Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Genet Med ; 26(6): 101117, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38459834

RESUMO

PURPOSE: We describe 3 families with Charcot-Marie-Tooth neuropathy (CMT), harboring a homozygous NDUFS6 NM_004553.6:c.309+5G>A variant previously linked to fatal Leigh syndrome. We aimed to characterize clinically and molecularly the newly identified patients and understand the mechanism underlying their milder phenotype. METHODS: The patients underwent extensive clinical examinations. Exome sequencing was done in 4 affected individuals. The functional effect of the c.309+5G>A variant was investigated in patient-derived EBV-transformed lymphoblasts at the complementary DNA, protein, and mitochondrial level. Alternative splicing was evaluated using complementary DNA long-read sequencing. RESULTS: All patients presented with early-onset, slowly progressive axonal CMT, and nystagmus; some exhibited additional central nervous system symptoms. The c.309+5G>A substitution caused the expression of aberrantly spliced transcripts and negligible levels of the canonical transcript. Immunoblotting showed reduced levels of mutant isoforms. No detectable defects in mitochondrial complex stability or bioenergetics were found. CONCLUSION: We expand the clinical spectrum of NDUFS6-related mitochondrial disorders to include axonal CMT, emphasizing the clinical and pathophysiologic overlap between these 2 clinical entities. This work demonstrates the critical role that alternative splicing may play in modulating the severity of a genetic disorder, emphasizing the need for careful consideration when interpreting splice variants and their implications on disease prognosis.


Assuntos
Processamento Alternativo , Doença de Charcot-Marie-Tooth , Doenças Mitocondriais , Humanos , Processamento Alternativo/genética , Masculino , Feminino , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , Criança , NADH Desidrogenase/genética , Linhagem , Mutação/genética , Fenótipo , Sequenciamento do Exoma , Doença de Leigh/genética , Doença de Leigh/patologia , Mitocôndrias/genética , Mitocôndrias/patologia , Complexo I de Transporte de Elétrons/genética , Adulto , Pré-Escolar , Adolescente
2.
Cerebellum ; 23(2): 833-837, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37460907

RESUMO

Potassium channels (KCN) are transmembrane complexes that regulate the resting membrane potential and the duration of action potentials in cells. The opening of KCN brings about an efflux of K+ ions that induces cell repolarization after depolarization, returns the transmembrane potential to its resting state, and enables for continuous spiking ability. The aim of this work was to assess the role of KCN dysfunction in the pathogenesis of hereditary ataxias and the mechanisms of action of KCN opening agents (KCO). In consequence, a review of the ad hoc medical literature was performed. Among hereditary KCN diseases causing ataxia, mutated Kv3.3, Kv4.3, and Kv1.1 channels provoke spinocerebellar ataxia (SCA) type 13, SCA19/22, and episodic ataxia type 1 (EA1), respectively. The K+ efflux was found to be reduced in experimental models of these diseases, resulting in abnormally prolonged depolarization and incomplete repolarization, thereby interfering with repetitive discharges in the cells. Hence, substances able to promote normal spiking activity in the cerebellum could provide symptomatic benefit. Although drugs used in clinical practice do not activate Kv3.3 or Kv4.3 directly, available KCO probably could ameliorate ataxic symptoms in SCA13 and SCA19/22, as verified with acetazolamide in EA1, and retigabine in a mouse model of hypokalemic periodic paralysis. To summarize, ataxia could possibly be improved by non-specific KCO in SCA13 and SCA19/22. The identification of new specific KCO agents will undoubtedly constitute a promising therapeutic strategy for these diseases.


Assuntos
Ataxia Cerebelar , Canalopatias , Mioquimia , Ataxias Espinocerebelares/congênito , Degenerações Espinocerebelares , Camundongos , Animais , Canalopatias/tratamento farmacológico , Canalopatias/genética , Ataxia/tratamento farmacológico , Ataxia/genética , Mutação
3.
Cerebellum ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771545

RESUMO

Spinocerebellar ataxia type 34 (SCA34) is a dominantly inherited disease that causes late-onset ataxia, in association with skin lesions in the form of erythrokeratodermia variabilis. It is caused by mutations in the ELOVL4 gene, which encodes for the ELOVL4 protein and has the function of lengthening very long chain (VLC) fatty acids (FA), which are important components of central myelin. The aim of this work was to review the medical literature on the biochemical abnormalities of SCA34, and based on the obtained information, to propose supplementation of deficient FAs. A review of the ad hoc medical literature was performed. Plasma levels of the ELOVL4 products C32, C34 and C36 FA have not been reported in SCA34 yet. However, pathogenic variants of ELOVL4 revealed deficient biosynthesis of C28, C30, C32, C34 and C36 FA compared to WT in cell cultures, and the levels of ceramides and phosphatidylcholines containing ≥ 34 C FA were decreased compared to WT in HeLa cells expressing mutant SCA34 proteins. Besides, a pathological study of SCA34 revealed myelin destruction and loss of oligodendrocytes in cerebral and cerebellar white matter. Levels of VLC-FA should be determined, to identify specifically deficient FAs in SCA34. Cerebellar ataxia could possibly be improved by administration of the deficient FAs, as found in SCA38 with supplementation of docosahexaenoic acid. The authors suggest investigators with access to SCA34, to take into consideration this therapeutic hypothesis, and try to verify the potential efficacy of administration of VLCFA in this disease.

4.
Neuropathology ; 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39350534

RESUMO

The aim of this paper is to analyze the pathophysiological mechanisms acting in very early classic Guillain-Barré syndrome (GBS) (≤4 days of symptomatic onset). In this inaugural period, both in GBS and its animal model, experimental autoimmune neuritis, the outstanding pathological feature is inflammatory edema predominating in proximal nerve trunks, particularly spinal nerves, and possibly in preterminal nerve segments. Nerve trunks external to the subarachnoid angle possess epi- perineurium that is relatively inelastic and of low compliance. Here such edema can increase endoneurial fluid pressure that, when sufficiently critical, may stretch the perineurium and constrict transperineurial microcirculation, compromising blood flow and producing the potential for ischemic nerve injury, whose consequence is rapid partial or complete loss of nerve excitability. These histopathological features correlate well with electrophysiological and imaging findings reported in early GBS stages. Spinal nerve edema and ischemia help to understand the pattern of Wallerian-like degeneration observed in the axonal form of GBS, predominating in motor spinal roots at their exit from the dura matter (spinal nerves) with centrifugal distribution in more distant motor nerve trunks, and centripetal extension to the distal portion of intrathecal roots. The similarity of initial pathogenic mechanisms between demyelinating and axonal forms of GBS explains why an early increase of serum biomarkers of axonal damage is detected in both forms. In conclusion, knowledge of the microscopic anatomy of the peripheral nervous system is an essential step for a reliable understanding of pathophysiological mechanisms operating in the early phase of any classic GBS subtype.

5.
Eur J Neurol ; 30(8): 2539-2543, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37154409

RESUMO

BACKGROUND AND PURPOSE: Spinocerebellar ataxia type 15 (SCA15) is a degenerative, adult onset autosomal dominant cerebellar ataxia, caused almost exclusively by deletions in the inositol 1,4,5 triphosphate receptor type 1 (ITPR1) gene (ITPR1). ITPR1 mediates calcium release from the endoplasmic reticulum, and particularly abounds in Purkinje cells. It plays a pivotal role in excitatory and inhibitory actions on Purkinje cells, and alterations in their balance cause cerebellar dysfunction in ITPR1 knockout mice. To date, only two single missense mutations have been reported to cause SCA15. They were considered pathogenic because cosegregation occurred with disease, and haploinsufficiency was hypothesized as their pathogenic mechanism. METHODS: In this study, three Caucasian kindreds with different heterozygous missense variants in ITPR1 are reported. The main clinical manifestation was a slowly progressive gait ataxia with onset after 40 years of age, with chorea in two patients and hand tremor in another one, concordant with manifestations found in SCA15. RESULTS: The three missense variants identified in ITPR1 were c.1594G>A; p.(Ala532Thr) in Kindred A, c.56C>T; p.(Ala19Val) in Kindred B, and c.256G>A; p.(Ala86Thr) in Kindred C. Every variant was labelled as of unknown significance; however, each one cosegregated with disease and was predicted to be pathogenic by in silico tests. CONCLUSIONS: The three ITPR1 missense variants found in this study exhibited cosegregation with disease, a result that sustains their pathogenicity. Further studies are needed to confirm the role of missense mutations in SCA15.


Assuntos
Mutação de Sentido Incorreto , Ataxias Espinocerebelares , Camundongos , Animais , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Heterozigoto
6.
Cerebellum ; 21(4): 531-544, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34731448

RESUMO

The aim of this paper is to carry out a historical overview of the evolution of the knowledge on degenerative cerebellar disorders and hereditary spastic paraplegias, over the last century and a half. Original descriptions of the main pathological subtypes, including Friedreich's ataxia, hereditary spastic paraplegia, olivopontocerebellar atrophy and cortical cerebellar atrophy, are revised. Special attention is given to the first accurate description of striatonigral degeneration by Hans Joachim Scherer, his personal and scientific trajectory being clarified. Pathological classifications of ataxia are critically analysed. The current clinical-genetic classification of ataxia is updated by taking into account recent molecular discoveries. We conclude that there has been an enormous progress in the knowledge of the nosology of hereditary ataxias and paraplegias, currently encompassing around 200 genetic subtypes.


Assuntos
Ataxia Cerebelar , Doenças Neurodegenerativas , Paraplegia Espástica Hereditária , Degeneração Estriatonigral , Ataxia/genética , Atrofia , Humanos , Paraplegia/genética , Paraplegia Espástica Hereditária/genética
7.
J Neuroinflammation ; 18(1): 251, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34719386

RESUMO

BACKGROUND: Guillain-Barré syndrome (GBS) is an acute inflammatory neuropathy with a heterogeneous presentation. Although some evidences support the role of autoantibodies in its pathogenesis, the target antigens remain unknown in a substantial proportion of GBS patients. The objective of this study is to screen for autoantibodies targeting peripheral nerve components in Guillain-Barré syndrome. METHODS: Autoantibody screening was performed in serum samples from all GBS patients included in the International GBS Outcome study by 11 different Spanish centres. The screening included testing for anti-ganglioside antibodies, anti-nodo/paranodal antibodies, immunocytochemistry on neuroblastoma-derived human motor neurons and murine dorsal root ganglia (DRG) neurons, and immunohistochemistry on monkey peripheral nerve sections. We analysed the staining patterns of patients and controls. The prognostic value of anti-ganglioside antibodies was also analysed. RESULTS: None of the GBS patients (n = 100) reacted against the nodo/paranodal proteins tested, and 61 (61%) were positive for, at least, one anti-ganglioside antibody. GBS sera reacted strongly against DRG neurons more frequently than controls both with IgG (6% vs 0%; p = 0.03) and IgM (11% vs 2.2%; p = 0.02) immunodetection. No differences were observed in the proportion of patients reacting against neuroblastoma-derived human motor neurons. Reactivity against monkey nerve tissue was frequently detected both in patients and controls, but specific patterns were only detected in GBS patients: IgG from 13 (13%) patients reacted strongly against Schwann cells. Finally, we confirmed that IgG anti-GM1 antibodies are associated with poorer outcomes independently of other known prognostic factors. CONCLUSION: Our study confirms that (1) GBS patients display a heterogeneous repertoire of autoantibodies targeting nerve cells and structures; (2) gangliosides are the most frequent antigens in GBS patients and have a prognostic value; (3) further antigen-discovery experiments may elucidate other potential antigens in GBS.


Assuntos
Autoanticorpos/sangue , Síndrome de Guillain-Barré/sangue , Síndrome de Guillain-Barré/diagnóstico , Idoso , Animais , Linhagem Celular Tumoral , Estudos de Coortes , Feminino , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Síndrome de Guillain-Barré/epidemiologia , Humanos , Macaca , Masculino , Programas de Rastreamento/métodos , Pessoa de Meia-Idade , Estudos Prospectivos , Ratos , Espanha/epidemiologia
8.
Neurol Sci ; 42(1): 215-223, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32617742

RESUMO

INTRODUCTION: The aim of this study is to describe the normal cross-sectional area (CSA) and appearance of cervical nerve roots in ultrasound, correlating it to age and other patient somatic parameters. METHODS: One hundred healthy volunteers were included. We aimed to achieve uniform representation throughout all age groups. Ultrasound of the cervical nerve roots was performed bilaterally. CSA and margins description were obtained. RESULTS: C5 nerve, 8.32 ± 2.30; C6 nerve, 11.88 ± 3.36; C7 nerve, 12.79 ± 3.85; C8 nerve, 11.20 ± 3.45. Significant correlation between CSA and age was demonstrated, but not for body mass index. Blurred margins were present in up to 23.71% cervical nerves, more frequently in older individuals and in C7 nerve. DISCUSSION: If ultrasound morphology of cervical nerve roots is used as a diagnostic parameter, the normal range of CSA values and percentage of blurred margins according to age should be considered.


Assuntos
Vértebras Cervicais , Raízes Nervosas Espinhais , Idoso , Índice de Massa Corporal , Vértebras Cervicais/diagnóstico por imagem , Voluntários Saudáveis , Humanos , Valores de Referência , Raízes Nervosas Espinhais/diagnóstico por imagem , Ultrassonografia
9.
Artigo em Inglês | MEDLINE | ID: mdl-33154183

RESUMO

OBJECTIVE: To study baseline serum neurofilament light chain (sNfL) levels as a prognostic biomarker in Guillain-Barré syndrome (GBS). METHODS: We measured NfL in serum (98 samples) and cerebrospinal fluid (CSF) (24 samples) of patients with GBS prospectively included in the International GBS Outcome Study (IGOS) in Spain using single-molecule array (SiMoA) and compared them with 53 healthy controls (HCs). We performed multivariable regression to analyse the association between sNfL levels and functional outcome at 1 year. RESULTS: Patients with GBS had higher NfL levels than HC in serum (55.49 pg/mL vs 9.83 pg/mL, p<0.0001) and CSF (1308.5 pg/mL vs 440.24 pg/mL, p=0.034). Patients with preceding diarrhoea had higher sNfL than patients with respiratory symptoms or no preceding infection (134.90 pg/mL vs 47.86 pg/mL vs 38.02 pg/mL, p=0.016). sNfL levels correlated with Guillain-Barré Syndrome Disability Score and Inflammatory Rasch-built Overall Disability Scale (I-RODS) at every timepoint. Patients with pure motor variant and Miller Fisher syndrome showed higher sNfL levels than patients with sensorimotor GBS (162.18 pg/mL vs 95.50 pg/mL vs 38.02 pg/mL, p=0.025). Patients with acute motor axonal neuropathy cute motor axonal neuropathy had higher sNfL levels than other variants (190.55 pg/mL vs 46.79 pg/mL, p=0.013). sNfL returned to normal levels at 1 year. High baseline sNfL levels were associated with inability to run (OR=1.65, 95% CI 1.14 to 2.40, p=0.009) and lower I-RODS (ß -2.60, 95% CI -4.66 to -0.54, p=0.014) at 1 year. Cut-off points predicting clinically relevant outcomes at 1 year with high specificity were calculated: inability to walk independently (>319 pg/mL), inability to run (>248 pg/mL) and ability to run (<34 pg/mL). CONCLUSION: Baseline sNfL levels are increased in patients with GBS, are associated with disease severity and axonal variants and have an independent prognostic value in patients with GBS.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa