RESUMO
Endoplasmic reticulum (ER)-plasma membrane (PM) contacts are sites of lipid exchange and Ca2+ transport, and both lipid transport proteins and Ca2+ channels specifically accumulate at these locations. In pancreatic ß-cells, both lipid and Ca2+ signaling are essential for insulin secretion. The recently characterized lipid transfer protein TMEM24 (also known as C2CD2L) dynamically localizes to ER-PM contact sites and provides phosphatidylinositol, a precursor of phosphatidylinositol-4-phosphate [PI(4)P] and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], to the PM. ß-cells lacking TMEM24 exhibit markedly suppressed glucose-induced Ca2+ oscillations and insulin secretion, but the underlying mechanism is not known. We now show that TMEM24 only weakly interacts with the PM, and dissociates in response to both diacylglycerol and nanomolar elevations of cytosolic Ca2+. Loss of TMEM24 results in hyper-accumulation of Ca2+ in the ER and in excess Ca2+ entry into mitochondria, with resulting impairment in glucose-stimulated ATP production.
Assuntos
Cálcio , Proteínas de Membrana , Membrana Celular , Retículo Endoplasmático/genética , Homeostase , Proteínas de Membrana/genéticaRESUMO
Introduction Hudda-Index is a prediction model for fat mass (FM) based on simple anthropometric measures., FM is a crucial factor in the development of comorbidities, i.e., type 2 diabetes. Hence, Hudda-Index is a promising tool to facilitate identification of children at risk for metabolic comorbidities. It has been validated against deuterium dilution assessments, however, independent validation against the gold-standard for body composition analysis, magnetic resonance imaging (MRI), is lacking. The aim of this study is to validate FM calculated by Hudda-Index against FM measured by MRI. The secondary aim is to compare Hudda-Index to other anthropometric measures including body mass index (BMI), BMI-standard deviation score (BMI-SDS), waist/hip-ratio, waist circumference (WC) and skinfold thickness. Methods The study cohort consists of 115 individuals between the age of 9 and 15 years, recruited at Paracelsus Medical University Hospital in Salzburg (Austria) and Uppsala University Children's Hospital (Sweden). Anthropometry, blood samples, and oral glucose tolerance tests followed standard procedures. MRI examinations were performed to determine visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT). Results BMI and WC showed slightly stronger associations with the reference standard VAT (r=0.72 and 0.70, p<0.01, respectively) than Hudda-Index (r= 0.67, p<0.01). There is an almost perfect linear association between BMI and Hudda-Index. Accordingly, BMI and Hudda-Index both showed an acceptable association with cardiometabolic parameters. VAT was strongly associated with markers of liver status (LFF r=0.59, p<0.01) and insulin resistance (HOMA-IR r=0.71, p<0.01) and predicted metabolic dysfunction-associated steatotic liver disease (MASLD). Conclusion BMI, although an imperfect measure, remains the most reliable tool and estimates cardiometabolic risk more reliably than other anthropometry-based measures.
RESUMO
AIM: To investigate the prevalence and possible risk factors for the development of impaired glucose metabolism in children and adolescents with obesity. METHODS: This was a cross-sectional retrospective cohort study, including 634 patients with obesity and 98 normal weight controls aged 4-18 years from the Beta-cell function in Juvenile Diabetes and Obesity (Beta-JUDO) cohort, a dual-centre study at Uppsala University Hospital (Sweden) and Paracelsus Medical University Hospital (Salzburg, Austria) conducted between 2012 and 2021. A longitudinal subgroup analysis, including 188 of these subjects was performed. Impaired glucose metabolism was diagnosed by oral glucose tolerance tests according to American Diabetes Association criteria. RESULTS: The prevalence of impaired glucose metabolism was 72% in Uppsala patients, 24% in Salzburg patients, 30% in Uppsala controls and 13% in Salzburg controls. The prevalence was lower at the follow-up visits compared with baseline both in Uppsala and Salzburg patients. A family history of type 2 diabetes showed the strongest association with impaired glucose metabolism at the follow-up visits besides belonging to the Uppsala cohort. CONCLUSION: The prevalence of impaired glucose metabolism was extraordinarily high in Swedish children and adolescents with obesity, but decreased during the follow-up period.
Assuntos
Diabetes Mellitus Tipo 2 , Intolerância à Glucose , Obesidade Infantil , Criança , Adolescente , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/metabolismo , Suécia/epidemiologia , Intolerância à Glucose/epidemiologia , Intolerância à Glucose/etiologia , Intolerância à Glucose/metabolismo , Obesidade Infantil/epidemiologia , Obesidade Infantil/complicações , Prevalência , Estudos Retrospectivos , Estudos Transversais , Glicemia/metabolismo , Fatores de RiscoRESUMO
AIM: To elucidate how proinsulin synthesis and insulin was affected by metformin under conditions of nutrient overstimulation. MATERIALS AND METHODS: Isolated human pancreatic islets from seven donors were cultured at 5.5 mmol/L glucose and 0.5 mmol/L palmitate for 12, 24 or 72 h. Metformin (25 µmol/L) was introduced after initial 12 h with palmitate. Proinsulin and insulin were measured. Expression of prohormone convertase 1/3 (PC1/3) and carboxypeptidase E (CPE), was determined by western blot. Adolescents with obesity, treated with metformin and with normal glucose tolerance (n = 5), prediabetes (n = 14), or type 2 diabetes (T2DM; n = 7) were included. Fasting proinsulin, insulin, glucose, 2-h glucose and glycated haemoglobin were measured. Proinsulin/insulin ratio (PI/I) was calculated. RESULTS: In human islets, palmitate treatment for 12 and 24 h increased proinsulin and insulin proportionally. After 72 h, proinsulin but not insulin continued to increase which was coupled with reduced expression of PC1/3 and CPE. Metformin normalized expression of PC1/3 and CPE, and proinsulin and insulin secretion. In adolescents with obesity, before treatment, fasting proinsulin and insulin concentrations were higher in subjects with T2DM than with normal glucose tolerance. PI/I was reduced after metformin treatment in subjects with T2DM as well as in subjects with prediabetes, coupled with reduced 2-h glucose and glycated haemoglobin. CONCLUSIONS: Metformin normalized proinsulin and insulin secretion after prolonged nutrient-overstimulation, coupled with normalization of the converting enzymes, in isolated islets. In adolescents with obesity, metformin treatment was associated with improved PI/I, which was coupled with improved glycaemic control.
Assuntos
Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , Metformina , Obesidade Infantil , Estado Pré-Diabético , Adolescente , Humanos , Insulina/metabolismo , Proinsulina , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Palmitatos/metabolismo , Estado Pré-Diabético/tratamento farmacológico , Estado Pré-Diabético/metabolismo , Hemoglobinas Glicadas , Obesidade Infantil/metabolismo , Ilhotas Pancreáticas/metabolismo , Insulina Regular Humana , Carboxipeptidase H , Glucose/metabolismoRESUMO
INTRODUCTION: Obesity is associated with chronic inflammation. Chronic inflammation has also been linked to insulin resistance and type 2 diabetes, metabolic associated fatty liver disease, and cardiovascular disease. Glucagon-like peptide-1 (GLP-1) receptor analogs (GLP-1RA) are clinically used to treat obesity, with known anti-inflammatory properties. How the GLP-1RA exenatide effects inflammation in adolescents with obesity is not fully investigated. METHODS: Forty-four patients were randomized to receive weekly subcutaneous injections with either 2 mg exenatide or placebo for 6 months. Plasma samples were collected at baseline and at the end of the study, and 92 inflammatory proteins were measured. RESULTS: Following treatment with exenatide, 15 out of the 92 proteins were decreased, and one was increased. However, after adjustment for multiple testing, only IL-18Rα was significantly lowered following treatment. CONCLUSIONS: Weekly injections with 2 mg of exenatide lowers circulating IL-18Rα in adolescents with obesity, which may be a potential link between exenatide and its anti-inflammatory effect in vivo. This contributes to exenatide's pharmaceutical potential as a treatment for obesity beyond weight control and glucose tolerance, and should be further studied mechanistically.
Assuntos
Diabetes Mellitus Tipo 2 , Artes Marciais , Obesidade Infantil , Adolescente , Humanos , Exenatida/uso terapêutico , Hipoglicemiantes/uso terapêutico , Obesidade Infantil/complicações , Peptídeos/uso terapêutico , Peçonhas/uso terapêutico , Inflamação/tratamento farmacológico , Receptor do Peptídeo Semelhante ao Glucagon 1/uso terapêuticoRESUMO
To compare patterns of sedentary (SED) time (more sedentary, SED + vs less sedentary, SED-), moderate to vigorous physical activity (MVPA) time (more active, MVPA + vs less active, MVPA-), and combinations of behaviors (SED-/MVPA + , SED-/MVPA-, SED + /MVPA + , SED + /MVPA-) regarding nonalcoholic fatty liver diseases (NAFLD) markers. This cross-sectional study included 134 subjects (13.4 ± 2.2 years, body mass index (BMI) 98.9 ± 0.7 percentile, 48.5% females) who underwent 24-h/7-day accelerometry, anthropometric, and biochemical markers (alanine aminotransferase (ALT) as first criterion, and aspartate aminotransferase (AST), gamma-glutamyl transpeptidase (GGT), AST/ALT ratio as secondary criteria). A subgroup of 39 patients underwent magnetic resonance imaging-liver fat content (MRI-LFC). Hepatic health was better in SED- (lower ALT, GGT, and MRI-LFC (p < 0.05), higher AST/ALT (p < 0.01)) vs SED + and in MVPA + (lower ALT (p < 0.05), higher AST/ALT (p < 0.01)) vs MVPA- groups after adjustment for age, gender, and Tanner stages. SED-/MVPA + group had the best hepatic health. SED-/MVPA- group had lower ALT and GGT and higher AST/ALT (p < 0.05) in comparison with SED + /MVPA + group independently of BMI. SED time was positively associated with biochemical (high ALT, low AST/ALT ratio) and imaging (high MRI-LFC) markers independently of MVPA. MVPA time was associated with biochemical markers (low ALT, high AST/ALT) but these associations were no longer significant after adjustment for SED time. CONCLUSION: Lower SED time is associated with better hepatic health independently of MVPA. Reducing SED time might be a first step in the management of pediatric obesity NAFLD when increasing MVPA is not possible. WHAT IS KNOWN: ⢠MVPA and SED times are associated with cardiometabolic risks in youths with obesity. ⢠The relationships between NAFLD markers and concomitant MVPA and SED times have not been studied in this population. WHAT IS NEW: ⢠Low SED time is associated with healthier liver enzyme profiles and LFC independent of MVPA. ⢠While low SED/high MVPA is the more desirable pattern, low SED/low MVPA pattern would have healthier liver enzyme profile compared with high MVPA/high SED, independent of BMI, suggesting that reducing SED time irrespective of MVPA is needed to optimize liver health.
Assuntos
Alanina Transaminase , Hepatopatia Gordurosa não Alcoólica , Obesidade Infantil , Comportamento Sedentário , Adolescente , Alanina Transaminase/sangue , Aspartato Aminotransferases , Biomarcadores/sangue , Criança , Estudos Transversais , Exercício Físico/fisiologia , Feminino , Humanos , Fígado , Masculino , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Obesidade Infantil/sangue , Obesidade Infantil/fisiopatologiaRESUMO
The protein tyrosine kinase inhibitor imatinib is used in the treatment of various malignancies but may also promote beneficial effects in the treatment of diabetes. The aim of the present investigation was to characterize the mechanisms by which imatinib protects insulin producing cells. Treatment of non-obese diabetic (NOD) mice with imatinib resulted in increased beta-cell AMP-activated kinase (AMPK) phosphorylation. Imatinib activated AMPK also in vitro, resulting in decreased ribosomal protein S6 phosphorylation and protection against islet amyloid polypeptide (IAPP)-aggregation, thioredoxin interacting protein (TXNIP) up-regulation and beta-cell death. 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) mimicked and compound C counteracted the effect of imatinib on beta-cell survival. Imatinib-induced AMPK activation was preceded by reduced glucose/pyruvate-dependent respiration, increased glycolysis rates, and a lowered ATP/AMP ratio. Imatinib augmented the fractional oxidation of fatty acids/malate, possibly via a direct interaction with the beta-oxidation enzyme enoyl coenzyme A hydratase, short chain, 1, mitochondrial (ECHS1). In non-beta cells, imatinib reduced respiratory chain complex I and II-mediated respiration and acyl-CoA carboxylase (ACC) phosphorylation, suggesting that mitochondrial effects of imatinib are not beta-cell specific. In conclusion, tyrosine kinase inhibitors modestly inhibit mitochondrial respiration, leading to AMPK activation and TXNIP down-regulation, which in turn protects against beta-cell death.
Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus/tratamento farmacológico , Metabolismo Energético/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Mesilato de Imatinib/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Animais , Proteínas de Transporte/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular , Respiração Celular/efeitos dos fármacos , Diabetes Mellitus/enzimologia , Diabetes Mellitus/patologia , Modelos Animais de Doenças , Enoil-CoA Hidratase/metabolismo , Ativação Enzimática , Humanos , Células Secretoras de Insulina/enzimologia , Células Secretoras de Insulina/patologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos Endogâmicos NOD , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Fosforilação , Ratos Sprague-Dawley , Proteína S6 Ribossômica/metabolismoRESUMO
The transcription factor ZBED6 acts as a repressor of Igf2 and affects directly or indirectly the transcriptional regulation of thousands of genes. Here, we use gene editing in mouse C2C12 myoblasts and show that ZBED6 regulates Igf2 exclusively through its binding site 5'-GGCTCG-3' in intron 1 of Igf2. Deletion of this motif (Igf2ΔGGCT ) or complete ablation of Zbed6 leads to ~20-fold upregulation of the IGF2 protein. Quantitative proteomics revealed an activation of Ras signaling pathway in both Zbed6-/- and Igf2ΔGGCT myoblasts, and a significant enrichment of mitochondrial membrane proteins among proteins showing altered expression in Zbed6-/- myoblasts. Both Zbed6-/- and Igf2ΔGGCT myoblasts showed a faster growth rate and developed myotube hypertrophy. These cells exhibited an increased O2 consumption rate, due to IGF2 upregulation. Transcriptome analysis revealed ~30% overlap between differentially expressed genes in Zbed6-/- and Igf2ΔGGCT myotubes, with an enrichment of upregulated genes involved in muscle development. In contrast, ZBED6-overexpression in myoblasts led to cell apoptosis, cell cycle arrest, reduced mitochondrial activities, and ceased myoblast differentiation. The similarities in growth and differentiation phenotypes observed in Zbed6-/- and Igf2ΔGGCT myoblasts demonstrates that ZBED6 affects mitochondrial activity and myogenesis largely through its regulation of IGF2 expression. This study adds new insights how the ZBED6-Igf2 axis affects muscle metabolism.
Assuntos
Fator de Crescimento Insulin-Like II/metabolismo , Mioblastos/metabolismo , Proteínas Repressoras/metabolismo , Animais , Apoptose/genética , Pontos de Checagem do Ciclo Celular/genética , Diferenciação Celular/genética , Linhagem Celular , Regulação da Expressão Gênica/genética , Fator de Crescimento Insulin-Like II/genética , Camundongos , Mitocôndrias/genética , Fibras Musculares Esqueléticas/metabolismo , Proteínas Repressoras/genética , Transdução de Sinais/genética , Transcrição Gênica/genética , Transcriptoma/genética , Regulação para Cima/genéticaRESUMO
BACKGROUND: South Asian adults have higher prevalence of obesity comorbidities than other ethnic groups. Whether this also is true for Sri Lankan children with obesity has rarely been investigated. OBJECTIVE: To investigate prevalence of glucose intolerance and other comorbidities in Sri Lankan children with obesity and compare them with Swedish children. To identify risk factors associated with glucose intolerance. SUBJECTS: A total of 357 Sri Lankan children (185 boys), aged 7 to 17 years with BMI-SDS ≥2.0 from a cross-sectional school screening in Negombo. A total of 167 subjects from this study population were matched for sex, BMI-SDS and age with 167 Swedish subjects from the ULSCO cohort for comparison. METHODS: After a 12 hour overnight fast, blood samples were collected and oral glucose tolerance test was performed. Body fat mass was assessed by bioelectrical impedance assay. Data regarding medical history and socioeconomic status were obtained from questionnaires. RESULTS: Based on levels of fasting glucose (FG) and 2 hours-glucose (2 hours-G), Sri Lankan subjects were divided into five groups: normal glucose tolerance (77.5%, n = 276), isolated impaired fasting glucose according to ADA criteria (9.0%, n = 32), isolated impaired glucose tolerance (8.4%, n = 30), combined impaired fasting glucose (IFG) + impaired glucose tolerance (IGT) (3.1%, n = 11) and type 2 diabetes mellitus (2.0%, n = 7). FG, 2 hours-insulin and educational status of the father independently increased the Odds ratio to have elevated 2 hours-G. Sri Lankan subjects had higher percentage of body fat, but less abdominal fat than Swedish subjects. CONCLUSION: High prevalence in Sri Lankan children with obesity shows that screening for glucose intolerance is important even if asymptomatic.
Assuntos
Diabetes Mellitus Tipo 2/epidemiologia , Intolerância à Glucose/epidemiologia , Obesidade Infantil/complicações , Adolescente , Índice de Massa Corporal , Criança , Estudos de Coortes , Estudos Transversais , Diabetes Mellitus Tipo 2/diagnóstico , Feminino , Intolerância à Glucose/diagnóstico , Teste de Tolerância a Glucose , Humanos , Masculino , Razão de Chances , Obesidade Infantil/epidemiologia , Prevalência , Fatores de Risco , Fatores Socioeconômicos , Sri Lanka , SuéciaRESUMO
BACKGROUND: Proxies are mathematical calculations based on fasting glucose and/or insulin concentrations developed to allow prediction of insulin sensitivity (IS) and ß-cell response. These proxies have not been evaluated in horses with insulin dysregulation. The first objective of this study was to evaluate how fasting insulin (FI) and proxies for IS (1/Insulin, reciprocal of the square root of insulin (RISQI) and the quantitative insulin sensitivity check index (QUICKI)) and ß-cell response (the modified insulin-to-glucose ratio (MIRG) and the homeostatic model assessment of ß-cell function (HOMA-ß)) were correlated to measures of IS (M index) using the euglycemic hyperinsulinemic clamp (EHC) in horses with insulin resistance (IR) and normal IS. A second objective was to evaluate the repeatability of FI and proxies in horses based on sampling on consecutive days. The last objective was to investigate the most appropriate cut-off value for the proxies and FI. RESULTS: Thirty-four horses were categorized as IR and 26 as IS based on the M index. The proxies and FI had coefficients of variation (CVs) ≤ 25.3 % and very good reliability (intraclass correlation coefficients ≥ 0.89). All proxies and FI were good predictors of the M index (r = 0.76-0.85; P < 0.001). The proxies for IS had a positive linear relationship with the M index whereas proxies for ß-cell response and FI had an inverse relationship with the M index. Cut-off values to distinguish horses with IR from horses with normal IS based on the M index were established for all proxies and FI using receiver operating characteristic curves, with sensitivity between 79 % and 91 % and specificity between 85 % and 96 %. The cut-off values to predict IR were < 0.32 (RISQI), < 0.33 (QUICKI) and > 9.5 µIU/mL for FI. CONCLUSIONS: All proxies and FI provided repeatable estimates of horses' IS. However, there is no advantage of using proxies instead of FI to estimate IR in the horse. Due to the heteroscedasticity of the data, proxies and FI in general are more suitable for epidemiological studies and larger clinical studies than as a diagnostic tool for measurement of IR in individual horses.
Assuntos
Doenças dos Cavalos/metabolismo , Resistência à Insulina , Células Secretoras de Insulina/fisiologia , Insulina/sangue , Animais , Feminino , Técnica Clamp de Glucose/veterinária , Doenças dos Cavalos/sangue , Cavalos , MasculinoRESUMO
The naturally occurring quassinoid compound brusatol improves the survival of insulin-producing cells when exposed to the proinflammatory cytokines IL-1ß and IFN-γ in vitro. The aim of the present study was to investigate whether brusatol also promotes beneficial effects in mice fed a high-fat diet (HFD), and if so, to study the mechanisms by which brusatol acts. In vivo, we observed that the impaired glucose tolerance of HFD-fed male C57BL/6 mice was counteracted by a 2 wk treatment with brusatol. Brusatol treatment improved both ß-cell function and peripheral insulin sensitivity of HFD-fed mice. In vitro, brusatol inhibited ß-cell total protein and proinsulin biosynthesis, with an ED50 of â¼40 nM. In line with this, brusatol blocked cytokine-induced iNOS protein expression via inhibition of iNOS mRNA translation. Brusatol may have affected protein synthesis, at least in part, via inhibition of eukaryotic initiation factor 5A (eIF5A) hypusination, as eIF5A spermidine association and hypusination in RIN-5AH cells was reduced in a dose- and time-dependent manner. The eIF5A hypusination inhibitor GC7 promoted a similar effect. Both brusatol and GC7 protected rat RIN-5AH cells against cytokine-induced cell death. Brusatol reduced eIF5A hypusination and cytokine-induced cell death in EndoC-ßH1 cells as well. Finally, hypusinated eIF5A was reduced in vivo by brusatol in islet endocrine and endothelial islet cells of mice fed an HFD. The results of the present study suggest that brusatol improves glucose intolerance in mice fed an HFD, possibly by inhibiting protein biosynthesis and eIF5A hypusination.-Turpaev, K., Krizhanovskii, C., Wang, X., Sargsyan, E., Bergsten, P., Welsh, N. The protein synthesis inhibitor brusatol normalizes high-fat diet-induced glucose intolerance in male C57BL/6 mice: role of translation factor eIF5A hypusination.
Assuntos
Dieta Hiperlipídica/efeitos adversos , Intolerância à Glucose/tratamento farmacológico , Fatores de Iniciação de Peptídeos/metabolismo , Inibidores da Síntese de Proteínas/farmacologia , Quassinas/farmacologia , Proteínas de Ligação a RNA/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Citocinas/metabolismo , Intolerância à Glucose/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Lisina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/fisiologia , Fator de Iniciação de Tradução Eucariótico 5ARESUMO
PURPOSE: An approach for the automated segmentation of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in multicenter water-fat MRI scans of the abdomen was investigated, using 2 different neural network architectures. METHODS: The 2 fully convolutional network architectures U-Net and V-Net were trained, evaluated, and compared using the water-fat MRI data. Data of the study Tellus with 90 scans from a single center was used for a 10-fold cross-validation in which the most successful configuration for both networks was determined. These configurations were then tested on 20 scans of the multicenter study beta-cell function in JUvenile Diabetes and Obesity (BetaJudo), which involved a different study population and scanning device. RESULTS: The U-Net outperformed the used implementation of the V-Net in both cross-validation and testing. In cross-validation, the U-Net reached average dice scores of 0.988 (VAT) and 0.992 (SAT). The average of the absolute quantification errors amount to 0.67% (VAT) and 0.39% (SAT). On the multicenter test data, the U-Net performs only slightly worse, with average dice scores of 0.970 (VAT) and 0.987 (SAT) and quantification errors of 2.80% (VAT) and 1.65% (SAT). CONCLUSION: The segmentations generated by the U-Net allow for reliable quantification and could therefore be viable for high-quality automated measurements of VAT and SAT in large-scale studies with minimal need for human intervention. The high performance on the multicenter test data furthermore shows the robustness of this approach for data of different patient demographics and imaging centers, as long as a consistent imaging protocol is used.
Assuntos
Gordura Abdominal/diagnóstico por imagem , Diabetes Mellitus Tipo 1/diagnóstico por imagem , Diabetes Mellitus Tipo 2/diagnóstico por imagem , Gordura Intra-Abdominal/diagnóstico por imagem , Imageamento por Ressonância Magnética , Obesidade/diagnóstico por imagem , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Automação , Criança , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 2/complicações , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Redes Neurais de Computação , Obesidade/complicações , Reconhecimento Automatizado de Padrão , Reprodutibilidade dos Testes , Gordura Subcutânea , Adulto JovemRESUMO
OBJECTIVE: To delineate potential mechanisms for fasting hyperglucagonemia in childhood obesity by studying the associations between fasting plasma glucagon concentrations and plasma lipid parameters and fat compartments. METHODS: Cross-sectional study of children and adolescents with obesity (n = 147) and lean controls (n = 43). Differences in free fatty acids (FFAs), triglycerides, insulin, and fat compartments (quantified by magnetic resonance imaging) across quartiles of fasting plasma glucagon concentration were analyzed. Differences in oral glucose tolerance test (OGTT) glucagon response was tested in high vs low FFAs, triglycerides, and insulin. Human islets of Langerhans were cultured at 5.5 mmol/L glucose and in the absence or presence of a FFA mixture with total FFA concentration of 0.5 mmol/L and glucagon secretion quantified. RESULTS: In children with obesity, the quartile with the highest fasting glucagon had higher insulin (201 ± 174 vs 83 ± 39 pmol/L, P < .01), FFAs (383 ± 52 vs 338 ± 109 µmol/L, P = .02), triglycerides (1.5 ± 0.9 vs 1.0 ± 0.7 mmol/L, P < .01), visceral adipose tissue volume (1.9 ± 0.8 vs 1.2 ± 0.3 dm3 , P < .001), and a higher prevalence of impaired glucose tolerance (IGT; 41% vs 8%, P = .01) than the lowest quartile. During OGTT, children with obesity and high insulin had a worse suppression of glucagon during the first 10 minutes after glucose intake. Glucagon secretion was 2.6-fold higher in islets treated with FFAs than in those not treated with FFAs. CONCLUSIONS: Hyperglucagonemia in childhood obesity is associated with hyperinsulinemia, high plasma FFAs, high plasma triglycerides, visceral adiposity, and IGT. The glucagonotropic effect of FFAs on isolated human islets provides a potential mechanism linking high fasting plasma FFAs and glucagon levels.
Assuntos
Adiposidade/fisiologia , Ácidos Graxos não Esterificados/sangue , Glucagon/sangue , Intolerância à Glucose/metabolismo , Gordura Intra-Abdominal/metabolismo , Obesidade Abdominal/metabolismo , Obesidade Infantil/metabolismo , Adolescente , Estudos de Casos e Controles , Células Cultivadas , Criança , Estudos de Coortes , Estudos Transversais , Feminino , Glucagon/farmacologia , Intolerância à Glucose/sangue , Intolerância à Glucose/complicações , Humanos , Gordura Intra-Abdominal/patologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Masculino , Obesidade Abdominal/complicações , Obesidade Infantil/complicações , Regulação para CimaRESUMO
BACKGROUND: In children with obesity, accentuated insulin secretion has been coupled with development of type 2 diabetes mellitus (T2DM). Bisphenol A (BPA) is a chemical with endocrine- and metabolism-disrupting properties which can be measured in a majority of the population. Exposure to BPA has been associated with the development of metabolic diseases including T2DM. OBJECTIVE: The aim of this study was to investigate if exposure early in life to an environmentally relevant low dose of BPA causes insulin hypersecretion in rat offspring. METHODS: Pregnant Fischer 344 rats were exposed to 0.5 (BPA0.5) or 50 (BPA50) µg BPA/kg BW/day via drinking water from gestational day 3.5 until postnatal day 22. Pancreata from dams and 5- and 52-week-old offspring were procured and islets were isolated by collagenase digestion. Glucose-stimulated insulin secretion and insulin content in the islets were determined by ELISA. RESULTS: Basal (5.5â¯mM glucose) islet insulin secretion was not affected by BPA exposure. However, stimulated (11â¯mM glucose) insulin secretion was enhanced by about 50% in islets isolated from BPA0.5-exposed 5- and 52-week-old female and male offspring and by 80% in islets from dams, compared with control. In contrast, the higher dose, BPA50, reduced stimulated insulin secretion by 40% in both 5- and 52-week-old female and male offspring and dams, compared with control. CONCLUSION: A BPA intake 8 times lower than the European Food Safety Authority's (EFSA's) current tolerable daily intake (TDI) of 4⯵g/kg BW/day of BPA delivered via drinking water during gestation and early development causes islet insulin hypersecretion in rat offspring up to one year after exposure. The effects of BPA exposure on the endocrine pancreas may promote the development of metabolic disease including T2DM.
Assuntos
Compostos Benzidrílicos , Poluentes Ambientais , Insulina , Fenóis , Efeitos Tardios da Exposição Pré-Natal , Animais , Compostos Benzidrílicos/toxicidade , Embrião de Mamíferos/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Feminino , Humanos , Insulina/metabolismo , Ilhotas Pancreáticas , Masculino , Fenóis/toxicidade , Gravidez , Ratos , Ratos Endogâmicos F344RESUMO
In obese children with high circulating concentrations of free fatty acid palmitate, we have observed that insulin levels at fasting and in response to a glucose challenge were several times higher than in obese children with low concentrations of the fatty acid as well as in lean controls. Declining and even insufficient insulin levels were observed in obese adolescents with high levels of the fatty acid. In isolated human islets exposed to palmitate we have observed insulin hypersecretion after 2 days exposure. In contrast, insulin secretion from the islets was reduced after 7 days culture in the presence of the fatty acid. This study aims at identifying islet-related biological events potentially linked with the observed insulin hypersecretion and later secretory decline in these obese children and adolescents using the islet model. We analyzed protein expression data obtained from human islets exposed to elevated palmitate levels for 2 and 7 days by an improved methodology for statistical analysis of differentially expressed proteins. Protein profiling of islet samples by liquid chromatography-tandem mass spectrometry identified 115 differentially expressed proteins (DEPs). Several DEPs including sorcin were associated with increased glucose-stimulated insulin secretion in islets after 2 days of exposure to palmitate. Similarly, several metabolic pathways including altered protein degradation, increased autophagy, altered redox condition, and hampered insulin processing were coupled to the functional impairment of islets after 7 days of culture in the presence of palmitate. Such biological events, once validated in the islets, may give rise to novel treatment strategies aiming at normalizing insulin levels in obese children with high palmitate levels, which may reduce or even prevent obesity-related type 2 diabetes mellitus.
Assuntos
Diabetes Mellitus Tipo 2/genética , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/efeitos dos fármacos , Obesidade/genética , Ácido Palmítico/farmacologia , Adolescente , Autofagia/efeitos dos fármacos , Autofagia/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Criança , Cromatografia Líquida , Biologia Computacional/métodos , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Jejum , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Glucose/metabolismo , Glucose/farmacologia , Humanos , Secreção de Insulina/genética , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Masculino , Obesidade/complicações , Obesidade/metabolismo , Obesidade/patologia , Ácido Palmítico/metabolismo , Proteólise , Proteômica/métodos , Espectrometria de Massas em Tandem , Técnicas de Cultura de TecidosRESUMO
BACKGROUND: Long-term exposure to elevated levels of free fatty acids (FFAs) is deleterious for beta-cell function and may contribute to development of type 2 diabetes mellitus (T2DM). Whereas mechanisms of impaired glucose-stimulated insulin secretion (GSIS) in FFA-treated beta-cells have been intensively studied, biological events preceding the secretory failure, when GSIS is accentuated, are poorly investigated. To identify these early events, we performed genome-wide analysis of gene expression in isolated human islets exposed to fatty acid palmitate for different time periods. RESULTS: Palmitate-treated human islets showed decline in beta-cell function starting from day two. Affymetrix Human Transcriptome Array 2.0 identified 903 differentially expressed genes (DEGs). Mapping of the genes onto pathways using KEGG pathway enrichment analysis predicted four islet biology-related pathways enriched prior but not after the decline of islet function and three pathways enriched both prior and after the decline of islet function. DEGs from these pathways were analyzed at the transcript level. The results propose that in palmitate-treated human islets, at early time points, protective events, including up-regulation of metallothioneins, tRNA synthetases and fatty acid-metabolising proteins, dominate over deleterious events, including inhibition of fatty acid detoxification enzymes, which contributes to the enhanced GSIS. After prolonged exposure of islets to palmitate, the protective events are outweighed by the deleterious events, which leads to impaired GSIS. CONCLUSIONS: The study identifies temporal order between different cellular events, which either promote or protect from beta-cell failure. The sequence of these events should be considered when developing strategies for prevention and treatment of the disease.
Assuntos
Ilhotas Pancreáticas/efeitos dos fármacos , Ácido Palmítico/farmacologia , Adulto , Células Cultivadas , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/fisiologia , Ilhotas Pancreáticas/fisiologia , Masculino , Análise em Microsséries , Pessoa de Meia-Idade , Cultura Primária de Células , Fatores de Tempo , Transcriptoma/efeitos dos fármacosRESUMO
Long-term exposure of beta cells to saturated fatty acids impairs insulin secretion and increases apoptosis. In contrast, unsaturated fatty acids protect beta-cells from the long-term negative effects of saturated fatty acids. We aimed to identify the mechanisms underlying this protective action of unsaturated fatty acids. To address the aim, insulin-secreting MIN6 cells were exposed to palmitate in the absence or presence of oleate and analyzed by using nano-LC MS/MS based proteomic approach. Important findings were validated by using alternative approaches. Proteomic analysis identified 34 proteins differentially expressed in the presence of palmitate compared to control samples. These proteins play a role in insulin processing, mitochondrial function, metabolism of biomolecules, calcium homeostasis, exocytosis, receptor signaling, ER protein folding, antioxidant activity and anti-apoptotic function. When oleate was also present during culture, expression of 15 proteins was different from the expression in the presence of palmitate alone. Most of the proteins affected by oleate are targets of the ER stress response and play a pro-survival role in beta cells such as protein folding and antioxidative defence. We conclude that restoration of pro-survival pathways of the ER stress response is a major mechanism underlying the protective effect of unsaturated fatty acids in beta-cells treated with saturated fatty acids.
Assuntos
Linfócitos B/metabolismo , Estresse do Retículo Endoplasmático/genética , Insulinoma/tratamento farmacológico , Proteômica , Animais , Apoptose/efeitos dos fármacos , Linfócitos B/efeitos dos fármacos , Linfócitos B/patologia , Linhagem Celular Tumoral , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Insulinoma/metabolismo , Insulinoma/patologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ácido Oleico/administração & dosagem , Ácido Oleico/metabolismo , Oxirredução , Palmitatos/administração & dosagem , Palmitatos/metabolismo , Substâncias Protetoras/administração & dosagem , Substâncias Protetoras/metabolismo , Espectrometria de Massas em TandemRESUMO
BACKGROUND: The incidence of type 1 diabetes (T1D) is increasing globally. One hypothesis is that increasing childhood obesity rates may explain part of this increase, but, as T1D is rare, intervention studies are challenging to perform. The aim of this study was to assess this hypothesis with a Mendelian randomization approach that uses genetic variants as instrumental variables to test for causal associations. METHODS AND FINDINGS: We created a genetic instrument of 23 single nucleotide polymorphisms (SNPs) associated with childhood adiposity in children aged 2-10 years. Summary-level association results for these 23 SNPs with childhood-onset (<17 years) T1D were extracted from a meta-analysis of genome-wide association study with 5,913 T1D cases and 8,828 reference samples. Using inverse-variance weighted Mendelian randomization analysis, we found support for an effect of childhood adiposity on T1D risk (odds ratio 1.32, 95% CI 1.06-1.64 per standard deviation score in body mass index [SDS-BMI]). A sensitivity analysis provided evidence of horizontal pleiotropy bias (p = 0.04) diluting the estimates towards the null. We therefore applied Egger regression and multivariable Mendelian randomization methods to control for this type of bias and found evidence in support of a role of childhood adiposity in T1D (odds ratio in Egger regression, 2.76, 95% CI 1.40-5.44). Limitations of our study include that underlying genes and their mechanisms for most of the genetic variants included in the score are not known. Mendelian randomization requires large sample sizes, and power was limited to provide precise estimates. This research has been conducted using data from the Early Growth Genetics (EGG) Consortium, the Genetic Investigation of Anthropometric Traits (GIANT) Consortium, the Tobacco and Genetics (TAG) Consortium, and the Social Science Genetic Association Consortium (SSGAC), as well as meta-analysis results from a T1D genome-wide association study. CONCLUSIONS: This study provides genetic support for a link between childhood adiposity and T1D risk. Together with evidence from observational studies, our findings further emphasize the importance of measures to reduce the global epidemic of childhood obesity and encourage mechanistic studies.
Assuntos
Diabetes Mellitus Tipo 1/epidemiologia , Diabetes Mellitus Tipo 1/etiologia , Análise da Randomização Mendeliana , Obesidade Infantil/complicações , Obesidade Infantil/epidemiologia , Adiposidade , Criança , Pré-Escolar , Diabetes Mellitus Tipo 1/genética , Europa (Continente)/epidemiologia , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Razão de Chances , Obesidade Infantil/genética , Polimorfismo de Nucleotídeo Único , Fatores de RiscoRESUMO
Fatty acids affect insulin secretion via metabolism and FFAR1-mediated signaling. Recent reports indicate that these two pathways act synergistically. Still it remains unclear how they interrelate. Taking into account the key role of mitochondria in insulin secretion, we attempted to dissect the metabolic and FFAR1-mediated effects of fatty acids on mitochondrial function. One-hour culture of MIN6 cells with palmitate significantly enhanced mitochondrial respiration. Antagonism or silencing of FFAR1 prevented the palmitate-induced rise in respiration. On the other hand, in the absence of extracellular palmitate FFAR1 agonists caused a modest increase in respiration. Using an agonist of the M3 muscarinic acetylcholine receptor and PKC inhibitor we found that in the presence of the fatty acid mitochondrial respiration is regulated via Gαq protein-coupled receptor signaling. The increase in respiration in palmitate-treated cells was largely due to increased glucose utilization and oxidation. However, glucose utilization was not dependent on FFAR1 signaling. Collectively, these results indicate that mitochondrial respiration in palmitate-treated cells is enhanced via combined action of intracellular metabolism of the fatty acid and the Gαq-coupled FFAR1 signaling. Long-term palmitate exposure reduced ATP-coupling efficiency of mitochondria and deteriorated insulin secretion. The presence of the FFAR1 antagonist during culture did not improve ATP-coupling efficiency, however, it resulted in enhanced mitochondrial respiration and improved insulin secretion after culture. Taken together, our study demonstrates that during palmitate exposure, integrated actions of fatty acid metabolism and fatty acid-induced FFAR1 signaling on mitochondrial respiration underlie the synergistic action of the two pathways on insulin secretion.
Assuntos
Insulina/metabolismo , Mitocôndrias/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Ácido Palmítico/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Linhagem Celular Tumoral , Células HEK293 , Humanos , Secreção de Insulina , Camundongos , Mitocôndrias/metabolismo , Transdução de SinaisRESUMO
BACKGROUND: The triglyceride-to-HDL cholesterol (TG/HDL-C) ratio was introduced as a tool to estimate insulin resistance, because circulating lipid measurements are available in routine settings. Insulin, C-peptide, and free fatty acids are components of other insulin-sensitivity indices but their measurement is expensive. Easier and more affordable tools are of interest for both pediatric and adult patients. METHODS: Study participants from the Relationship Between Insulin Sensitivity and Cardiovascular Disease [43.9 (8.3) years, n = 1260] as well as the Beta-Cell Function in Juvenile Diabetes and Obesity study cohorts [15 (1.9) years, n = 29] underwent oral-glucose-tolerance tests and euglycemic clamp tests for estimation of whole-body insulin sensitivity and calculation of insulin sensitivity indices. To refine the TG/HDL ratio, mathematical modeling was applied including body mass index (BMI), fasting TG, and HDL cholesterol and compared to the clamp-derived M-value as an estimate of insulin sensitivity. Each modeling result was scored by identifying insulin resistance and correlation coefficient. The Single Point Insulin Sensitivity Estimator (SPISE) was compared to traditional insulin sensitivity indices using area under the ROC curve (aROC) analysis and χ(2) test. RESULTS: The novel formula for SPISE was computed as follows: SPISE = 600 × HDL-C(0.185)/(TG(0.2) × BMI(1.338)), with fasting HDL-C (mg/dL), fasting TG concentrations (mg/dL), and BMI (kg/m(2)). A cutoff value of 6.61 corresponds to an M-value smaller than 4.7 mg · kg(-1) · min(-1) (aROC, M:0.797). SPISE showed a significantly better aROC than the TG/HDL-C ratio. SPISE aROC was comparable to the Matsuda ISI (insulin sensitivity index) and equal to the QUICKI (quantitative insulin sensitivity check index) and HOMA-IR (homeostasis model assessment-insulin resistance) when calculated with M-values. CONCLUSIONS: The SPISE seems well suited to surrogate whole-body insulin sensitivity from inexpensive fasting single-point blood draw and BMI in white adolescents and adults.