Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; : 107643, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39122005

RESUMO

Flavodiiron proteins (FLVs) catalyze the reduction of oxygen to water by using electrons from Photosystem I (PSI). In several photosynthetic organisms such as cyanobacteria, green algae, mosses and gymnosperms, FLV-dependent electron flow protects PSI from over-reduction and consequent damage especially under fluctuating light conditions. In this work we investigated biochemical and structural properties of FLVA and FLVB from the model moss Physcomitrium patens. The two proteins, expressed and purified from Escherichia coli, bind both iron and flavin cofactors and show NAD(P)H oxidase activity as well as oxygen reductase capacities. Moreover, the co-expression of both FLVA and FLVB, coupled to a tandem affinity purification procedure with two different affinity tags, enabled the isolation of the stable and catalytically active FLVA/B hetero tetrameric protein complex with cooperative nature. The multimeric organization was shown to be stabilized by inter-subunit disulfide bonds. This investigation provides valuable new information on the biochemical properties of FLVs, with new insights into their in vivo activity.

2.
Plant J ; 113(5): 1049-1061, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36606401

RESUMO

Plants exposed to light fluctuations are protected from photodamage by non-photochemical quenching (NPQ), a reversible mechanism that enables dissipation of excess absorbed energy as heat, which is essential for plant fitness and crop productivity. In plants NPQ requires the presence of the membrane protein PsbS, which upon activation interacts with antenna proteins, inducing their dissipative conformation. Here, we exploited base editing (BE) in the moss Physcomitrium patens to introduce specific amino acid changes in vivo and assess their impact on PsbS activity, targeting transmembrane regions to investigate their role in essential protein-protein interactions. This approach enabled the recognition of residues essential for protein stability and the identification of a hydrophobic cluster of amino acids impacting PsbS activity. This work provides new information on the molecular mechanism of PsbS while also demonstrating the potential of BE approaches for in planta gene function analysis.


Assuntos
Luz , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Edição de Genes , Complexos de Proteínas Captadores de Luz/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa