicos/uso terapêutico , Glicemia , Peso Corporal , Creatinina , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucose , Hemoglobinas Glicadas , Hipoglicemiantes/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Resultado do TratamentoRESUMO
Type 1 diabetes (T1D) is characterized by the loss of immune self-tolerance, resulting in an aberrant immune responses against self-tissue. A few therapeutics have been partially successful in reverting or slowing down T1D progression in patients, and the infusion of autologous hematopoietic stem cells (HSCs) is emerging as an option to be explored. In this study, we proposed to pharmacologically enhance by ex vivo modulation with small molecules the immunoregulatory and trafficking properties of HSCs to provide a safer and more efficacious treatment option for patients with T1D and other autoimmune disorders. A high-throughput targeted RNA sequencing screening strategy was used to identify a combination of small molecules (16,16-dimethyl PGE2 and dexamethasone), which significantly upregulate key genes involved in trafficking (e.g., CXCR4) and immunoregulation (e.g., programmed death ligand 1). The pharmacologically enhanced, ex vivo-modulated HSCs (regulatory HSCs [HSC.Regs]) have strong trafficking properties to sites of inflammation in a mouse model of T1D, reverted autoimmune diabetes in NOD mice, and delayed experimental multiple sclerosis and rheumatoid arthritis in preclinical models. Mechanistically, HSC.Regs reduced lymphocytic infiltration of pancreatic ß cells and inhibited the activity of autoreactive T cells. Moreover, when tested in clinically relevant in vitro autoimmune assays, HSC.Regs abrogated the autoimmune response. Ex vivo pharmacological modulation enhances the immunoregulatory and trafficking properties of HSCs, thus generating HSC.Regs, which mitigated autoimmune diabetes and other autoimmune disorders.
Assuntos
Doenças Autoimunes , Diabetes Mellitus Tipo 1 , Transplante de Células-Tronco Hematopoéticas , Animais , Doenças Autoimunes/terapia , Diabetes Mellitus Tipo 1/terapia , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas , Humanos , Camundongos , Camundongos Endogâmicos NODRESUMO
Diabetic kidney disease (DKD) is the first cause of end-stage kidney disease in patients with diabetes and its prevalence is increasing worldwide. It encompasses histological alterations that mainly affect the glomerular filtration unit, which include thickening of the basement membrane, mesangial cell proliferation, endothelial alteration, and podocyte injury. These morphological abnormalities further result in a persistent increase of urinary albumin-to-creatinine ratio and in a reduction of the estimated glomerular filtration rate. Several molecular and cellular mechanisms have been recognized, up to date, as major players in mediating such clinical and histological features and many more are being under investigation. This review summarizes the most recent advances in understanding cell death mechanisms, intracellular signaling pathways and molecular effectors that play a role in the onset and progression of diabetic kidney damage. Some of those molecular and cellular mechanisms have been already successfully targeted in preclinical models of DKD and, in some cases, strategies have been tested in clinical trials. Finally, this report sheds light on the relevance of novel pathways that may become therapeutic targets for future applications in DKD.
Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Podócitos , Humanos , Nefropatias Diabéticas/metabolismo , Podócitos/patologia , Transdução de Sinais , Taxa de Filtração Glomerular , Diabetes Mellitus/metabolismoRESUMO
PURPOSE OF REVIEW: The purine nucleotide adenosine triphosphate (ATP) is released into extracellular spaces as extracellular ATP (eATP) as a consequence of cell injury or death and activates the purinergic receptors. Once released, eATP may facilitate T-lymphocyte activation and differentiation. The purpose of this review is to elucidate the role of ATP-mediated signaling in the immunological events related to type 1 diabetes (T1D). RECENT FINDINGS: T lymphocytes mediate immune response during the onset of T1D and promote pancreatic islet or whole pancreas rejection in transplantation. Recent data suggest a potential role for eATP in early steps of T1D onset and of allograft rejection. In different preclinical experimental models and clinical trials, several drugs targeting purinergic signaling have been employed to abrogate lymphocyte activation and differentiation, thus representing an achievable treatment to prevent/revert T1D or to induce long-term islet allograft function. SUMMARY: In preclinical and clinical settings, eATP-signaling inhibition induces immune tolerance in autoimmune disease and in allotransplantation. In this view, the purinergic system may represent a novel therapeutic target for auto- and allo-immunity.
Assuntos
Doenças Autoimunes , Diabetes Mellitus Tipo 1 , Humanos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Doenças Autoimunes/tratamento farmacológico , Transplante Homólogo , Linfócitos T/metabolismo , Trifosfato de Adenosina/metabolismoRESUMO
Since they were discovered almost three decades ago, a subset of B cells denoted as regulatory B cells (Bregs) have elicited interest throughout the immunology community. Many investigators have sought to characterize their phenotype and to understand their function and immunosuppressive mechanisms. Indeed, studies in murine models have demonstrated that Bregs possess varied phenotypic markers and could be classified into different subsets whose action and pivotal role depend on the pathological condition or stimuli. Similar conclusions were drawn in clinical settings delineating an analogous Breg population phenotypically resembling the murine Bregs that ultimately may be associated with a state of tolerance. Recent studies suggested that Bregs may play a role in the onset of autoimmune diabetes. This review will focus on deciphering the different subclasses of Bregs, their emerging role in autoimmune diabetes, and their potential use as a cell-based therapeutic.
Assuntos
Autoimunidade , Linfócitos B Reguladores/imunologia , Diabetes Mellitus Tipo 1/imunologia , Animais , Linfócitos B Reguladores/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Tipo 1/sangue , Modelos Animais de Doenças , Humanos , Tolerância Imunológica , CamundongosRESUMO
AIMS: Several reports indicate that diabetes determines an increased mortality risk in patients with coronavirus disease 19 (COVID-19) and a good glycaemic control appears to be associated with more favourable outcomes. Evidence also supports that COVID-19 pneumonia only accounts for a part of COVID-19 related deaths. This disease is indeed characterised by abnormal inflammatory response and vascular dysfunction, leading to the involvement and failure of different systems, including severe acute respiratory distress syndrome, coagulopathy, myocardial damage and renal failure. Inflammation and vascular dysfunction are also well-known features of hyperglycemia and diabetes, making up the ground for a detrimental synergistic combination that could explain the increased mortality observed in hyperglycaemic patients. MATERIALS AND METHODS: In this work, we conduct a narrative review on this intriguing connection. Together with this, we also present the clinical characteristics, outcomes, laboratory and histopathological findings related to this topic of a cohort of nearly 1000 subjects with COVID-19 admitted to a third-level Hospital in Milan. RESULTS: We found an increased mortality in subjects with COVID-19 and diabetes, together with an altered inflammatory profile. CONCLUSIONS: This may support the hypothesis that diabetes and COVID-19 meet at the crossroads of inflammation and vascular dysfunction. (ClinicalTrials.gov NCT04463849 and NCT04382794).
Assuntos
Transtornos da Coagulação Sanguínea , COVID-19 , Diabetes Mellitus , COVID-19/complicações , Humanos , Inflamação , SARS-CoV-2RESUMO
In the last few years, a great interest has emerged in investigating the pleiotropic effects of Glucagon Like Peptide-1 Receptor Agonists (GLP-1RAs). While GLP-1RAs ability to lower plasma glucose and to induce weight loss has allowed them to be approved for the treatment of diabetes and obesity, consistent evidences from in vitro studies and preclinical models suggested that GLP-1RAs have anti-inflammatory properties and that may modulate the immune-system. Notably, such anti-inflammatory effects target different pathways in different tissues, underling the broad spectrum of GLP-1RAs actions. This review examines some of the currently proposed molecular mechanisms of GLP-1RAs actions and explores their potential benefits in reducing inflammatory responses, which may well suggest a future therapeutic use of GLP-1RAs in new indications.
Assuntos
Diabetes Mellitus Tipo 2 , Receptor do Peptídeo Semelhante ao Glucagon 1 , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Humanos , Hipoglicemiantes/uso terapêutico , Liraglutida/farmacologia , Obesidade/tratamento farmacológicoRESUMO
Despite much progress in improving graft outcome during cardiac transplantation, chronic allograft vasculopathy (CAV) remains an impediment to long-term graft survival. MicroRNAs (miRNAs) emerged as regulators of the immune response. Here, we aimed to examine the miRNA network involved in CAV. miRNA profiling of heart samples obtained from a murine model of CAV and from cardiac-transplanted patients with CAV demonstrated that miR-21 was most significantly expressed and was primarily localized to macrophages. Interestingly, macrophage depletion with clodronate did not significantly prolong allograft survival in mice, while conditional deletion of miR-21 in macrophages or the use of a specific miR-21 antagomir resulted in indefinite cardiac allograft survival and abrogated CAV. The immunophenotype, secretome, ability to phagocytose, migration, and antigen presentation of macrophages were unaffected by miR-21 targeting, while macrophage metabolism was reprogrammed, with a shift toward oxidative phosphorylation in naïve macrophages and with an inhibition of glycolysis in pro-inflammatory macrophages. The aforementioned effects resulted in an increase in M2-like macrophages, which could be reverted by the addition of L-arginine. RNA-seq analysis confirmed alterations in arginase-associated pathways associated with miR-21 antagonism. In conclusion, miR-21 is overexpressed in murine and human CAV, and its targeting delays CAV onset by reprogramming macrophages metabolism.
Assuntos
Transplante de Coração , MicroRNAs , Aloenxertos , Animais , Rejeição de Enxerto/genética , Rejeição de Enxerto/prevenção & controle , Transplante de Coração/efeitos adversos , Humanos , Macrófagos , Camundongos , MicroRNAs/genéticaRESUMO
INTRODUCTION: Obesity is frequently a comorbidity of type 2 diabetes. Even modest weight loss can significantly improve glucose homeostasis and lessen cardiometabolic risk factors in patients with type 2 diabetes, but lifestyle-based weight loss strategies are not long-term effective. There is an increasing need to consider pharmacological approaches to assist weight loss in the so called diabesity syndrome. Aim of this review is to analyze the weight-loss effect of non-insulin glucose lowering drugs in patients with type 2 diabetes. MATERIAL AND METHODS: A systematic analysis of the literature on the effect of non-insulin glucose lowering drugs on weight loss in patients with type 2 diabetes was performed. For each class of drugs, the following parameters were analyzed: kilograms lost on average, effect on body mass index and body composition. RESULTS: Our results suggested that anti-diabetic drugs can be stratified into 3 groups based on their efficacy in weight loss: metformin, acarbose, empagliflozin and exenatide resulted in a in a mild weight loss (less than 3.2% of initial weight); canagliflozin, ertugliflozin, dapagliflozin and dulaglutide induces a moderate weight loss (between 3.2% and 5%); liraglutide, semaglutide and tirzepatide resulted in a strong weight loss (greater than 5%). CONCLUSIONS: This study shows that new anti-diabetic drugs, particularly GLP1-RA and Tirzepatide, are the most effective in inducing weight loss in patients with type 2 diabetes. Interestingly, exenatide appears to be the only GLP1-RA that induces a mild weight loss.
Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Obesidade/tratamento farmacológico , Redução de Peso/efeitos dos fármacos , Diabetes Mellitus Tipo 2/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Humanos , Obesidade/metabolismoRESUMO
Type 2 diabetes (T2D) is a condition characterized by hyperglycemia and chronic complications. Antidiabetic drugs and lifestyle interventions are the current gold standard therapy for T2D; current therapies, however, can only delay long-term diabetic complications and can additionally be associated with beta cell failure. While the mechanism of beta cell failure is well-studied, little is known about the immunological and inflammatory events associated with antidiabetic agents. Here we studied the effects of three antidiabetic drugs (Metformin, Sitagliptin, and Liraglutide) on immune-relevant pathways in a human beta cell line. Costimulatory molecule expression, cytokine secretion, and gene expression profiles were evaluated at different time points following challenge with the aforementioned antidiabetic agents. Our results showed that these three antidiabetic agents, particularly Sitagliptin, downregulate HLA Class I and II expression and upregulate the immune-regulatory molecules PD-L1 and CTLA4. Metformin and Liraglutide were shown to elicit significantly greater release of TNFa, IL-6, and GM-CSF, while Sitagliptin had a lesser effect on pro-inflammatory cytokine production. Gene expression analysis confirmed the aforementioned observations and also demonstrated upregulation of NOS2, SIRT1, SITR3, POLRMT, MRPL43 and NFkB with antidiabetic agents. We conclude that Sitagliptin most effectively modulates beneficial immune-relevant pathways in a human beta cell line.
Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , Fatores Imunológicos/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fosfato de Sitagliptina/farmacologia , Linhagem Celular , Diabetes Mellitus Tipo 2/imunologia , Diabetes Mellitus Tipo 2/metabolismo , Expressão Gênica/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Hemoglobinas Glicadas/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/metabolismo , Células Secretoras de Insulina/imunologia , Células Secretoras de Insulina/metabolismo , Interleucina-6/metabolismo , Liraglutida/farmacologia , Metformina/farmacologia , Transdução de Sinais/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/efeitos dos fármacosRESUMO
Sodium glucose cotransporter inhibitors (SGLTi) are oral hypoglycemic drugs that reduce renal glucose re-uptake and induce glycosuria. SGLTi have been successfully tested in large randomized clinical trials for type 2 diabetes, and several molecules have been approved in this setting by the international pharmaceutical agencies. Additionally, recent evidence has shown that SGLTi may be useful also in type 1 diabetes (T1D). Indeed, these drugs can be used as an ancillary to insulin to improve glycemic control and reduce insulin dosage, and such regimens have been associated with a lower rate of hypoglycemic episodes. The pharmacological effects of SGLTi therapy are described herein, and we also discuss the future use of SGLTi in T1D.
Assuntos
Diabetes Mellitus Tipo 1/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Proteínas de Transporte de Sódio-Glucose/antagonistas & inibidores , Animais , Diabetes Mellitus Tipo 1/metabolismo , Humanos , Proteínas de Transporte de Sódio-Glucose/metabolismoRESUMO
INTRODUCTION: Although many approaches have been tested to overcome the insulin dependence caused by the pancreatic ß-cells destruction observed in individuals affected by type 1 diabetes (T1D), medical research has largely failed to halt the onset or to reverse T1D. METHODS: In this work, the state of the art of immunotherapy will be examined, and the most important achievement in the field will be critically discussed. Particularly, we will focus on the clinical aspect, thus avoiding the tedious preclinical work done in NOD mice, which has been so poorly translated to the bedside. CONCLUSIONS: Stem cell therapies achieved thus this far the most promising results, while immune ablation and standard immunosuppressants did not maintain the premises of preclinical results. The next step will be to generate a feasible and safe clinical approach in order to cure the thousands of patients affected by T1D.
Assuntos
Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/terapia , Imunoterapia , Animais , HumanosRESUMO
Despite considerable effort to halt or delay destruction of ß-cells in autoimmune type 1 diabetes (T1D), success remains elusive. Over the last decade, we have seen a proliferation of knowledge on the pathogenesis of T1D that emerged from studies performed in non-obese diabetic (NOD) mice. However, while results of these preclinical studies appeared to hold great promise and boosted patients' hopes, none of these approaches, once tested in clinical settings, induced remission of autoimmune diabetes in individuals with T1D. The primary obstacles to translation reside in the differences between the human and murine autoimmune responses and in the contribution of many environmental factors associated with the onset of disease. Moreover, inaccurate dosing as well as inappropriate timing and uncertain length of drug exposure have played a central role in the negative outcomes of such therapeutic interventions. In this review, we summarize the most important approaches tested thus far in T1D, beginning with the most successful preclinical studies in NOD mice and ending with the latest disappointing clinical trials in humans. Finally, we highlight recent stem cell-based trials, for which expectations in the scientific community and among individuals with T1D are high.
Assuntos
Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/terapia , Imunoterapia/métodos , Animais , Ensaios Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , HumanosRESUMO
Islet transplantation has been demonstrated to improve glycometabolic control, to reduce hypoglycemic episodes and to halt the progression of diabetic complications. However, the exhaustion of islet function and the side effects related to chronic immunosuppression limit the spread of this technique. Consequently, new immunoregulatory protocols have been developed, with the aim to avoid the use of a life-time immunosuppression. Several approaches have been tested in preclinical models, and some are now under clinical evaluation. The development of new small molecules and new monoclonal or polyclonal antibodies is continuous and raises the possibility of targeting new costimulatory pathways or depleting particular cell types. The use of stem cells and regulatory T cells is underway to take advantage of their immunological properties and to induce tolerance. Xenograft islet transplantation, although having severe problems in terms of immunological compatibility, could theoretically provide an unlimited source of donors; using pigs carrying human immune antigens has showed indeed promising results. A completely different approach, the use of encapsulated islets, has been developed; synthetic structures are used to hide islet alloantigen from the immune system, thus preserving islet endocrine function. Once one of these strategies is demonstrated safe and effective, it will be possible to establish clinical islet transplantation as a treatment for patients with type 1 diabetes long before the onset of diabetic-related complications.
Assuntos
Terapia de Imunossupressão/métodos , Imunossupressores/uso terapêutico , Transplante das Ilhotas Pancreáticas/imunologia , Transplante das Ilhotas Pancreáticas/métodos , Animais , Diabetes Mellitus Tipo 1/terapia , Xenoenxertos , Humanos , Suínos , Transplante AutólogoRESUMO
Podocyte injury and resulting albuminuria are hallmarks of diabetic nephropathy, but targeted therapies to halt or prevent these complications are currently not available. Here, we show that the immune-related molecule B7-1/CD80 is a critical mediator of podocyte injury in type 2 diabetic nephropathy. We report the induction of podocyte B7-1 in kidney biopsy specimens from patients with type 2 diabetes. Genetic and epidemiologic studies revealed the association of two single nucleotide polymorphisms at the B7-1 gene with diabetic nephropathy. Furthermore, increased levels of the soluble isoform of the B7-1 ligand CD28 correlated with the progression to ESRD in individuals with type 2 diabetes. In vitro, high glucose conditions prompted the phosphatidylinositol 3 kinase-dependent upregulation of B7-1 in podocytes, and the ectopic expression of B7-1 in podocytes increased apoptosis and induced disruption of the cytoskeleton that were reversed by the B7-1 inhibitor CTLA4-Ig. Podocyte expression of B7-1 was also induced in vivo in two murine models of diabetic nephropathy, and treatment with CTLA4-Ig prevented increased urinary albumin excretion and improved kidney pathology in these animals. Taken together, these results identify B7-1 inhibition as a potential therapeutic strategy for the prevention or treatment of diabetic nephropathy.
Assuntos
Antígeno B7-1/fisiologia , Diabetes Mellitus Tipo 1/complicações , Nefropatias Diabéticas/etiologia , Podócitos , Adulto , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Regulação para CimaRESUMO
Lung transplantation has limited survival with current immunosuppression. ATP is released from activated T cells, which act as costimulatory molecules through binding to the purinergic receptor P2XR7. We investigated the role of blocking the ATP/purinergic pathway, primarily P2XR7, using its inhibitor oxidized ATP (oATP) in modulating rejection of mouse lung allografts. Mouse lung transplants were performed using mice with major histocompatibility complex mismatch, BALB/c to C57BL6. Recipients received suramin or oATP, and lung allografts were evaluated 15 to ≥ 60 days after transplantation. Recipients were also treated with oATP after the onset of moderate to severe rejection to determine its ability to rescue lung allografts. Outcomes measures included lung function, histology, thoracic imaging, and allo-immune responses. Blocking purinergic receptors with the nonselective inhibitor suramin or with the P2XR7-selective inhibitor oATP reduced acute rejection and prolonged lung allograft survival for ≥ 60 days with no progression in severity. There were fewer inflammatory cells within lung allografts, less rejection, and improved lung function, which was maintained over time. CD4 and CD8 T cells were reduced within lung allografts with impaired activation with prolonged impairment of CD8 responses. In vitro, oATP reduced CD8 activation of Th1 inflammatory cytokines IFN-γ and TNF-α and cytolytic machinery, granzyme B. Cotreatment with immunosuppressive agents, cyclosporine, rapamycin, or CTLA-4Ig resulted in no additive benefits, and oATP alone resulted in better outcomes than cyclosporine alone. This study illustrates a potential new pathway to target in hopes of prolonging survival of lung transplant recipients.
Assuntos
Trifosfato de Adenosina/análogos & derivados , Rejeição de Enxerto/prevenção & controle , Sobrevivência de Enxerto/efeitos dos fármacos , Imunossupressores/farmacologia , Transplante de Pulmão/efeitos adversos , Pulmão/efeitos dos fármacos , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X7/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Suramina/farmacologia , Trifosfato de Adenosina/farmacologia , Aloenxertos , Animais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/metabolismo , Rejeição de Enxerto/patologia , Histocompatibilidade , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Receptores Purinérgicos P2X7/metabolismo , Fatores de TempoRESUMO
Pancreatic beta cells replenishment is considered the next therapeutic option for type 1 diabetes; while stimulating endogenous beta cells proliferation is the "holy grail" for those patients with exhausted beta cell mass. Here we are demonstrating that the pro-apoptotic receptor TMEM219 is expressed in fetal pancreas, in beta cell precursors and in in vitro embryonic-derived endocrine progenitors. TMEM219 signaling negatively regulates beta cells at early stages and induces Caspase 8-mediated cell death. Pharmacological blockade of TMEM219 further rescued beta cell precursor and proliferation markers, and decreased cell death, both in islets and in in vitro-derived endocrine progenitors, allowing for beta cell preservation. While addressing the upstream controlling TMEM219 expression, we determined the TMEM219 miRNet; indeed, one of those miRNAs, miR-129-2, is highly expressed in human islets, particularly in patients at risk or with established type 1 diabetes. miR-129-2 mimic downregulated TMEM219 expression in islets, in in vitro embryonic-derived endocrine progenitors and in highly proliferating insulinoma-derived cells. Moreover, miR-129-2 inhibitor induced a TMEM219 overexpression in insulinoma-derived cells, which restored cell proliferation and functional markers, thus acting as endogenous regulator of TMEM219 expression. The TMEM219 upstream regulator miR129-2 controls the fate of beta cell precursors and may unleash their regenerative potentials to replenish beta cells in type 1 diabetes.
Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Insulinoma , MicroRNAs , Neoplasias Pancreáticas , Humanos , Proliferação de Células , Diabetes Mellitus Tipo 1/metabolismo , Células Secretoras de Insulina/metabolismo , Insulinoma/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Pancreáticas/metabolismo , Fatores de Transcrição/metabolismoRESUMO
BACKGROUND AND AIMS OF THE STUDY: Type 1 diabetes (T1D) impacts lung function and exercise capacity in adults, but limited information is available in children. We hypothesize that T1D causes alterations in pulmonary function and cardiorespiratory fitness, i.e., exercise capacity, at early stages of the disease, due to the presence of inflammation and vascular damage. Therefore, we aim to investigate pulmonary function before and after exercise in children with T1D as compared to age matched healthy controls. METHOD: Twenty-four children with T1D and twenty healthy controls underwent body plethysmography, diffusion lung capacity for carbon monoxide and fractional exhaled nitric oxide at rest and after cardio-pulmonary exercise test. RESULTS: In children with T1D, baseline total lung capacity and diffusion lung capacity for carbon monoxide were reduced as compared to healthy controls. Children with T1D also showed a reduced exercise capacity associated with poor aerobic fitness. Accordingly, diffusion lung capacity for carbon monoxide tended to increase with exercise in healthy controls, while no change was observed in children with T1D. Fractional exhaled nitric oxide was significantly higher at baseline and tended to increase with exercise in children with T1D, while no changes were observed in healthy controls. CONCLUSIONS: Altered diffusion lung capacity for carbon monoxide, increased fractional exhaled nitric oxide and a poor aerobic fitness to exercise suggests the presence of early pulmonary abnormalities in children with T1D.
Assuntos
Diabetes Mellitus Tipo 1 , Adulto , Criança , Humanos , Diabetes Mellitus Tipo 1/complicações , Monóxido de Carbono , Pulmão , Teste de Esforço , Inflamação , Óxido NítricoRESUMO
INTRODUCTION: Type 1 (T1D) and type 2 diabetes (T2D) are associated with an elevated incidence of infectious diseases and a higher risk of infections-related hospitalization and death. In this study, we delineated the "vaccinome" landscape obtained with a large immunization schedule offered by the Regional Government of Lombardy in a cohort of 618,396 patients with diabetes (T1D and T2D). METHODS: Between September 2021 and September 2022, immunization coverage for influenza, meningococcus, pneumococcus, and herpes zoster was obtained from the public computerized registry of the healthcare system of Lombardy Region (Italy) in 618,396 patients with diabetes and in 9,534,087 subjects without diabetes. Type of diabetes, age, mortality, and hospitalizations were retrospectively analyzed in vaccinated and unvaccinated patients. RESULTS: Among patients with diabetes (T1D and T2D), 44.6% received the influenza vaccine, 10.9% the pneumococcal vaccine, 2.5% the anti-meningococcus vaccine and 0.7% the anti-zoster vaccine. Patients with diabetes immunized for influenza, zoster and meningococcus showed a 2-fold overall reduction in mortality risk and a decrease in hospitalizations. A 3-fold lower risk of mortality and a decrease in hospitalizations for both cardiac and pulmonary causes were also observed after influenza, zoster, and meningococcus immunization in older patients with diabetes. CONCLUSIONS: Immunization coverage is still far from the recommended targets in patients with diabetes. Despite this, influenza vaccination protected nearly 3,800 per 100,000 patients with diabetes from risk of death. The overall impressive decrease in mortality and hospitalizations observed in vaccinated patients strengthens the need for scaling up the "vaccinome" landscape in patients with diabetes.
RESUMO
Glucagon-like peptide-1 receptor (GLP-1R) is a key regulator of glucose metabolism known to be expressed by pancreatic ß cells. We herein investigated the role of GLP-1R on T lymphocytes during immune response. Our data showed that a subset of T lymphocytes expresses GLP-1R, which is upregulated during alloimmune response, similarly to PD-1. When mice received islet or cardiac allotransplantation, an expansion of GLP-1Rpos T cells occurred in the spleen and was found to infiltrate the graft. Additional single-cell RNA sequencing (scRNA-seq) analysis conducted on GLP-1Rpos and GLP-1Rneg CD3+ T cells unveiled the existence of molecular and functional dissimilarities between both subpopulations, as the GLP-1Rpos are mainly composed of exhausted CD8 T cells. GLP-1R acts as a T cell-negative costimulatory molecule, and GLP-1R signaling prolongs allograft survival, mitigates alloimmune response, and reduces T lymphocyte graft infiltration. Notably, GLP-1R antagonism triggered anti-tumor immunity when tested in a preclinical mouse model of colorectal cancer.