Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 8361, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102136

RESUMO

Activation of oncogenic gene expression from long-range enhancers is initiated by the assembly of DNA-binding transcription factors (TF), leading to recruitment of co-activators such as CBP/p300 to modify the local genomic context and facilitate RNA-Polymerase 2 (Pol2) binding. Yet, most TF-to-coactivator recruitment relationships remain unmapped. Here, studying the oncogenic fusion TF PAX3-FOXO1 (P3F) from alveolar rhabdomyosarcoma (aRMS), we show that a single cysteine in the activation domain (AD) of P3F is important for a small alpha helical coil that recruits CBP/p300 to chromatin. P3F driven transcription requires both this single cysteine and CBP/p300. Mutants of the cysteine reduce aRMS cell proliferation and induce cellular differentiation. Furthermore, we discover a profound dependence on CBP/p300 for clustering of Pol2 loops that connect P3F to its target genes. In the absence of CBP/p300, Pol2 long range enhancer loops collapse, Pol2 accumulates in CpG islands and fails to exit the gene body. These results reveal a potential novel axis for therapeutic interference with P3F in aRMS and clarify the molecular relationship of P3F and CBP/p300 in sustaining active Pol2 clusters essential for oncogenic transcription.


Assuntos
RNA Polimerase II , Rabdomiossarcoma Alveolar , Humanos , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Cisteína/metabolismo , Fatores de Transcrição/metabolismo , Fator de Transcrição PAX3/genética , Rabdomiossarcoma Alveolar/genética , RNA/metabolismo , Ativação Transcricional , Ligação Proteica , Proteína Forkhead Box O1/metabolismo
2.
Elife ; 92020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32744500

RESUMO

The NuRD complex subunit CHD4 is essential for fusion-positive rhabdomyosarcoma (FP-RMS) survival, but the mechanisms underlying this dependency are not understood. Here, a NuRD-specific CRISPR screen demonstrates that FP-RMS is particularly sensitive to CHD4 amongst the NuRD members. Mechanistically, NuRD complex containing CHD4 localizes to super-enhancers where CHD4 generates a chromatin architecture permissive for the binding of the tumor driver and fusion protein PAX3-FOXO1, allowing downstream transcription of its oncogenic program. Moreover, CHD4 depletion removes HDAC2 from the chromatin, leading to an increase and spread of histone acetylation, and prevents the positioning of RNA Polymerase 2 at promoters impeding transcription initiation. Strikingly, analysis of genome-wide cancer dependency databases identifies CHD4 as a general cancer vulnerability. Our findings describe CHD4, a classically defined repressor, as positive regulator of transcription and super-enhancer accessibility as well as establish this remodeler as an unexpected broad tumor susceptibility and promising drug target for cancer therapy.


Assuntos
Regulação Neoplásica da Expressão Gênica , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Rabdomiossarcoma/genética , Linhagem Celular Tumoral , Humanos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa