Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(40): e2304032120, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37748063

RESUMO

Fairy circles (FCs) are regular vegetation patterns found in drylands of Namibia and Western Australia. It is virtually unknown whether they are also present in other regions of the world and which environmental factors determine their distribution. We conducted a global systematic survey and found FC-like vegetation patterns in 263 sites from 15 countries and three continents, including the Sahel, Madagascar, and Middle-West Asia. FC-like vegetation patterns are found in environments characterized by a unique combination of soil (including low nutrient levels and high sand content) and climatic (arid regions with high temperatures and high precipitation seasonality) conditions. In addition to these factors, the presence of specific biological elements (termite nests) in certain regions also plays a role in the presence of these patterns. Furthermore, areas with FC-like vegetation patterns also showed more stable temporal productivity patterns than those of surrounding areas. Our study presents a global atlas of FCs and provides unique insights into the ecology and biogeography of these fascinating vegetation patterns.


Assuntos
Clima Desértico , Ecologia , Geografia , Plantas , Animais
2.
Proc Natl Acad Sci U S A ; 117(22): 12192-12200, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32393624

RESUMO

Late-spring frosts (LSFs) affect the performance of plants and animals across the world's temperate and boreal zones, but despite their ecological and economic impact on agriculture and forestry, the geographic distribution and evolutionary impact of these frost events are poorly understood. Here, we analyze LSFs between 1959 and 2017 and the resistance strategies of Northern Hemisphere woody species to infer trees' adaptations for minimizing frost damage to their leaves and to forecast forest vulnerability under the ongoing changes in frost frequencies. Trait values on leaf-out and leaf-freezing resistance come from up to 1,500 temperate and boreal woody species cultivated in common gardens. We find that areas in which LSFs are common, such as eastern North America, harbor tree species with cautious (late-leafing) leaf-out strategies. Areas in which LSFs used to be unlikely, such as broad-leaved forests and shrublands in Europe and Asia, instead harbor opportunistic tree species (quickly reacting to warming air temperatures). LSFs in the latter regions are currently increasing, and given species' innate resistance strategies, we estimate that ∼35% of the European and ∼26% of the Asian temperate forest area, but only ∼10% of the North American, will experience increasing late-frost damage in the future. Our findings reveal region-specific changes in the spring-frost risk that can inform decision-making in land management, forestry, agriculture, and insurance policy.


Assuntos
Mudança Climática , Temperatura Baixa , Folhas de Planta/crescimento & desenvolvimento , Estações do Ano , Árvores/crescimento & desenvolvimento , Ásia , Europa (Continente) , Florestas , América do Norte , Fenótipo , Análise Espaço-Temporal , Temperatura
3.
New Phytol ; 231(2): 540-558, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33864276

RESUMO

Despite their extent and socio-ecological importance, a comprehensive biogeographical synthesis of drylands is lacking. Here we synthesize the biogeography of key organisms (vascular and nonvascular vegetation and soil microorganisms), attributes (functional traits, spatial patterns, plant-plant and plant-soil interactions) and processes (productivity and land cover) across global drylands. These areas have a long evolutionary history, are centers of diversification for many plant lineages and include important plant diversity hotspots. This diversity captures a strikingly high portion of the variation in leaf functional diversity observed globally. Part of this functional diversity is associated with the large variation in response and effect traits in the shrubs encroaching dryland grasslands. Aridity and its interplay with the traits of interacting plant species largely shape biogeographical patterns in plant-plant and plant-soil interactions, and in plant spatial patterns. Aridity also drives the composition of biocrust communities and vegetation productivity, which shows large geographical variation. We finish our review by discussing major research gaps, which include: studying regular vegetation spatial patterns; establishing large-scale plant and biocrust field surveys assessing individual-level trait measurements; knowing whether the impacts of plant-plant and plant-soil interactions on biodiversity are predictable; and assessing how elevated CO2 modulates future aridity conditions and plant productivity.


Assuntos
Biodiversidade , Ecossistema , Geografia , Plantas , Solo
4.
Ecol Modell ; 436: 109288, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32982015

RESUMO

In this letter we present comments on the article "A global-scale ecological niche model to predict SARS-CoV-2 coronavirus" by Coro published in 2020.

5.
Biol Lett ; 15(7): 20190357, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31337290

RESUMO

Fire is the most frequent disturbance in the Ericaceous Belt (ca 3000-4300 m.a.s.l.), one of the most important plant communities of tropical African mountains. Through resprouting after fire, Erica establishes a positive fire feedback under certain burning regimes. However, present-day human activity in the Bale Mountains of Ethiopia includes fire and grazing systems that may have a negative impact on the resilience of the ericaceous ecosystem. Current knowledge of Erica-fire relationships is based on studies of modern vegetation, lacking a longer time perspective that can shed light on baseline conditions for the fire feedback. We hypothesize that fire has influenced Erica communities in the Bale Mountains at millennial time-scales. To test this, we (1) identify the fire history of the Bale Mountains through a pollen and charcoal record from Garba Guracha, a lake at 3950 m.a.s.l., and (2) describe the long-term bidirectional feedback between wildfire and Erica, which may control the ecosystem's resilience. Our results support fire occurrence in the area since ca 14 000 years ago, with particularly intense burning during the early Holocene, 10.8-6.0 cal ka BP. We show that a positive feedback between Erica abundance and fire occurrence was in operation throughout the Lateglacial and Holocene, and interpret the Ericaceous Belt of the Ethiopian mountains as a long-term fire resilient ecosystem. We propose that controlled burning should be an integral part of landscape management in the Bale Mountains National Park.


Assuntos
Ecossistema , Incêndios , Carvão Vegetal , Etiópia , Humanos , Lagos
6.
Ecol Lett ; 20(4): 452-460, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28194867

RESUMO

Intuitively, interannual spring temperature variability (STV) should influence the leaf-out strategies of temperate zone woody species, with high winter chilling requirements in species from regions where spring warming varies greatly among years. We tested this hypothesis using experiments in 215 species and leaf-out monitoring in 1585 species from East Asia (EA), Europe (EU) and North America (NA). The results reveal that species from regions with high STV indeed have higher winter chilling requirements, and, when grown under the same conditions, leaf out later than related species from regions with lower STV. Since 1900, STV has been consistently higher in NA than in EU and EA, and under experimentally short winter conditions NA species required 84% more spring warming for bud break, EU ones 49% and EA ones only 1%. These previously unknown continental-scale differences in phenological strategies underscore the need for considering regional climate histories in global change models.


Assuntos
Clima , Folhas de Planta/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Europa (Continente) , Ásia Oriental , América do Norte , Estações do Ano , Temperatura
7.
Front Plant Sci ; 15: 1332840, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38545390

RESUMO

Potato (Solanum tuberosum L.) is considered one of the most widely consumed crops worldwide, due to its high yield and nutritional profile, climate change-related environmental threats and increasing food demand. This scenario highlights the need of sustainable agricultural practices to enhance potato productivity, while preserving and maintaining soil health. Plant growth-promoting bacteria (PGPB) stimulate crop production through biofertilization mechanisms with low environmental impact. For instance, PGPB promote biological nitrogen fixation, phosphate solubilization, production of phytohormones, and biocontrol processes. Hence, these microbes provide a promising solution for more productive and sustainable agriculture. In this study, the effects of Bacillus amyloliquefaciens QST713 based-product (MINUET™, Bayer) were assessed in terms of yield, soil microbiome, potato peel and petiole nutrient profile as a promising PGPB in a wide range of potato cultivars across the United States of America. Depending on the location, potato yield and boron petiole content increased after biostimulant inoculation to maximum of 24% and 14%, respectively. Similarly, nutrient profile in potato peel was greatly improved depending on the location with a maximum of 73%, 62% and 36% for manganese, zinc and phosphorus. Notably, fungal composition was shifted in the treated group. Yield showed strong associations with specific microbial taxa, such as Pseudoarthrobacter, Ammoniphilus, Ideonella, Candidatus Berkiella, Dongia. Moreover, local networks strongly associated with yield, highlighting the important role of the native soil microbiome structure in indirectly maintaining soil health. Our results showed that treatment with B. amyloliquefaciens based product correlated with enhanced yield, with minor impacts on the soil microbiome diversity. Further studies are suggested to disentangle the underlying mechanisms of identified patterns and associations.

8.
Sci Data ; 9(1): 14, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35058464

RESUMO

Drylands cover ~41% of the terrestrial surface. In these water-limited ecosystems, soil moisture contributes to multiple hydrological processes and is a crucial determinant of the activity and performance of above- and belowground organisms and of the ecosystem processes that rely on them. Thus, an accurate characterisation of the temporal dynamics of soil moisture is critical to improve our understanding of how dryland ecosystems function and are responding to ongoing climate change. Furthermore, it may help improve climatic forecasts and drought monitoring. Here we present the MOISCRUST dataset, a long-term (2006-2020) soil moisture dataset at a sub-daily resolution from five different microsites (vascular plants and biocrusts) in a Mediterranean semiarid dryland located in Central Spain. MOISCRUST is a unique dataset for improving our understanding on how both vascular plants and biocrusts determine soil water dynamics in drylands, and thus to better assess their hydrological impacts and responses to ongoing climate change.

9.
Ecol Evol ; 8(13): 6671-6681, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30038766

RESUMO

Studying demographic history of species provides insight into how the past has shaped the current levels of overall biodiversity and genetic composition of species, but also how these species may react to future perturbations. Here we investigated the demographic history of the willow grouse (Lagopus lagopus), rock ptarmigan (Lagopus muta), and black grouse (Tetrao tetrix) through the Late Pleistocene using two complementary methods and whole genome data. Species distribution modeling (SDM) allowed us to estimate the total range size during the Last Interglacial (LIG) and Last Glacial Maximum (LGM) as well as to indicate potential population subdivisions. Pairwise Sequentially Markovian Coalescent (PSMC) allowed us to assess fluctuations in effective population size across the same period. Additionally, we used SDM to forecast the effect of future climate change on the three species over the next 50 years. We found that SDM predicts the largest range size for the cold-adapted willow grouse and rock ptarmigan during the LGM. PSMC captured intraspecific population dynamics within the last glacial period, such that the willow grouse and rock ptarmigan showed multiple bottlenecks signifying recolonization events following the termination of the LGM. We also see signals of population subdivision during the last glacial period in the black grouse, but more data are needed to strengthen this hypothesis. All three species are likely to experience range contractions under future warming, with the strongest effect on willow grouse and rock ptarmigan due to their limited potential for northward expansion. Overall, by combining these two modeling approaches, we have provided a multifaceted examination of the biogeography of these species and how they have responded to climate change in the past. These results help us understand how cold-adapted species may respond to future climate changes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa