RESUMO
The cranial morphology of the earliest known hominins in the genus Australopithecus remains unclear. The oldest species in this genus (Australopithecus anamensis, specimens of which have been dated to 4.2-3.9 million years ago) is known primarily from jaws and teeth, whereas younger species (dated to 3.5-2.0 million years ago) are typically represented by multiple skulls. Here we describe a nearly complete hominin cranium from Woranso-Mille (Ethiopia) that we date to 3.8 million years ago. We assign this cranium to A. anamensis on the basis of the taxonomically and phylogenetically informative morphology of the canine, maxilla and temporal bone. This specimen thus provides the first glimpse of the entire craniofacial morphology of the earliest known members of the genus Australopithecus. We further demonstrate that A. anamensis and Australopithecus afarensis differ more than previously recognized and that these two species overlapped for at least 100,000 years-contradicting the widely accepted hypothesis of anagenesis.
Assuntos
Fósseis , Hominidae/anatomia & histologia , Hominidae/classificação , Crânio/anatomia & histologia , Animais , Dente Canino/anatomia & histologia , Etiópia , Face/anatomia & histologia , Maxila/anatomia & histologia , Especificidade da Espécie , Osso Temporal/anatomia & histologia , Fatores de TempoRESUMO
Reconstructing the detailed dietary behaviour of extinct hominins is challenging1-particularly for a species such as Australopithecus africanus, which has a highly variable dental morphology that suggests a broad diet2,3. The dietary responses of extinct hominins to seasonal fluctuations in food availability are poorly understood, and nursing behaviours even less so; most of the direct information currently available has been obtained from high-resolution trace-element geochemical analysis of Homo sapiens (both modern and fossil), Homo neanderthalensis4 and living apes5. Here we apply high-resolution trace-element analysis to two A. africanus specimens from Sterkfontein Member 4 (South Africa), dated to 2.6-2.1 million years ago. Elemental signals indicate that A. africanus infants predominantly consumed breast milk for the first year after birth. A cyclical elemental pattern observed following the nursing sequence-comparable to the seasonal dietary signal that is seen in contemporary wild primates and other mammals-indicates irregular food availability. These results are supported by isotopic evidence for a geographical range that was dominated by nutritionally depauperate areas. Cyclical accumulation of lithium in A. africanus teeth also corroborates the idea that their range was characterized by fluctuating resources, and that they possessed physiological adaptations to this instability. This study provides insights into the dietary cycles and ecological behaviours of A. africanus in response to food availability, including the potential cyclical resurgence of milk intake during times of nutritional challenge (as observed in modern wild orangutans5). The geochemical findings for these teeth reinforce the unique place of A. africanus in the fossil record, and indicate dietary stress in specimens that date to shortly before the extinction of Australopithecus in South Africa about two million years ago.
Assuntos
Fósseis , Hominidae , Estações do Ano , Estresse Fisiológico , Dente/química , Animais , Aleitamento Materno , Hominidae/anatomia & histologia , Hominidae/fisiologia , Pongo , Dente/anatomia & histologia , Dente/fisiologiaRESUMO
Neanderthal anterior teeth are very large and have a distinctive morphology characterized by robust 'shovel-shaped' crowns. These features are frequently seen as adaptive responses in dissipating heavy mechanical loads resulting from masticatory and non-masticatory activities. Although the long-standing debate surrounding this hypothesis has played a central role in paleoanthropology, is still unclear if Neanderthal anterior teeth can resist high mechanical loads or not. A novel way to answer this question is to use a multidisciplinary approach that considers together tooth architecture, dental wear and jaw movements. The aim of this study is to functionally reposition the teeth of Le Moustier 1 (a Neanderthal adolescent) and Qafzeh 9 (an early Homo sapiens adolescent) derived from wear facet mapping, occlusal fingerprint analysis and physical dental restoration methods. The restored dental arches are then used to perform finite element analysis on the left central maxillary incisor during edge-to-edge occlusion. The results show stress distribution differences between Le Moustier 1 and Qafzeh 9, with the former displaying higher tensile stress in enamel around the lingual fossa but lower concentration of stress in the lingual aspect of the root surface. These results seem to suggest that the presence of labial convexity, lingual tubercle and of a large root surface in Le Moustier 1 incisor helps in dissipating mechanical stress. The absence of these dental features in Qafzeh 9 is compensated by the presence of a thicker enamel, which helps in reducing the stress in the tooth crown.
Assuntos
Homem de Neandertal , Humanos , Adolescente , Animais , Incisivo , Simulação por Computador , Análise de Elementos Finitos , Coroas , Estresse MecânicoRESUMO
In the originally published version of this Letter, the x axis in Fig. 3a should have been: 'PC1: 26%' rather than 'PC1: 46%', and the y axis should have been: 'PC2: 16%' rather than 'PC2: 29%'. We also noticed an error in the numbering of the fossils from Qafzeh: Qafzeh 27 should be removed, and Qafzeh 26 is actually Qafzeh 25, following Tillier (2014)1 and Schuh et al. (2017)2 and personal communication with B. Vandermeersch and M. D. Garralda. The correct enumeration of Qafzeh samples in the 'Mandibular metric data' section of the Methods is therefore: 'Qafzeh (9, 25)' rather than 'Qafzeh (9, 26, 27)'. Owing to the removal of Qafzeh 27, the convex hull of early modern humans changes slightly in Extended Data Fig. 1c. The sample sizes in Extended Data Fig. 1c should have read: Middle Pleistocene archaic Homo n = 19 (instead of 11), Neanderthals n = 40 (instead of 41), early modern humans n = 12 (instead of 7), and recent modern humans n = 46 (instead of 48). In Extended Data Table 2, the mean and standard deviation of corpus height and breadth at mental foramen for early modern humans should have been: xÌ = 33.15, σ = 3.26 for height (rather than xÌ = 34.23, σ = 4.57); and xÌ = 16.25, σ = 1.28 for breadth (rather than xÌ = 16.04, σ = 1.75). Accordingly, n = 12 (rather than n = 13) for both breadth and height. These errors have been corrected in the Letter online (the original Extended Data Fig. 1 is shown in Supplementary Information to this Amendment). These changes do not alter any inferences drawn from the data.
RESUMO
Fossil evidence points to an African origin of Homo sapiens from a group called either H. heidelbergensis or H. rhodesiensis. However, the exact place and time of emergence of H. sapiens remain obscure because the fossil record is scarce and the chronological age of many key specimens remains uncertain. In particular, it is unclear whether the present day 'modern' morphology rapidly emerged approximately 200 thousand years ago (ka) among earlier representatives of H. sapiens or evolved gradually over the last 400 thousand years. Here we report newly discovered human fossils from Jebel Irhoud, Morocco, and interpret the affinities of the hominins from this site with other archaic and recent human groups. We identified a mosaic of features including facial, mandibular and dental morphology that aligns the Jebel Irhoud material with early or recent anatomically modern humans and more primitive neurocranial and endocranial morphology. In combination with an age of 315 ± 34 thousand years (as determined by thermoluminescence dating), this evidence makes Jebel Irhoud the oldest and richest African Middle Stone Age hominin site that documents early stages of the H. sapiens clade in which key features of modern morphology were established. Furthermore, it shows that the evolutionary processes behind the emergence of H. sapiens involved the whole African continent.
Assuntos
Fósseis , Hominidae/anatomia & histologia , Hominidae/classificação , Filogenia , África/etnologia , Animais , Cronologia como Assunto , Face/anatomia & histologia , Humanos , Mandíbula/anatomia & histologia , Marrocos , Crânio/anatomia & histologia , Dente/anatomia & histologiaRESUMO
The early onset of weaning in modern humans has been linked to the high nutritional demand of brain development that is intimately connected with infant physiology and growth rate. In Neanderthals, ontogenetic patterns in early life are still debated, with some studies suggesting an accelerated development and others indicating only subtle differences vs. modern humans. Here we report the onset of weaning and rates of enamel growth using an unprecedented sample set of three late (â¼70 to 50 ka) Neanderthals and one Upper Paleolithic modern human from northeastern Italy via spatially resolved chemical/isotopic analyses and histomorphometry of deciduous teeth. Our results reveal that the modern human nursing strategy, with onset of weaning at 5 to 6 mo, was present among these Neanderthals. This evidence, combined with dental development akin to modern humans, highlights their similar metabolic constraints during early life and excludes late weaning as a factor contributing to Neanderthals' demise.
Assuntos
Esmalte Dentário/crescimento & desenvolvimento , Homem de Neandertal/crescimento & desenvolvimento , Desmame , Animais , Esmalte Dentário/química , Humanos , Lactente , Recém-NascidoRESUMO
Australopiths, a group of hominins from the Plio-Pleistocene of Africa, are characterized by derived traits in their crania hypothesized to strengthen the facial skeleton against feeding loads and increase the efficiency of bite force production. The crania of robust australopiths are further thought to be stronger and more efficient than those of gracile australopiths. Results of prior mechanical analyses have been broadly consistent with this hypothesis, but here we show that the predictions of the hypothesis with respect to mechanical strength are not met: some gracile australopith crania are as strong as that of a robust australopith, and the strength of gracile australopith crania overlaps substantially with that of chimpanzee crania. We hypothesize that the evolution of cranial traits that increased the efficiency of bite force production in australopiths may have simultaneously weakened the face, leading to the compensatory evolution of additional traits that reinforced the facial skeleton. The evolution of facial form in early hominins can therefore be thought of as an interplay between the need to increase the efficiency of bite force production and the need to maintain the structural integrity of the face.
Assuntos
Hominidae , Animais , Evolução Biológica , Força de Mordida , Face , Fósseis , Crânio/anatomia & histologiaRESUMO
This work aims to test accuracy and comparability of 3D models of human skeletal fibulae generated by clinical CT and laser scanner virtual acquisitions. Mesh topology, segmentation and smoothing protocols were tested to assess variation among meshes generated with different scanning methods and procedures, and to evaluate meshes-interchangeability in 3D geometric morphometric analysis. A sample of 13 left human fibulae were scanned separately with Revolution Discovery CT dual energy (0.625 mm resolution) and ARTEC Space Spider 3D structured light laser scanner (0.1 mm resolution). Different segmentation methods, including half-maximum height (HMH) and MIA-clustering protocols, were compared to their high-resolution standard generated with laser-scanner by calculating topological surface deviations. Different smoothing algorithms were also evaluated, such as Laplacian and Taubin smoothing. A total of 142 semilandmarks were used to capture the shape of both proximal and distal fibular epiphyses. After Generalized Procrustes superimposition, the Procrustes coordinates of the proximal and distal fibular epiphyses were used separately to assess variation due to scanning methods and the operator error. Smoothing algorithms at low iteration do not provide significant variation among reconstructions, but segmentation protocol may influence final mesh quality (0.09-0.24 mm). Mean deviation among CT-generated meshes that were segmented with MIA-clustering protocol, and laser scanner-generated ones, is optimal (0.42 mm, ranging 0.35-0.56 mm). Principal component analysis reveals that homologous samples scanned with the two methods cluster together for both the proximal and distal fibular epiphyses. Similarly, Procrustes ANOVA reveals no shape differences between scanning methods and replicates, and only 1.38-1.43% of shape variation is due to scanning device. Topological similarities support the comparability of CT- and laser scanner-generated meshes and validate its simultaneous use in shape analysis with potential clinical relevance. We precautionarily suggest that dedicated trials should be performed in each study when merging different data sources prior to analyses.
Assuntos
Sistema Musculoesquelético , Tomografia Computadorizada por Raios X , Algoritmos , Fíbula , Humanos , Imageamento Tridimensional/métodos , LasersRESUMO
Modern humans arrived in Europe ~45,000 years ago, but little is known about their genetic composition before the start of farming ~8,500 years ago. Here we analyse genome-wide data from 51 Eurasians from ~45,000-7,000 years ago. Over this time, the proportion of Neanderthal DNA decreased from 3-6% to around 2%, consistent with natural selection against Neanderthal variants in modern humans. Whereas there is no evidence of the earliest modern humans in Europe contributing to the genetic composition of present-day Europeans, all individuals between ~37,000 and ~14,000 years ago descended from a single founder population which forms part of the ancestry of present-day Europeans. An ~35,000-year-old individual from northwest Europe represents an early branch of this founder population which was then displaced across a broad region, before reappearing in southwest Europe at the height of the last Ice Age ~19,000 years ago. During the major warming period after ~14,000 years ago, a genetic component related to present-day Near Easterners became widespread in Europe. These results document how population turnover and migration have been recurring themes of European prehistory.
Assuntos
Camada de Gelo , População Branca/genética , População Branca/história , Animais , Evolução Biológica , DNA/análise , DNA/genética , DNA/isolamento & purificação , Europa (Continente) , Feminino , Efeito Fundador , Genética Populacional , História Antiga , Migração Humana/história , Humanos , Masculino , Oriente Médio , Homem de Neandertal/genética , Filogenia , Dinâmica Populacional , Seleção Genética , Análise de Sequência de DNA , Fatores de TempoRESUMO
Neanderthal foot bone proportions and morphology are mostly indistinguishable from those of Homo sapiens, with the exception of several distinct Neanderthal features in the talus. The biomechanical implications of these distinct talar features remain contentious, fueling debate around the adaptive meaning of this distinctiveness. With the aim of clarifying this controversy, we test phylogenetic and behavioral factors as possible contributors, comparing tali of 10 Neanderthals and 81 H. sapiens (Upper Paleolithic and Holocene hunter-gatherers, agriculturalists, and postindustrial group) along with the Clark Howell talus (Omo, Ethiopia). Variation in external talar structures was assessed through geometric morphometric methods, while bone volume fraction and degree of anisotropy were quantified in a subsample (n = 45). Finally, covariation between point clouds of site-specific trabecular variables and surface landmark coordinates was assessed. Our results show that although Neanderthal talar external and internal morphologies were distinct from those of H. sapiens groups, shape did not significantly covary with either bone volume fraction or degree of anisotropy, suggesting limited covariation between external and internal talar structures. Neanderthal external talar morphology reflects ancestral retentions, along with various adaptations to high levels of mobility correlated to their presumably unshod hunter-gatherer lifestyle. This pairs with their high site-specific trabecular bone volume fraction and anisotropy, suggesting intense and consistently oriented locomotor loading, respectively. Relative to H.sapiens, Neanderthals exhibit differences in the talocrural joint that are potentially attributable to cultural and locomotor behavior dissimilarity, a talonavicular joint that mixes ancestral and functional traits, and a derived subtalar joint that suggests a predisposition for a pronated foot during stance phase. Overall, Neanderthal talar variation is attributable to mobility strategy and phylogenesis, while H. sapiens talar variation results from the same factors plus footwear. Our results suggest that greater Neanderthal body mass and/or higher mechanical stress uniquely led to their habitually pronated foot posture.
Assuntos
Homem de Neandertal , Tálus , Animais , Fósseis , Humanos , Filogenia , Postura , Estresse Mecânico , Tálus/anatomia & histologiaRESUMO
OBJECTIVES: The analysis of prehistoric human dietary habits is key for understanding the effects of paleoenvironmental changes on the evolution of cultural and social human behaviors. In this study, we compare results from zooarchaeological, stable isotope and dental calculus analyses as well as lower second molar macrowear patterns to gain a broader understanding of the diet of three individuals who lived between the end of the Late Pleistocene and the Early Holocene (ca., 17-8 ky cal BP) in the Eastern Alpine region of Italy. MATERIALS AND METHODS: We analyze individuals buried at the sites of Riparo Tagliente (Verona), Riparo Villabruna, and Mondeval de Sora (Belluno). The three burials provide a unique dataset for diachronically exploring the influence of climatic changes on human subsistence strategies. RESULTS: Isotopic results indicate that all individuals likely relied on both terrestrial and freshwater animal proteins. Even though dental calculus analysis was, in part, hindered by the amount of mineral deposit available on the teeth, tooth macrowear study suggests that the dietary habits of the individuals included plant foods. Moreover, differences in macrowear patterns of lower second molars have been documented between Neanderthals and modern humans in the present sample, due to a prevalence of Buccal wear among the former as opposed to higher values of Lingual wear in modern human teeth. DISCUSSION: Isotopic analyses have emphasized the contribution of animal proteins in the diet of the three foragers from the Eastern Alpine region. The possible intake of carbohydrate-rich plant foods, suggested by the retrieval of plant remains in dental calculus, is supported by the signal of macrowear analysis. Moreover, the latter method indicates that the distribution of macrowear in lower second molars (M2 s) allows us to discriminate between Neanderthals and modern humans within the present reference sample. Overall, our results show these three prehistoric hunter-gatherers were well adapted to the environment in which they lived exploiting many natural resources.
Assuntos
Dieta/história , Comportamento Alimentar/fisiologia , Animais , Isótopos de Carbono/análise , Cálculos Dentários/química , História Antiga , Humanos , Itália , Dente Molar/patologia , Homem de Neandertal , Paleontologia , Desgaste dos Dentes/patologiaRESUMO
OBJECTIVES: Palate morphology is constantly changing throughout an individual's lifespan, yet its asymmetry during growth is still little understood. In this research, we focus on the study of palate morphology by using 3D geometric morphometric approaches to observe changes at different stages of life, and to quantify the impact of directional and fluctuating asymmetry on different areas at different growth stages. MATERIALS AND METHODS: The sample consists of 183 individuals (1-72 years) from two identified human skeletal collections of 19th and early 20th Century Italian contexts. A 3D-template of 41 (semi)landmarks was applied on digital palate models to observe morphological variation during growth. RESULTS: Asymmetrical components of the morphological structure appears multidirectional on the entire palate surface in individuals <2 years old and become oriented (opposite bilateral direction) between 2 and 6 years of age. Specifically, directional asymmetry differentially impacts palate morphology at different stages of growth. Both the anterior and posterior palate are affected by mild alterations in the first year of life, while between 2 and 6 years asymmetry is segregated in the anterior area, and moderate asymmetry affects the entire palatal surface up to 12 years of age. Our results show that stability of the masticatory system seems to be reached around 13-35 years first by females and then males. From 36 years on both sexes show similar asymmetry on the anterior area. Regarding fluctuating asymmetry, inter-individual variability is mostly visible up to 12 years of age, after which only directional trends can be clearly observed at a group level. DISCUSSION: Morphological structure appears instable during the first year of life and acquires an opposite asymmetric bilateral direction between 2 and 6 years of age. This condition has been also documented in adults; when paired with vertical alteration, anterior/posterior asymmetry seems to characterize palate morphology, which is probably due to mechanical factors during the lifespan. Fluctuating asymmetry is predominant in the first period of life due to a plausible relationship with the strength of morphological instability of the masticatory system. Directional asymmetry, on the other hand, shows that the patterning of group-level morphological change might be explained as a functional response to differential inputs (physiological forces, nutritive and non-nutritive habits, para-masticatory activity as well as the development of speech) in different growth stages. This research has implications with respect to medical and evolutionary fields. In medicine, palate morphology should be considered when planning orthodontic and surgical procedures as it could affect the outcome. As far as an evolutionary perspective is concerned the dominance of directional asymmetries in the masticatory system could provide information on dietary and cultural habits as well as pathological conditions in our ancestors.
Assuntos
Palato , Pré-Escolar , Feminino , Humanos , MasculinoRESUMO
We report on a computer-based reconstruction of a well-preserved ape skull from late Miocene deposits in Rudabánya, Hungary. Based on micro-computed tomographic scans of the original Rudapithecus hungaricus partial cranium RUD 200 and the associated mandible RUD 212 we realign displaced bone fragments, and reconstruct the shape of the upper and lower jaws guided by occlusal fingerprint analysis of dental wear patterns. We apply geometric morphometric methods based on several hundred landmarks and sliding semilandmarks to estimate missing data, and create multiple reconstructions of the specimen. We then compare the reconstructed overall cranial shape, as well as the volume and shape of the endocast, with extant primates. Multiple reconstructions of RUD 200 yield an average endocranial volume of 234 cc (S.D.: 9 cc; range: 221-247 cc). RUD 200 is most similar to African apes in overall cranial shape, but in a statistical analysis of endocranial shape the specimen falls closest to extant hylobatids. Our data suggest that R. hungaricus from the late Miocene in Europe displays aspects of the overall cranial geometry typical of extant African great apes, but it does not show an evolutionary reorganization of the brain evident in Pan, Gorilla, and Pongo.
Assuntos
Fósseis/anatomia & histologia , Hominidae/anatomia & histologia , Crânio/anatomia & histologia , Animais , Evolução Biológica , Feminino , HungriaRESUMO
Few European sites have yielded human dental remains safely dated to the end of MIS 4/beginning of MIS 3. One of those sites is Marillac (Southwestern France), a collapsed karstic cave where archeological excavations (1967-1980) conducted by B. Vandermeersch unearthed numerous faunal and human remains, as well as a few Mousterian Quina tools. The Marillac sinkhole was occasionally used by humans to process the carcasses of different prey, but there is no evidence for a residential use of the site, nor have any hearths been found. Rare carnivore bones were also discovered, demonstrating that the sinkhole was seasonally used, not only by Neanderthals, but also by predators across several millennia. The lithostratigraphic units containing the human remains were dated to â¼60 kyr. The fossils consisted of numerous fragments of skulls and jaws, isolated teeth and several post-cranial bones, many of them with traces of perimortem manipulations. For those already published, their morphological characteristics and chronostratigraphic context allowed their attribution to Neanderthals. This paper analyzes sixteen unpublished human teeth (fourteen permanent and two deciduous) by investigating the external morphology and metrical variation with respect to other Neanderthal remains and a sample from modern populations. We also investigate their enamel thickness distribution in 2D and 3D, the enamel-dentine junction morphology (using geometric morphometrics) of one molar and two premolars, the roots and the possible expression of taurodontism, as well as pathologies and developmental defects. The anterior tooth use and paramasticatory activities are also discussed. Morphological and structural alterations were found on several teeth, and interpreted in light of human behavior (tooth-pick) and carnivores' actions (partial digestion). The data are interpreted in the context of the available information for the Eurasian Neanderthals.
Assuntos
Fósseis/anatomia & histologia , Homem de Neandertal/anatomia & histologia , Dente/anatomia & histologia , Animais , Arqueologia , FrançaRESUMO
The adoption of bipedalism is a key benchmark in human evolution that has impacted talar morphology. Here, we investigate talar morphological variability in extinct and extant hominins using a 3D geometric morphometric approach. The evolutionary timing and appearance of modern human-like features and their contributions to bipedal locomotion were evaluated on the talus as a whole, each articular facet separately, and multiple combinations of facets. Distinctive suites of features are consistently present in all fossil hominins, despite the presence of substantial interspecific variation, suggesting a potential connection of these suites to bipedal gait. A modern human-like condition evolved in navicular and lateral malleolar facets early in the hominin lineage compared with other facets, which demonstrate more complex morphological variation within Homininae. Interestingly, navicular facet morphology of Australopithecus afarensis is derived in the direction of Homo, whereas more recent hominin species such as Australopithecus africanus and Australopithecus sediba retain more primitive states in this facet. Combining the navicular facet with the trochlea and the posterior calcaneal facet as a functional suite, however, distinguishes Australopithecus from Homo in that the medial longitudinal arch had not fully developed in the former. Our results suggest that a more everted foot and stiffer medial midtarsal region are adaptations that coincide with the emergence of bipedalism, whereas a high medial longitudinal arch emerges later in time, within Homo. This study provides novel insights into the emergence of talar morphological traits linked to bipedalism and its transition from a facultative to an obligate condition.
Assuntos
Evolução Biológica , Hominidae/anatomia & histologia , Hominidae/fisiologia , Locomoção , Tálus/anatomia & histologia , Animais , Feminino , Fósseis/anatomia & histologia , Gorilla gorilla/anatomia & histologia , Gorilla gorilla/fisiologia , Humanos , Masculino , Homem de Neandertal/anatomia & histologia , Homem de Neandertal/fisiologia , Pan troglodytes/anatomia & histologia , Pan troglodytes/fisiologiaRESUMO
The site of Riparo Broion (Vicenza, northeastern Italy) preserves a stratigraphic sequence documenting the Middle-to-Upper Paleolithic transition, in particular the final Mousterian and the Uluzzian cultures. In 2018, a human tooth was retrieved from a late Mousterian level, representing the first human remain ever found from this rock shelter (Riparo Broion 1). Here, we provide the morphological description and taxonomic assessment of Riparo Broion 1 with the support of classic and virtual morphology, 2D and 3D analysis of the topography of enamel thickness, and DNA analysis. The tooth is an exfoliated right upper deciduous canine, and its general morphology and enamel thickness distribution support attribution to a Neanderthal child. Correspondingly, the mitochondrial DNA sequence from Riparo Broion 1 falls within the known genetic variation of Late Pleistocene Neanderthals, in accordance with newly obtained radiocarbon dates that point to approximately 48 ka cal BP as the most likely minimum age for this specimen. The present work describes novel and direct evidence of the late Neanderthal occupation in northern Italy that preceded the marked cultural and technological shift documented by the Uluzzian layers in the archaeological sequence at Riparo Broion. Here, we provide a new full morphological, morphometric, and taxonomic analysis of Riparo Broion 1, in addition to generating the wider reference sample of Neanderthal and modern human upper deciduous canines. This research contributes to increasing the sample of fossil remains from Italy, as well as the number of currently available upper deciduous canines, which are presently poorly documented in the scientific literature.
Assuntos
Dente Canino/anatomia & histologia , Fósseis/anatomia & histologia , Homem de Neandertal/anatomia & histologia , Dente Decíduo/anatomia & histologia , Animais , Itália , Maxila , PaleodontologiaRESUMO
OBJECTIVES: The primate talus is known to have a shape that varies according to differences in locomotion and substrate use. While the modern human talus is morphologically specialized for bipedal walking, relatively little is known on how its morphology varies in relation to cultural and environmental differences across time. Here we compare tali of modern human populations with different subsistence economies and lifestyles to explore how cultural practices and environmental factors influence external talar shape. MATERIALS AND METHODS: The sample consists of digital models of 142 tali from 11 archaeological and post-industrial modern human groups. Talar morphology was investigated through 3D (semi)landmark based geometric morphometric methods. RESULTS: Our results show distinct differences between highly mobile hunter-gatherers and more sedentary groups belonging to a mixed post-agricultural/industrial background. Hunter-gatherers exhibit a more "flexible" talar shape, everted posture, and a more robust and medially oriented talar neck/head, which we interpret as reflecting long-distance walking strictly performed barefoot, or wearing minimalistic footwear, along uneven ground. The talus of the post-industrial population exhibits a "stable" profile, neutral posture, and a less robust and orthogonally oriented talar neck/head, which we interpret as a consequence of sedentary lifestyle and use of stiff footwear. DISCUSSION: We suggest that talar morphological variation is related to the adoption of constraining footwear in post-industrial society, which reduces ankle range of motion. This contrasts with hunter-gatherers, where talar shape shows a more flexible profile, likely resulting from a lack of footwear while traversing uneven terrain. We conclude that modern human tali vary with differences in locomotor and cultural behavior.
Assuntos
Comportamento Alimentar , Atividade Motora , Sapatos , Tálus/anatomia & histologia , Adulto , África , Idoso , Arqueologia , Europa (Continente) , Feminino , História do Século XVII , História do Século XVIII , História do Século XIX , História do Século XX , Humanos , Masculino , Pessoa de Meia-Idade , América do Norte , Sapatos/história , Adulto JovemRESUMO
Tooth wear is an important feature for reconstructing diet, food processing and cultural habits of past human populations. In particular, occlusal wear facets can be extremely useful for detecting information about diet and non-masticatory behaviors. The aim of this study is to reconstruct the diet and cultural behavior of the Neanderthal specimen Regourdou 1 (Dordogne, Southern France) from the analysis of the macrowear pattern, using the occlusal fingerprint analysis method. In addition, we have also examined whether there is any association between the observed dental macrowear and mandibular bone distribution and root dentine thickness. The posterior dentition of Regourdou 1 is characterized by an asymmetric wear pattern, with the right side significantly more worn than the left. In contrast, the left lower P3 shows a more advanced wear than the right premolar, with unusual semicircular enamel wear facets. The results from occlusal fingerprint analysis of this unique pattern suggest tooth-tool uses for daily task activities. Moreover, the left buccal aspect of the mandibular cortical bone is thicker than its right counterpart, and the left P3 has a thicker radicular dentine layer than its antimere. These results show a certain degree of asymmetry in cortical bone topography and dentine tissue that could be associated with the observed dental macrowear pattern. The molar macrowear pattern also suggests that Regourdou 1 had a mixed diet typical of those populations living in temperate deciduous woodlands and Mediterranean habitats, including animal and plant foods. Although this study is limited to one Neanderthal individual, future analyses based on a larger sample may further assist us to better understand the existing relationship between mandibular architecture, occlusal wear and the masticatory apparatus in humans.
Assuntos
Dieta , Mandíbula/anatomia & histologia , Mastigação , Homem de Neandertal/anatomia & histologia , Dente/anatomia & histologia , Animais , FrançaRESUMO
Three adaptive hypotheses have been forwarded to explain the distinctive Neanderthal face: (i) an improved ability to accommodate high anterior bite forces, (ii) more effective conditioning of cold and/or dry air and, (iii) adaptation to facilitate greater ventilatory demands. We test these hypotheses using three-dimensional models of Neanderthals, modern humans, and a close outgroup (Homo heidelbergensis), applying finite-element analysis (FEA) and computational fluid dynamics (CFD). This is the most comprehensive application of either approach applied to date and the first to include both. FEA reveals few differences between H. heidelbergensis, modern humans, and Neanderthals in their capacities to sustain high anterior tooth loadings. CFD shows that the nasal cavities of Neanderthals and especially modern humans condition air more efficiently than does that of H. heidelbergensis, suggesting that both evolved to better withstand cold and/or dry climates than less derived Homo We further find that Neanderthals could move considerably more air through the nasal pathway than could H. heidelbergensis or modern humans, consistent with the propositions that, relative to our outgroup Homo, Neanderthal facial morphology evolved to reflect improved capacities to better condition cold, dry air, and, to move greater air volumes in response to higher energetic requirements.