Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Psychiatry ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664492

RESUMO

With advances in our understanding regarding the neurochemical underpinnings of neurological and psychiatric diseases, there is an increased demand for advanced computational methods for neurochemical analysis. Despite having a variety of techniques for measuring tonic extracellular concentrations of neurotransmitters, including voltammetry, enzyme-based sensors, amperometry, and in vivo microdialysis, there is currently no means to resolve concentrations of structurally similar neurotransmitters from mixtures in the in vivo environment with high spatiotemporal resolution and limited tissue damage. Since a variety of research and clinical investigations involve brain regions containing electrochemically similar monoamines, such as dopamine and norepinephrine, developing a model to resolve the respective contributions of these neurotransmitters is of vital importance. Here we have developed a deep learning network, DiscrimNet, a convolutional autoencoder capable of accurately predicting individual tonic concentrations of dopamine, norepinephrine, and serotonin from both in vitro mixtures and the in vivo environment in anesthetized rats, measured using voltammetry. The architecture of DiscrimNet is described, and its ability to accurately predict in vitro and unseen in vivo concentrations is shown to vastly outperform a variety of shallow learning algorithms previously used for neurotransmitter discrimination. DiscrimNet is shown to generalize well to data captured from electrodes unseen during model training, eliminating the need to retrain the model for each new electrode. DiscrimNet is also shown to accurately predict the expected changes in dopamine and serotonin after cocaine and oxycodone administration in anesthetized rats in vivo. DiscrimNet therefore offers an exciting new method for real-time resolution of in vivo voltammetric signals into component neurotransmitters.

2.
Bipolar Disord ; 26(4): 376-387, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38558302

RESUMO

BACKGROUND: Treatment of refractory bipolar disorder (BD) is extremely challenging. Deep brain stimulation (DBS) holds promise as an effective treatment intervention. However, we still understand very little about the mechanisms of DBS and its application on BD. AIM: The present study aimed to investigate the behavioural and neurochemical effects of ventral tegmental area (VTA) DBS in an animal model of mania induced by methamphetamine (m-amph). METHODS: Wistar rats were given 14 days of m-amph injections, and on the last day, animals were submitted to 20 min of VTA DBS in two different patterns: intermittent low-frequency stimulation (LFS) or continuous high-frequency stimulation (HFS). Immediately after DBS, manic-like behaviour and nucleus accumbens (NAc) phasic dopamine (DA) release were evaluated in different groups of animals through open-field tests and fast-scan cyclic voltammetry. Levels of NAc dopaminergic markers were evaluated by immunohistochemistry. RESULTS: M-amph induced hyperlocomotion in the animals and both DBS parameters reversed this alteration. M-amph increased DA reuptake time post-sham compared to baseline levels, and both LFS and HFS were able to block this alteration. LFS was also able to reduce phasic DA release when compared to baseline. LFS was able to increase dopamine transporter (DAT) expression in the NAc. CONCLUSION: These results demonstrate that both VTA LFS and HFS DBS exert anti-manic effects and modulation of DA dynamics in the NAc. More specifically the increase in DA reuptake driven by increased DAT expression may serve as a potential mechanism by which VTA DBS exerts its anti-manic effects.


Assuntos
Estimulação Encefálica Profunda , Modelos Animais de Doenças , Mania , Metanfetamina , Ratos Wistar , Área Tegmentar Ventral , Animais , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo , Metanfetamina/farmacologia , Masculino , Ratos , Mania/terapia , Mania/induzido quimicamente , Estimulantes do Sistema Nervoso Central/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Transtorno Bipolar/terapia , Transtorno Bipolar/induzido quimicamente
3.
Analyst ; 149(10): 3008-3016, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38606455

RESUMO

Fast-scan cyclic voltammetry (FSCV) is a widely used technique for detecting neurotransmitters. However, electrode fouling can negatively impact its accuracy and sensitivity. Fouling refers to the accumulation of unwanted materials on the electrode surface, which can alter its electrochemical properties and reduce its sensitivity and selectivity. Fouling mechanisms can be broad and may include biofouling, the accumulation of biomolecules on the electrode surface, and chemical fouling, the deposition of unwanted chemical species. Despite individual studies discussing fouling effects on either the working electrode or the reference electrode, no comprehensive study has been conducted to compare the overall fouling effects on both electrodes in the context of FSCV. Here, we examined the effects of biofouling and chemical fouling on the carbon fiber micro-electrode (CFME) as the working electrode and the Ag/AgCl reference electrode with FSCV. Both fouling mechanisms significantly decreased the sensitivity and caused peak voltage shifts in the FSCV signal with the CFME, but not with the Ag/AgCl reference electrode. Interestingly, previous studies have reported peak voltage shifts in FSCV signals due to the fouling of Ag/AgCl electrodes after implantation in the brain. We noticed in a previous study that energy-dispersive spectroscopy (EDS) spectra showed increased sulfide ion concentration after implantation. We hypothesized that sulfide ions may be responsible for the peak voltage shift. To test this hypothesis, we added sulfide ions to the buffer solution, which decreased the open circuit potential of the Ag/AgCl electrode and caused a peak voltage shift in the FSCV voltammograms. Also, EDS analysis showed that sulfide ion concentration increased on the surface of the Ag/AgCl electrodes after 3 weeks of chronic implantation, necessitating consideration of sulfide ions as the fouling agent for the reference electrodes. Overall, our study provides important insights into the mechanisms of electrode fouling and its impact on FSCV measurements. These findings could inform the design of FSCV experiments, with the development of new strategies for improving the accuracy and reliability of FSCV measurements in vivo.


Assuntos
Incrustação Biológica , Técnicas Eletroquímicas , Neurotransmissores , Neurotransmissores/análise , Incrustação Biológica/prevenção & controle , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Animais , Compostos de Prata/química , Fibra de Carbono/química , Microeletrodos , Sulfetos/química , Eletrodos
4.
J Neurophysiol ; 127(3): 714-724, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34986049

RESUMO

Although dopamine is the most implicated neurotransmitter in the mediation of the pathophysiology of addiction, animal studies show serotonin also plays a vital role. Cocaine is one of the most common illicit drugs globally, but the role of serotonin in its mechanism of action is insufficiently characterized. Consequently, we investigated the acute effects of the psychomotor stimulant cocaine on electrical stimulation-evoked serotonin (phasic) release in the nucleus accumbens core (NAcc) of urethane-anesthetized (1.5 g/kg ip) male Sprague-Dawley rats using N-shaped fast-scan cyclic voltammetry (N-FSCV). A single carbon fiber microelectrode was first implanted in the NAcc. Stimulation was applied to the medial forebrain bundle using 60 Hz, 2 ms, 0.2 mA, 2-s biphasic pulses before and after cocaine (2 mg/kg iv) was administered. Stimulation-evoked serotonin release significantly increased 5 min after cocaine injection compared with baseline (153 ± 21 nM vs. 257 ± 12 nM; P = 0.0042; n = 5) but was unaffected by saline injection (1 mL/kg iv; n = 5). N-FSCV's selective measurement of serotonin release in vivo was confirmed pharmacologically via administration of the selective serotonin reuptake inhibitor escitalopram (10 mg/kg ip) that effectively increased the signal in a separate group of rats (n = 5). Selectivity to serotonin was further confirmed in vitro in which dopamine was minimally detected by N-FSCV with a serotonin to dopamine response ratio of 1:0.04 (200 nM of serotonin:1 µM dopamine ratio; P = 0.0048; n = 5 electrodes). This study demonstrates a noteworthy influence of cocaine on serotonin dynamics, and confirms that N-FSCV can effectively and selectively measure phasic serotonin release in the NAcc.NEW & NOTEWORTHY Serotonin plays a vital role in drug addiction. Here, using N-shaped fast-scan cyclic voltammetry, we demonstrated the effect of cocaine on the phasic release of serotonin at the nucleus accumbens core. To the best of our knowledge, this has not previously been elucidated. Our results not only reinforce the role of serotonin in the mechanism of action of cocaine but also help to fill a gap in our knowledge and provide a baseline for future studies in cocaine addiction.


Assuntos
Cocaína , Núcleo Accumbens , Animais , Cocaína/farmacologia , Dopamina/farmacologia , Estimulação Elétrica , Masculino , Ratos , Ratos Sprague-Dawley , Serotonina/farmacologia
5.
Sensors (Basel) ; 22(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35408257

RESUMO

In this study, we demonstrate that Raman microscopy combined with computational analysis is a useful approach to discriminating accurately between brain tumor bio-specimens and to identifying structural changes in glioblastoma (GBM) bio-signatures after nordihydroguaiaretic acid (NDGA) administration. NDGA phenolic lignan was selected as a potential therapeutic agent because of its reported beneficial effects in alleviating and inhibiting the formation of multi-organ malignant tumors. The current analysis of NDGA's impact on GBM human cells demonstrates a reduction in the quantity of altered protein content and of reactive oxygen species (ROS)-damaged phenylalanine; results that correlate with the ROS scavenger and anti-oxidant properties of NDGA. A novel outcome presented here is the use of phenylalanine as a biomarker for differentiating between samples and assessing drug efficacy. Treatment with a low NDGA dose shows a decline in abnormal lipid-protein metabolism, which is inferred by the formation of lipid droplets and a decrease in altered protein content. A very high dose results in cell structural and membrane damage that favors transformed protein overexpression. The information gained through this work is of substantial value for understanding NDGA's beneficial as well as detrimental bio-effects as a potential therapeutic drug for brain cancer.


Assuntos
Glioblastoma , Antioxidantes , Glioblastoma/tratamento farmacológico , Humanos , Masoprocol/farmacologia , Masoprocol/uso terapêutico , Fenilalanina , Espécies Reativas de Oxigênio
6.
Anal Chem ; 93(48): 15861-15869, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34839667

RESUMO

We previously reported on the use of fast cyclic square wave voltammetry (FCSWV) as a new voltammetric technique. Fourier transform electrochemical impedance spectroscopy (FTEIS) has recently been utilized to provide information that enables a detailed analytical description of an electrified interface. In this study, we report on attempts to combine FTEIS with FCSWV (FTEIS-FCSWV) and demonstrate the feasibility of FTEIS-FCSWV in the in vivo detection of neurotransmitters, thus giving a new type of electrochemical impedance information such as biofouling on the electrode surface. From FTEIS-FCSWV, three new equivalent circuit element voltammograms, consisting of charge-transfer resistance (Rct), solution-resistance (Rs), and double-layer capacitance (Cdl) voltammograms were constructed and investigated in the phasic changes in dopamine (DA) concentrations. As a result, all Rct, Rs, and Cdl voltammograms showed different DA redox patterns and linear trends for the DA concentration (R2 > 0.99). Furthermore, the Rct voltammogram in FTEIS-FCSWV showed lower limit of detection (21.6 ± 15.8 nM) than FSCV (35.8 ± 17.4 nM). FTEIS-FCSWV also showed significantly lower prediction errors than FSCV in selectivity evaluations of unknown mixtures of catecholamines. Finally, Cdl from FTEIS-FCSWV showed a significant relationship with fouling effect on the electrode surface by showing decreased DA sensitivity in both flow injection analysis experiment (r = 0.986) and in vivo experiments. Overall, this study demonstrates the feasibility of FTEIS-FCSWV, which could offer a new type of neurochemical spectroscopic information concerning electrochemical monitoring of neurotransmitters in the brain, and the ability to estimate the degree of sensitivity loss caused by biofouling on the electrode surface.


Assuntos
Espectroscopia Dielétrica , Técnicas Eletroquímicas , Animais , Eletrodos , Estudos de Viabilidade , Análise de Fourier , Neurotransmissores , Ratos , Ratos Sprague-Dawley
7.
Anal Chem ; 93(51): 16987-16994, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34855368

RESUMO

Here, we present the development of a novel voltammetric technique, N-shaped multiple cyclic square wave voltammetry (N-MCSWV) and its application in vivo. It allows quantitative measurements of tonic extracellular levels of serotonin in vivo with mitigated fouling effects. N-MCSWV enriches the electrochemical information by generating high dimensional voltammograms, which enables high sensitivity and selectivity against 5-hydroindoleacetic acid (5-HIAA), dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), histamine, ascorbic acid, norepinephrine, adenosine, and pH. Using N-MCSWV, in combination with PEDOT:Nafion-coated carbon fiber microelectrodes, a tonic serotonin concentration of 52 ± 5.8 nM (n = 20 rats, ±SEM) was determined in the substantia nigra pars reticulata of urethane-anesthetized rats. Pharmacological challenges with dopaminergic, noradrenergic, and serotonergic synaptic reuptake inhibitors supported the ability of N-MCSWV to selectively detect tonic serotonin levels in vivo. Overall, N-MCSWV is a novel voltammetric technique for analytical quantification of serotonin. It offers continuous monitoring of changes in tonic serotonin concentrations in the brain to further our understanding of the role of serotonin in normal behaviors and psychiatric disorders.


Assuntos
Dopamina , Serotonina , Animais , Química Encefálica , Microeletrodos , Ratos , Ratos Sprague-Dawley , Serotonina/metabolismo
8.
Anal Chem ; 92(1): 774-781, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31789495

RESUMO

Although N-shaped fast scan cyclic voltammetry (N-FSCV) is well-established as an electroanalytical method to measure extracellular serotonin concentrations in vivo, it is in need of improvement in both sensitivity and selectivity. Based on our previous studies using fast cyclic square-wave voltammetry (FCSWV) for in vivo dopamine measurements, we have modified this technique to optimize the detection of serotonin in vivo. A series of large amplitude square-shaped potentials was superimposed onto an N-shaped waveform to provide cycling through multiple redox reactions within the N-shaped waveform to enhance the sensitivity and selectivity to serotonin measurement when combined with a two-dimensional voltammogram. N-Shaped fast cyclic square-wave voltammetry (N-FCSWV) showed significantly higher sensitivity to serotonin compared to conventional N-FSCV. In addition, N-FCSWV showed better performance than conventional N-shaped FSCV in differentiating serotonin from its major interferents, dopamine and 5-hydroxyindoleascetic acid (5-HIAA). It was also confirmed that the large amplitude of the square waveform did not influence local neuronal activity, and it could monitor electrical stimulation evoked phasic release of serotonin in the rat substantia nigra pars reticulata (SNr) before and after systemic injection of escitalopram (ESCIT, 10 mg/kg i.p.), a serotonin selective reuptake inhibitor.


Assuntos
Técnicas Eletroquímicas/instrumentação , Serotonina/análise , Animais , Química Encefálica , Técnicas Eletroquímicas/métodos , Desenho de Equipamento , Masculino , Microeletrodos , Ratos Sprague-Dawley
9.
Trends Analyt Chem ; 1322020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33597790

RESUMO

Dysfunction in dopaminergic neuronal systems underlie a number of neurologic and psychiatric disorders such as Parkinson's disease, drug addiction, and schizophrenia. Dopamine systems communicate via two mechanisms, a fast "phasic" release (sub-second to second) that is related to salient stimuli and a slower "tonic" release (minutes to hours) that regulates receptor tone. Alterations in tonic levels are thought to be more critically important in enabling normal motor, cognitive, and motivational functions, and dysregulation in tonic dopamine levels are associated with neuropsychiatric disorders. Therefore, development of neurochemical recording techniques that enable rapid, selective, and quantitative measurements of changes in tonic extracellular levels are essential in determining the role of dopamine in both normal and disease states. Here, we review state-of-the-art advanced analytical techniques for in vivo detection of tonic levels, with special focus on electrochemical techniques for detection in humans.

10.
Neurosurg Focus ; 49(1): E6, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32610297

RESUMO

The development of closed-loop deep brain stimulation (DBS) systems represents a significant opportunity for innovation in the clinical application of neurostimulation therapies. Despite the highly dynamic nature of neurological diseases, open-loop DBS applications are incapable of modifying parameters in real time to react to fluctuations in disease states. Thus, current practice for the designation of stimulation parameters, such as duration, amplitude, and pulse frequency, is an algorithmic process. Ideal stimulation parameters are highly individualized and must reflect both the specific disease presentation and the unique pathophysiology presented by the individual. Stimulation parameters currently require a lengthy trial-and-error process to achieve the maximal therapeutic effect and can only be modified during clinical visits. The major impediment to the development of automated, adaptive closed-loop systems involves the selection of highly specific disease-related biomarkers to provide feedback for the stimulation platform. This review explores the disease relevance of neurochemical and electrophysiological biomarkers for the development of closed-loop neurostimulation technologies. Electrophysiological biomarkers, such as local field potentials, have been used to monitor disease states. Real-time measurement of neurochemical substances may be similarly useful for disease characterization. Thus, the introduction of measurable neurochemical analytes has significantly expanded biomarker options for feedback-sensitive neuromodulation systems. The potential use of biomarker monitoring to advance neurostimulation approaches for treatment of Parkinson's disease, essential tremor, epilepsy, Tourette syndrome, obsessive-compulsive disorder, chronic pain, and depression is examined. Further, challenges and advances in the development of closed-loop neurostimulation technology are reviewed, as well as opportunities for next-generation closed-loop platforms.


Assuntos
Encéfalo/fisiopatologia , Estimulação Encefálica Profunda , Doenças do Sistema Nervoso/terapia , Transtorno Obsessivo-Compulsivo/terapia , Estimulação Encefálica Profunda/métodos , Tremor Essencial/terapia , Humanos , Doença de Parkinson/terapia , Síndrome de Tourette/fisiopatologia
11.
Rev Anal Chem ; 39(1): 188-199, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33883813

RESUMO

Neurochemical recording techniques have expanded our understanding of the pathophysiology of neurological disorders, as well as the mechanisms of action of treatment modalities like deep brain stimulation (DBS). DBS is used to treat diseases such as Parkinson's disease, Tourette syndrome, and obsessive-compulsive disorder, among others. Although DBS is effective at alleviating symptoms related to these diseases and improving the quality of life of these patients, the mechanism of action of DBS is currently not fully understood. A leading hypothesis is that DBS modulates the electrical field potential by modifying neuronal firing frequencies to non-pathological rates thus providing therapeutic relief. To address this gap in knowledge, recent advances in electrochemical sensing techniques have given insight into the importance of neurotransmitters, such as dopamine, serotonin, glutamate, and adenosine, in disease pathophysiology. These studies have also highlighted their potential use in tandem with electrophysiology to serve as biomarkers in disease diagnosis and progression monitoring, as well as characterize response to treatment. Here, we provide an overview of disease-relevant neurotransmitters and their roles and implications as biomarkers, as well as innovations to the biosensors used to record these biomarkers. Furthermore, we discuss currently available neurochemical and electrophysiological recording devices, and discuss their viability to be implemented into the development of a closed-loop DBS system.

12.
Anal Chem ; 90(22): 13348-13355, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30358389

RESUMO

Although fast-scan cyclic voltammetry (FSCV) has been widely used for in vivo neurochemical detection, the sensitivity and selectivity of the technique can be further improved. In this study, we develop fast cyclic square-wave voltammetry (FCSWV) as a novel voltammetric technique that combines large-amplitude cyclic square-wave voltammetry (CSWV) with background subtraction. A large-amplitude, square-shaped potential was applied to induce cycling through multiple redox reactions within a square pulse to increase sensitivity and selectivity when combined with a two-dimensional voltammogram. As a result, FCSWV was significantly more sensitive than FSCV ( n = 5 electrodes, two-way ANOVA, p = 0.0002). In addition, FCSWV could differentiate dopamine from other catecholamines (e.g., epinephrine and norepinephrine) and serotonin better than conventional FSCV. With the confirmation that FCSWV did not influence local neuronal activity, despite the large amplitude of the square waveform, it could monitor electrically induced phasic changes in dopamine release in rat striatum before and after injecting nomifensine, a dopamine reuptake inhibitor.


Assuntos
Técnicas Eletroquímicas/métodos , Neurotransmissores/análise , Animais , Corpo Estriado/metabolismo , Dopamina/análise , Epinefrina/análise , Masculino , Camundongos , Norepinefrina/análise , Ratos Sprague-Dawley , Sensibilidade e Especificidade , Serotonina/análise
13.
J Neuroeng Rehabil ; 15(1): 8, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29439744

RESUMO

Dynamic feedback based closed-loop medical devices offer a number of advantages for treatment of heterogeneous neurological conditions. Closed-loop devices integrate a level of neurobiological feedback, which allows for real-time adjustments to be made with the overarching aim of improving treatment efficacy and minimizing risks for adverse events. One target which has not been extensively explored as a potential feedback component in closed-loop therapies is mitochondrial function. Several neurodegenerative and psychiatric disorders including Parkinson's disease, Major Depressive disorder and Bipolar disorder have been linked to perturbations in the mitochondrial respiratory chain. This paper investigates the potential to monitor this mitochondrial function as a method of feedback for closed-loop neuromodulation treatments. A generic model of the closed-loop treatment is developed to describe the high-level functions of any system designed to control neural function based on mitochondrial response to stimulation, simplifying comparison and future meta-analysis. This model has four key functional components including: a sensor, signal manipulator, controller and effector. Each of these components are described and several potential technologies for each are investigated. While some of these candidate technologies are quite mature, there are still technological gaps remaining. The field of closed-loop medical devices is rapidly evolving, and whilst there is a lot of interest in this area, widespread adoption has not yet been achieved due to several remaining technological hurdles. However, the significant therapeutic benefits offered by this technology mean that this will be an active area for research for years to come.


Assuntos
Retroalimentação , Mitocôndrias/patologia , Doenças do Sistema Nervoso/fisiopatologia , Doenças do Sistema Nervoso/terapia , Humanos
14.
Sensors (Basel) ; 18(8)2018 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-30115871

RESUMO

To better understand detection and monitoring of the important neurotransmitter adenosine at physiological levels, this study combines quantum chemical density functional modeling and ultrasensitive surface-enhanced Raman spectroscopic (SERS) measurements. Combined simulation results and experimental data for an analyte concentration of about 10-11 molar indicate the presence of all known molecular forms resulting from adenosine's complex redox-reaction. Detailed analysis presented here, besides assessing potential Raman signatures of these adenosinic forms, also sheds light on the analytic redox process and voltammetric detection. Examples of adenosine Raman fingerprints for different molecular orientations with respect to the SERS substrate are the vibrational line around 920 ± 10 cm-1 for analyte physisorption through the carbinol moiety and around 1600 ± 20 cm-1 for its fully oxidized form. However, both hydroxyl/oxygen sites and NH2/nitrogen sites contribute to molecule's interaction with the SERS environment. Our results also reveal that contributions of partially oxidized adenosine forms and of the standard form are more likely to be detected with the first recorded voltammetric oxidation peak. The fully oxidized adenosine form contributes mostly to the second peak. Thus, this comparative theoretical⁻experimental investigation of adenosine's vibrational signatures provides significant insights for advancing its detection, and for future development of opto-voltammetric biosensors.

15.
J Neurosci ; 36(22): 6022-9, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27251623

RESUMO

UNLABELLED: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for medically refractory Parkinson's disease. Although DBS has recognized clinical utility, its biologic mechanisms are not fully understood, and whether dopamine release is a potential factor in those mechanisms is in dispute. We tested the hypothesis that STN DBS-evoked dopamine release depends on the precise location of the stimulation site in the STN and the site of recording in the caudate and putamen. We conducted DBS with miniature, scaled-to-animal size, multicontact electrodes and used functional magnetic resonance imaging to identify the best dopamine recording site in the brains of nonhuman primates (rhesus macaques), which are highly representative of human brain anatomy and circuitry. Real-time stimulation-evoked dopamine release was monitored using in vivo fast-scan cyclic voltammetry. This study demonstrates that STN DBS-evoked dopamine release can be reduced or increased by redirecting STN stimulation to a slightly different site. SIGNIFICANCE STATEMENT: Electrical stimulation of deep structures of the brain, or deep brain stimulation (DBS), is used to modulate pathological brain activity. However, technological limitations and incomplete understanding of the therapeutic mechanisms of DBS prevent personalization of this therapy and may contribute to less-than-optimal outcomes. We have demonstrated that DBS coincides with changes in dopamine neurotransmitter release in the basal ganglia. Here we mapped relationships between DBS and changes in neurochemical activity. Importantly, this study shows that DBS-evoked dopamine release can be reduced or increased by refocusing the DBS on a slightly different stimulation site.


Assuntos
Núcleo Caudado/metabolismo , Dopamina/metabolismo , Estimulação Elétrica , Putamen/metabolismo , Núcleo Subtalâmico/fisiologia , Animais , Mapeamento Encefálico , Imageamento Tridimensional , Macaca mulatta , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiologia , Núcleo Subtalâmico/diagnóstico por imagem
16.
Analyst ; 142(22): 4317-4321, 2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-29063091

RESUMO

Fast scan cyclic voltammetry (FSCV) has been commonly used to measure extracellular neurotransmitter concentrations in the brain. Due to the unstable nature of the background currents inherent in FSCV measurements, analysis of FSCV data is limited to very short amounts of time using traditional background subtraction. In this paper, we propose the use of a zero-phase high pass filter (HPF) as the means to remove the background drift. Instead of the traditional method of low pass filtering across voltammograms to increase the signal to noise ratio, a HPF with a low cutoff frequency was applied to the temporal dataset at each voltage point to remove the background drift. As a result, the HPF utilizing cutoff frequencies between 0.001 Hz and 0.01 Hz could be effectively used to a set of FSCV data for removing the drifting patterns while preserving the temporal kinetics of the phasic dopamine response recorded in vivo. In addition, compared to a drift removal method using principal component analysis, this was found to be significantly more effective in reducing the drift (unpaired t-test p < 0.0001, t = 10.88) when applied to data collected from Tris buffer over 24 hours although a drift removal method using principal component analysis also showed the effective background drift reduction. The HPF was also applied to 5 hours of FSCV in vivo data. Electrically evoked dopamine peaks, observed in the nucleus accumbens, were clearly visible even without background subtraction. This technique provides a new, simple, and yet robust, approach to analyse FSCV data with an unstable background.


Assuntos
Dopamina/análise , Técnicas Eletroquímicas , Neurotransmissores/análise , Animais , Encéfalo , Estimulação Encefálica Profunda , Masculino , Microeletrodos , Ratos Sprague-Dawley
17.
Clin Orthop Relat Res ; 475(3): 722-732, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26847453

RESUMO

BACKGROUND: Periprosthetic infections are devastating for patients and more efficacious preventive strategies are needed. Surface-modified implants using antibacterial coatings represent an option to cope with this problem; however, manufacturing limitations and cytotoxicity have curbed clinical translation. Among metals with antibacterial properties, copper has shown superior in vitro antibacterial performance while maintaining an acceptable cytotoxicity profile. A thin film containing copper could prevent early biofilm formation to limit periprosthetic infections. This pilot study presents the in vitro antibacterial effect, cytotoxicity, and copper ion elution pattern of a thin film of titanium-copper oxide (TiCuO). QUESTIONS/PURPOSES: (1) Do titanium alloy (Ti6Al4V) discs coated with a thin film of TiCuO reduce Staphylococcus epidermidis biofilm and planktonic cell density compared with uncoated discs? (2) Do Ti6Al4V discs coated with a thin film of TiCuO affect normal human osteoblast viability compared with untreated cells? (3) Is copper ion concentration generated by coated discs lower than previously published copper ion concentrations that cause 50% toxicity in similar human cell lines in vitro (TC50)? METHODS: Ninety Ti6Al4V discs (12.5 mm diameter; 1.25 mm thick) were used in this study. Seventy-two Ti6Al4V discs were coated with a thin film of either titanium oxide (TiO) or TiCuO containing 20%, 40%, or 80% copper using high-power impulse magnetron sputtering (HiPIMS). Eighteen Ti6Al4V discs remained uncoated for control purposes. We tested antibacterial properties of S epidermidis grown on discs in wells containing growth medium. After 24 hours, planktonic bacteria as well as biofilms removed by sonication were quantitatively cultured. Annexin/Pi staining was used to quantify in vitro normal human osteoblast cell viability at 24 hours and Day 7, respectively. Copper elution was measured at Days 1, 2, 3, 7, 14, and 28 using an inductively coupled plasma mass spectrometer to analyze aliquots of culture medium. Copper ion concentration achieved at 24 hours was compared with previously published TC50 for gingival fibroblast, a phenotypically similar cell line with available data regarding copper ion exposure. RESULTS: Discs coated with TiCuO 80% copper showed greater biofilm and planktonic cell density reduction when compared with other tested compositions (analysis of variance [ANOVA]; p < 0.001). Discs coated with TiCuO 80% copper showed mean biofilm and planktonic cell density of 4.0 log10 (SD = 0.4) and 5.7 log10 (SD = 0.2). Discs coated with TiCuO 80% showed a mean difference in biofilm and planktonic cell density of 2.5 log10 (95% confidence interval [CI], 1.9-3.1 log10; p < 0.001) and 1.2 (95% CI, 0.6-1.8; p < 0.001), respectively, when compared with uncoated discs. Normal human osteoblast viability did not differ among all groups at 24 hours (ANOVA; p = 0.2) and Day 7 (ANOVA; p = 0.7). Discs coated with TiCuO 80% copper showed a mean difference (95% CI) in relative cell viability (%) at 24 hours and Day 7 of 31.1 (95% CI, -19.4 to 81.7; p = 0.4) and -5.0 (95% CI, -7.8 to 17.9; p = 0.9), respectively, when compared with untreated cells. For all TiCuO-coated discs, copper ion elution peaked at 24 hours and slowly decreased in a curvilinear fashion to nearly undetectable levels by Day 28. Discs coated with TiCuO 80% copper showed mean copper ion concentration at 24 hours of 269.4 µmol/L (SD = 25.2 µmol/L) and this concentration was lower than previously published TC50 for similar human cell lines at 24 hours (344 µmol/L, SEM = 44 µmol/L). CONCLUSIONS: This pilot study demonstrates a proof of concept that a thin-film implant coating with TiCuO can provide a potent local antibacterial environment while remaining relatively nontoxic to a human osteoblast cell line. Further research in an animal model will be necessary to establish efficacy and safety of this technique and whether it might be useful in the design of implants. CLINICAL RELEVANCE: A thin film coating with TiCuO demonstrates high antibacterial activity and low cellular cytotoxicity to human osteoblasts in vitro. Taken together, these properties represent a potential strategy for preventing periprosthetic infection if further work in animal models can confirm these results in vivo.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Materiais Revestidos Biocompatíveis , Cobre/farmacologia , Procedimentos Ortopédicos/instrumentação , Desenho de Prótese , Infecções Relacionadas à Prótese/prevenção & controle , Infecções Estafilocócicas/prevenção & controle , Staphylococcus epidermidis/efeitos dos fármacos , Titânio/farmacologia , Ligas , Antibacterianos/toxicidade , Carga Bacteriana , Biofilmes/crescimento & desenvolvimento , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cobre/toxicidade , Humanos , Teste de Materiais , Osteoblastos/efeitos dos fármacos , Osteoblastos/patologia , Projetos Piloto , Infecções Relacionadas à Prótese/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/crescimento & desenvolvimento , Propriedades de Superfície , Titânio/toxicidade
18.
J Electrocardiol ; 50(5): 620-625, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28641860

RESUMO

OBJECTIVE: We have previously used a 12-lead, signal-processed ECG to calculate blood potassium levels. We now assess the feasibility of doing so with a smartphone-enabled single lead, to permit remote monitoring. PATIENTS AND METHODS: Twenty-one hemodialysis patients held a smartphone equipped with inexpensive FDA-approved electrodes for three 2min intervals during hemodialysis. Individualized potassium estimation models were generated for each patient. ECG-calculated potassium values were compared to blood potassium results at subsequent visits to evaluate the accuracy of the potassium estimation models. RESULTS: The mean absolute error between the estimated potassium and blood potassium 0.38±0.32 mEq/L (9% of average potassium level) decreasing to 0.6 mEq/L using predictors of poor signal. CONCLUSIONS: A single-lead ECG acquired using electrodes attached to a smartphone device can be processed to calculate the serum potassium with an error of 9% in patients undergoing hemodialysis. SUMMARY: A single-lead ECG acquired using electrodes attached to a smartphone can be processed to calculate the serum potassium in patients undergoing hemodialysis remotely.


Assuntos
Eletrocardiografia/métodos , Hiperpotassemia/diagnóstico , Falência Renal Crônica/sangue , Potássio/sangue , Smartphone , Feminino , Humanos , Falência Renal Crônica/terapia , Masculino , Pessoa de Meia-Idade , Diálise Renal , Processamento de Sinais Assistido por Computador
19.
Sensors (Basel) ; 17(7)2017 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-28640186

RESUMO

Combined theoretical and experimental analysis of serotonin by quantum chemical density functional calculations and surface-enhanced Raman spectroscopy, respectively, is presented in this work to better understand phenomena related to this neurotransmitter's detection and monitoring at very low concentrations specific to physiological levels. In addition to the successful ultrasensitive analyte detection on silver nanoparticles for concentrations as low as 10-11 molar, the relatively good agreement between the simulated and experimentally determined results indicates the presence of all serotonin molecular forms, such as neutral, ionic, and those oxidized through redox reactions. Obvious structural molecular deformations such as bending of lateral amino chains are observed for both ionic and oxidized forms. Not only does this combined approach reveal more probable adsorption of serotonin into the silver surface through hydroxyl/oxygen sites than through NH/nitrogen sites, but also that it does so predominantly in its neutral (reduced) form, somewhat less so in its ionic forms, and much less in its oxidized forms. If the development of opto-voltammetric biosensors and their effective implementation is envisioned for the future, this study provides some needed scientific background for comprehending changes in the vibrational signatures of this important neurotransmitter.


Assuntos
Nanopartículas Metálicas , Adsorção , Coloides , Serotonina , Prata , Análise Espectral Raman
20.
Anal Chem ; 88(22): 10962-10970, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27774784

RESUMO

Dopamine (DA) modulates central neuronal activity through both phasic (second to second) and tonic (minutes to hours) terminal release. Conventional fast-scan cyclic voltammetry (FSCV), in combination with carbon fiber microelectrodes, has been used to measure phasic DA release in vivo by adopting a background subtraction procedure to remove background capacitive currents. However, measuring tonic changes in DA concentrations using conventional FSCV has been difficult because background capacitive currents are inherently unstable over long recording periods. To measure tonic changes in DA concentrations over several hours, we applied a novel charge-balancing multiple waveform FSCV (CBM-FSCV), combined with a dual background subtraction technique, to minimize temporal variations in background capacitive currents. Using this method, in vitro, charge variations from a reference time point were nearly zero for 48 h, whereas with conventional background subtraction, charge variations progressively increased. CBM-FSCV also demonstrated a high selectivity against 3,4-dihydroxyphenylacetic acid and ascorbic acid, two major chemical interferents in the brain, yielding a sensitivity of 85.40 ± 14.30 nA/µM and limit of detection of 5.8 ± 0.9 nM for DA while maintaining selectivity. Recorded in vivo by CBM-FSCV, pharmacological inhibition of DA reuptake (nomifensine) resulted in a 235 ± 60 nM increase in tonic extracellular DA concentrations, while inhibition of DA synthesis (α-methyl-dl-tyrosine) resulted in a 72.5 ± 4.8 nM decrease in DA concentrations over a 2 h period. This study showed that CBM-FSCV may serve as a unique voltammetric technique to monitor relatively slow changes in tonic extracellular DA concentrations in vivo over a prolonged time period.


Assuntos
Dopamina/análise , Técnicas Eletroquímicas , Animais , Análise de Injeção de Fluxo , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa