Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Glia ; 71(12): 2782-2798, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37539655

RESUMO

Traumatic spinal cord injury (SCI) induces irreversible autonomic and sensory-motor impairments. A large number of patients exhibit chronic SCI and no curative treatment is currently available. Microglia are predominant immune players after SCI, they undergo highly dynamic processes, including proliferation and morphological modification. In a translational aim, we investigated whether microglia proliferation persists at chronic stage after spinal cord hemisection and whether a brief pharmacological treatment could modulate microglial responses. We first carried out a time course analysis of SCI-induced microglia proliferation associated with morphological analysis up to 84 days post-injury (dpi). Second, we analyzed outcomes on microglia of an oral administration of GW2580, a colony stimulating factor-1 receptor tyrosine kinase inhibitor reducing selectively microglia proliferation. After SCI, microglia proliferation remains elevated at 84 dpi. The percentage of proliferative microglia relative to proliferative cells increases over time reaching almost 50% at 84 dpi. Morphological modifications of microglia processes are observed up to 84 dpi and microglia cell body area is transiently increased up to 42 dpi. A transient post-injury GW2580-delivery at two chronic stages after SCI (42 and 84 dpi) reduces microglia proliferation and modifies microglial morphology evoking an overall limitation of secondary inflammation. Finally, transient GW2580-delivery at chronic stage after SCI modulates myelination processes. Together our study shows that there is a persistent microglia proliferation induced by SCI and that a pharmacological treatment at chronic stage after SCI modulates microglial responses. Thus, a transient oral GW2580-delivery at chronic stage after injury may provide a promising therapeutic strategy for chronic SCI patients.

2.
Cell Mol Life Sci ; 79(8): 431, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35852606

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal motoneuron (MN) disease characterized by protein misfolding and aggregation leading to cellular degeneration. So far neither biomarker, nor effective treatment has been found. ATP signaling and P2X4 receptors (P2X4) are upregulated in various neurodegenerative diseases. Here we show that several ALS-related misfolded proteins including mutants of SOD1 or TDP-43 lead to a significant increase in surface P2X4 receptor density and function in vitro. In addition, we demonstrate in the spinal the cord of SOD1-G93A (SOD1) mice that misfolded SOD1-G93A proteins directly interact with endocytic adaptor protein-2 (AP2); thus, acting as negative competitors for the interaction between AP2 and P2X4, impairing constitutive P2X4 endocytosis. The higher P2X4 surface density was particularly observed in peripheral macrophages of SOD1 mice before the onset and during the progression of ALS symptoms positioning P2X4 as a potential early biomarker for ALS. P2X4 expression was also upregulated in spinal microglia of SOD1 mice during ALS and affect microglial inflammatory responses. Importantly, we report using double transgenic SOD1 mice expressing internalization-defective P2X4mCherryIN knock-in gene or invalidated for the P2X4 gene that P2X4 is instrumental for motor symptoms, ALS progression and survival. This study highlights the role of P2X4 in the pathophysiology of ALS and thus its potential for the development of biomarkers and treatments. We also decipher the molecular mechanism by which misfolded proteins related to ALS impact P2X4 trafficking at early pathological stage in cells expressing-P2X4.


Assuntos
Esclerose Lateral Amiotrófica , Doença dos Neurônios Motores , Receptores Purinérgicos P2X4 , Superóxido Dismutase-1 , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Camundongos , Camundongos Transgênicos , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/metabolismo , Doença dos Neurônios Motores/patologia , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/metabolismo , Medula Espinal/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
3.
Eur J Neurosci ; 55(3): 697-713, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34939238

RESUMO

The addictive properties of nicotine, the main alkaloid in tobacco and tobacco-derived products, largely depend on its action on the activity of midbrain dopamine (DA) neurons. The transient receptor potential vanilloid 1 (TRPV1) channel has also been examined as an emerging contributor to addiction-related symptoms due to its ability to modulate midbrain neurons. Thus, the objective of our study was to explore the role of TRPV1 receptors (TRPV1Rs) on nicotine-induced behaviours and associated response of DA neuron activity. Both wild type juvenile mice and juvenile mice with invalidation of the TRPV1R gene were exposed to acute or chronic nicotine 0.3 mg/kg administration. We analysed locomotor activity in response to the drug. In addition, we performed cell-attached and whole-cell recordings from ventral tegmental area (VTA) neurons after nicotine exposure. Our results showed that the genetic deletion of TRPV1Rs reduced nicotine-induced locomotor sensitization. In addition, it provided evidence in support of TRPV1Rs being regulators of inhibitory synaptic transmission in the VTA. However, TRPV1Rs did not seem to modulate either nicotine-induced conditioning place preference or nicotine-evoked electrical activity of DA neurons. In conclusion, TRPV1Rs modulate nicotine-induced psychomotor sensitization in mice independently of a control on VTA DA neuron activity. Thus, TRPV1R control may depend on another key player of the mesolimbic circuit.


Assuntos
Neurônios Dopaminérgicos , Nicotina , Animais , Mesencéfalo , Camundongos , Camundongos Knockout , Nicotina/farmacologia , Canais de Cátion TRPV/genética , Área Tegmentar Ventral
4.
Mol Psychiatry ; 26(2): 629-644, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-31911635

RESUMO

ATP signaling and surface P2X4 receptors are upregulated selectively in neurons and/or glia in various CNS disorders including anxiety, chronic pain, epilepsy, ischemia, and neurodegenerative diseases. However, the cell-specific functions of P2X4 in pathological contexts remain elusive. To elucidate P2X4 functions, we created a conditional transgenic knock-in P2X4 mouse line (Floxed P2X4mCherryIN) allowing the Cre activity-dependent genetic swapping of the internalization motif of P2X4 by the fluorescent mCherry protein to prevent constitutive endocytosis of P2X4. By combining molecular, cellular, electrophysiological, and behavioral approaches, we characterized two distinct knock-in mouse lines expressing noninternalized P2X4mCherryIN either exclusively in excitatory forebrain neurons or in all cells natively expressing P2X4. The genetic substitution of wild-type P2X4 by noninternalized P2X4mCherryIN in both knock-in mouse models did not alter the sparse distribution and subcellular localization of P2X4 but increased the number of P2X4 receptors at the surface of the targeted cells mimicking the pathological increased surface P2X4 state. Increased surface P2X4 density in the hippocampus of knock-in mice altered LTP and LTD plasticity phenomena at CA1 synapses without affecting basal excitatory transmission. Moreover, these cellular events translated into anxiolytic effects and deficits in spatial memory. Our results show that increased surface density of neuronal P2X4 contributes to synaptic deficits and alterations in anxiety and memory functions consistent with the implication of P2X4 in neuropsychiatric and neurodegenerative disorders. Furthermore, these conditional P2X4mCherryIN knock-in mice will allow exploring the cell-specific roles of P2X4 in various physiological and pathological contexts.


Assuntos
Ansiedade , Memória , Receptores Purinérgicos P2X4 , Sinapses , Animais , Ansiedade/genética , Técnicas de Introdução de Genes , Hipocampo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plasticidade Neuronal , Neurônios , Receptores Purinérgicos P2X4/genética
5.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36142651

RESUMO

Locomotion is a basic motor act essential for survival. Amongst other things, it allows animals to move in their environment to seek food, escape predators, or seek mates for reproduction. The neural mechanisms involved in the control of locomotion have been examined in many vertebrate species and a clearer picture is progressively emerging. The basic muscle synergies responsible for propulsion are generated by neural networks located in the spinal cord. In turn, descending supraspinal inputs are responsible for starting, maintaining, and stopping locomotion as well as for steering and controlling speed. Several neurotransmitter systems play a crucial role in modulating the neural activity during locomotion. For instance, cholinergic inputs act both at the spinal and supraspinal levels and the underlying mechanisms are the focus of the present review. Much information gained on supraspinal cholinergic modulation of locomotion was obtained from the lamprey model. Nicotinic cholinergic inputs increase the level of excitation of brainstem descending command neurons, the reticulospinal neurons (RSNs), whereas muscarinic inputs activate a select group of hindbrain neurons that project to the RSNs to boost their level of excitation. Muscarinic inputs also reduce the transmission of sensory inputs in the brainstem, a phenomenon that could help in sustaining goal directed locomotion. In the spinal cord, intrinsic cholinergic inputs strongly modulate the activity of interneurons and motoneurons to control the locomotor output. Altogether, the present review underlines the importance of the cholinergic inputs in the modulation of locomotor activity in vertebrates.


Assuntos
Lampreias , Locomoção , Animais , Colinérgicos , Lampreias/fisiologia , Locomoção/fisiologia , Neurônios Motores , Neurotransmissores , Medula Espinal/fisiologia
6.
PLoS Biol ; 16(7): e2005460, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29985914

RESUMO

Here, we investigated intrinsic spinal cord mechanisms underlying the physiological requirement for autonomic and somatic motor system coupling. Using an in vitro spinal cord preparation from newborn rat, we demonstrate that the specific activation of muscarinic cholinergic receptors (mAchRs) (with oxotremorine) triggers a slow burst rhythm in thoracic spinal segments, thereby revealing a rhythmogenic capability in this cord region. Whereas axial motoneurons (MNs) were rhythmically activated during both locomotor activity and oxotremorine-induced bursting, intermediolateral sympathetic preganglionic neurons (IML SPNs) exhibited rhythmicity solely in the presence of oxotremorine. This somato-sympathetic synaptic drive shared by MNs and IML SPNs could both merge with and modulate the locomotor synaptic drive produced by the lumbar motor networks. This study thus sheds new light on the coupling between somatic and sympathetic systems and suggests that an intraspinal network that may be conditionally activated under propriospinal cholinergic control constitutes at least part of the synchronizing mechanism.


Assuntos
Acetilcolina/farmacologia , Atividade Motora/efeitos dos fármacos , Periodicidade , Medula Espinal/fisiologia , Sistema Nervoso Simpático/fisiologia , Animais , Animais Recém-Nascidos , Inibidores da Colinesterase/farmacologia , Glutamatos/metabolismo , Interneurônios/efeitos dos fármacos , Interneurônios/fisiologia , Vértebras Lombares/efeitos dos fármacos , Vértebras Lombares/fisiologia , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/fisiologia , Antagonistas Muscarínicos/farmacologia , N-Metilaspartato/farmacologia , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Oxotremorina/farmacologia , Ratos Sprague-Dawley , Receptores Muscarínicos/metabolismo , Serotonina/farmacologia , Medula Espinal/efeitos dos fármacos , Sistema Nervoso Simpático/efeitos dos fármacos , Vértebras Torácicas/efeitos dos fármacos , Vértebras Torácicas/fisiologia
7.
J Neurosci ; 35(15): 6117-30, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25878284

RESUMO

Effective quadrupedal locomotor behaviors require the coordination of many muscles in the limbs, back, neck, and tail. Because of the spinal motoneuronal somatotopic organization, motor coordination implies interactions among distant spinal networks. Here, we investigated some of the interactions between the lumbar locomotor networks that control limb movements and the thoracic networks that control the axial muscles involved in trunk movement. For this purpose, we used an in vitro isolated newborn rat spinal cord (from T2 to sacrococcygeal) preparation. Using extracellular ventral root recordings, we showed that, while the thoracic cord possesses an intrinsic rhythmogenic capacity, the lumbar circuits, if they are rhythmically active, will entrain the rhythmicity of the thoracic circuitry. However, if the lumbar circuits are rhythmically active, these latter circuits will entrain the rhythmicity of the thoracic circuitry. Blocking the synaptic transmission in some thoracic areas revealed that the lumbar locomotor network could trigger locomotor bursting in distant thoracic segments through short and long propriospinal pathways. Patch-clamp recordings revealed that 72% of the thoracic motoneurons (locomotor-driven motoneurons) expressed membrane potential oscillations and spiking activity coordinated with the locomotor activity expressed by the lumbar cord. A biphasic excitatory (glutamatergic)/inhibitory (glycinergic) synaptic drive was recorded in thoracic locomotor-driven motoneurons. Finally, we found evidence that part of this locomotor drive involved a monosynaptic component coming directly from the lumbar locomotor network. We conclude that the lumbar locomotor network plays a central role in the generation of locomotor outputs in the thoracic cord by acting at both the premotoneuronal and motoneuronal levels.


Assuntos
Locomoção/fisiologia , Neurônios Motores/fisiologia , Rede Nervosa/fisiologia , Medula Espinal/citologia , Medula Espinal/fisiologia , Animais , Animais Recém-Nascidos , Ácido Aspártico/farmacologia , Colina O-Acetiltransferase/metabolismo , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Feminino , Técnicas In Vitro , Região Lombossacral , Masculino , Potenciais da Membrana/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Compostos Orgânicos/metabolismo , Técnicas de Patch-Clamp , Periodicidade , Ratos , Serotonina/farmacologia , Transmissão Sináptica/efeitos dos fármacos
8.
Artigo em Inglês | MEDLINE | ID: mdl-39223257

RESUMO

Fragile X syndrome (FXS) is an X-linked neurodevelopmental disorder characterized by several behavioral abnormalities, including hyperactivity, anxiety, sensory hyper-responsiveness, and autistic-like symptoms such as social deficits. Despite considerable efforts, effective pharmacological treatments are still lacking, prompting the need for exploring the therapeutic value of existing drugs beyond their original approved use. One such repurposed drug is chlorzoxazone which is classified as a large-conductance calcium-dependent potassium (BKCa) channel opener. Reduced BKCa channel functionality has been reported in FXS patients, suggesting that molecules activating these channels could serve as promising treatments for this syndrome. Here, we sought to characterize the therapeutic potential of chlorzoxazone using the Fmr1-KO mouse model of FXS which recapitulates the main phenotypes of FXS, including BKCa channel alterations. Chlorzoxazone, administered either acutely or chronically, rescued hyperactivity and acoustic hyper-responsiveness as well as impaired social interactions exhibited by Fmr1-KO mice. Chlorzoxazone was more efficacious in alleviating these phenotypes than gaboxadol and metformin, two repurposed treatments for FXS that do not target BKCa channels. Systemic administration of chlorzoxazone modulated the neuronal activity-dependent gene c-fos in selected brain areas of Fmr1-KO mice, corrected aberrant hippocampal dendritic spines, and was able to rescue impaired BKCa currents recorded from hippocampal and cortical neurons of these mutants. Collectively, these findings provide further preclinical support for BKCa channels as a valuable therapeutic target for treating FXS and encourage the repurposing of chlorzoxazone for clinical applications in FXS and other related neurodevelopmental diseases.

9.
Exp Neurol ; 363: 114369, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36878399

RESUMO

Spinal cord injury (SCI) leads not only to major impairments in sensorimotor control but also to dramatic dysregulation of autonomic functions including major cardiovascular disturbances. Consequently, individuals with SCI endure daily episodic hypo/hypertension and are at increased risk for cardiovascular disease. Several studies have suggested that an intrinsic spinal coupling mechanism between motor and sympathetic neuronal networks exist and that propriospinal cholinergic neurons may be responsible for a synchronized activation of both somatic and sympathetic outputs. We therefore investigated in the present study, the effect of cholinergic muscarinic agonists on cardiovascular parameters in freely moving adult rats after SCI. Female Sprague-Dawley rats were implanted with radiotelemetry sensors for long-term in vivo monitoring of blood pressure (BP). From BP signal, we calculated heart rate (HR) and respiratory frequency. We first characterized the physiological changes occurring after a SCI performed at the T3-T4 level in our experimental model system. We then investigated the effects on BP, HR and respiration, of the muscarinic agonist oxotremorine using one variant that crossed the blood brain barrier (Oxo-S) and one that does not (Oxo-M) in both Pre- and Post-SCI animals. After SCI, both HR and respiratory frequency increased. BP values exhibited an immediate profound drop before progressively increasing over the three-week post-lesion period but remained below control values. A spectral analysis of BP signal revealed the disappearance of the low frequency component of BP (0.3-0.6 Hz) referred to as Mayer waves after SCI. In Post-SCI animals, central effects mediated by Oxo-S led to an increase in HR and MAP, a slowdown in respiratory frequency and to an increased power in the 0.3-0.6 Hz frequency band. This study unravels some of the mechanisms by which muscarinic activation of spinal neurons could contribute to partial restoration of BP after SCI.


Assuntos
Sistema Cardiovascular , Traumatismos da Medula Espinal , Ratos , Animais , Feminino , Ratos Sprague-Dawley , Medula Espinal/patologia , Agonistas Muscarínicos/toxicidade
10.
J Neurosci ; 30(3): 1073-85, 2010 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-20089916

RESUMO

The maintenance of chronic pain states requires the regulation of gene expression, which relies on an influx of calcium. Calcium influx through neuronal L-type voltage-gated calcium channels (LTCs) plays a pivotal role in excitation-transcription coupling, but the involvement of LTCs in chronic pain remains unclear. We used a peptide nucleic acid (transportan 10-PNA conjugates)-based antisense strategy to investigate the role of the LTC subtypes Ca(V)1.2 and Ca(V)1.3 in long-term pain sensitization in a rat model of neuropathy (spinal nerve ligation). Our results demonstrate that specific knockdown of Ca(V)1.2 in the spinal dorsal horn reversed the neuropathy-associated mechanical hypersensitivity and the hyperexcitability and increased responsiveness of dorsal horn neurons. Intrathecal application of anti-Ca(V)1.2 siRNAs confirmed the preceding results. We also demonstrated an upregulation of Ca(V)1.2 mRNA and protein in neuropathic animals concomitant to specific Ca(V)1.2-dependent phosphorylation of the cAMP response element (CRE)-binding protein (CREB) transcription factor. Moreover, spinal nerve ligation animals showed enhanced transcription of the CREB/CRE-dependent gene COX-2 (cyclooxygenase 2), which also depends strictly on Ca(V)1.2 activation. We propose that L-type calcium channels in the spinal dorsal horn play an important role in pain processing, and that the maintenance of chronic neuropathic pain depends specifically on channels comprising Ca(V)1.2.


Assuntos
Bloqueadores dos Canais de Cálcio/administração & dosagem , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio/metabolismo , Ciática/metabolismo , Ciática/fisiopatologia , Animais , Proteína de Ligação a CREB/metabolismo , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio Tipo L/genética , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Hiperalgesia/tratamento farmacológico , Hiperalgesia/fisiopatologia , Masculino , Nicardipino/administração & dosagem , Oligodesoxirribonucleotídeos Antissenso/uso terapêutico , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/uso terapêutico , Ratos , Ratos Wistar , Ciática/tratamento farmacológico , Ciática/patologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/fisiologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
11.
Front Cell Neurosci ; 15: 770250, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34955751

RESUMO

The present study explores the impact of metabotropic glutamate receptor (mGluR) activation on activity-dependent synaptic plasticity (ADSP) and the intrinsic membrane properties of lumbar motoneurons (MNs) using a combination of biochemical, pharmacological, electrophysiological and behavioral techniques. Using spinal cord slices from C57BL/6JRJ mice at two developmental stages, 1-3 and 8-12 postnatal days (P1-P3; P8-P12, respectively), we found that ADSP expressed at glutamatergic synapses between axons conveyed in the ventrolateral funiculus (VLF) and MNs, involved mGluR activation. Using specific agonists of the three groups of mGluRs, we observed that mGluR stimulation causes subtype-specific and developmentally regulated modulation of the ADSP and synaptic transmission at VLF-MN synapses as well as the intrinsic membrane properties of MNs. RT-qPCR analysis revealed a downregulation of mGluR gene expression with age in the ventral part of the lumbar spinal cord. Interestingly, the selective harvest by laser microdissection of MNs innervating the Gastrocnemius and Tibialis anterior muscles unraveled that the level of Grm2 expression is higher in Tibialis MNs compared to Gastrocnemius MNs suggesting a specific mGluR gene expression profile in these two MN pools. Finally, we assessed the functional impact of mGluR modulation on electrically induced bouts of fictive locomotion in the isolated spinal cord preparation of P1-P3 mice, and in vivo during spontaneous episodes of swimming activity in both P1-P3 and P8-P12 mouse pups. We observed that the mGluR agonists induced distinct and specific effects on the motor burst amplitudes and period of the locomotor rhythms tested and that their actions are function of the developmental stage of the animals. Altogether our data show that the metabotropic glutamatergic system exerts a complex neuromodulation in the developing spinal lumbar motor networks and provide new insights into the expression and modulation of ADSP in MNs.

12.
Physiol Rep ; 9(3): e14736, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33527727

RESUMO

This article aims to review studies that have investigated the role of neurons that use the transmitter acetylcholine (ACh) in controlling the operation of locomotor neural networks within the spinal cord. This cholinergic system has the particularity of being completely intraspinal. We describe the different effects exerted by spinal cholinergic neurons on locomotor circuitry by the pharmacological activation or blockade of this propriospinal system, as well as describing its different cellular and subcellular targets. Through the activation of one ionotropic receptor, the nicotinic receptor, and five metabotropic receptors, the M1 to M5 muscarinic receptors, the cholinergic system exerts a powerful control both on synaptic transmission and locomotor network neuron excitability. Although tremendous advances have been made in our understanding of the spinal cholinergic system's involvement in the physiology and pathophysiology of locomotor networks, gaps still remain, including the precise role of the different subtypes of cholinergic neurons as well as their pre- and postsynaptic partners. Improving our knowledge of the propriospinal cholinergic system is of major relevance to finding new cellular targets and therapeutics in countering the debilitating effects of neurodegenerative diseases and restoring motor functions after spinal cord injury.


Assuntos
Acetilcolina/metabolismo , Fibras Colinérgicas/metabolismo , Locomoção , Traumatismos da Medula Espinal/metabolismo , Medula Espinal/metabolismo , Nervos Espinhais/metabolismo , Animais , Humanos , Receptores Muscarínicos/metabolismo , Receptores Nicotínicos/metabolismo , Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/terapia , Nervos Espinhais/fisiopatologia , Transmissão Sináptica
13.
Neurophysiol Clin ; 50(6): 467-477, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33176989

RESUMO

Body displacement during locomotion is a major challenge for motor control, requiring complex synergistic postural regulation and the integrated functioning of all body musculature, including that of the four limbs, trunk and neck. Despite the obvious pivotal role played by the trunk during locomotion, most studies devoted to understanding the neural basis of locomotor control have only addressed the operation of the neural circuits driving leg movements, and relatively little is known of the networks that control trunk muscles in limbed vertebrates. This review addresses this issue, both in animals and humans. We first review studies addressing the central role played by central pattern generator (CPG) circuit interactions within the spinal cord in coordinating trunk and hind limb muscle activities in a variety of vertebrates, and present evidence that vestibulo-spinal reflexes are differentially involved in trunk and hind limb control. We finally highlight the role of the various components that participate in maintaining dynamic equilibrium during stepping, including connective tissues. We propose that many aspects of the organization of the motor systems involved in trunk-hind limb movement control in vertebrates have been highly conserved throughout evolution.


Assuntos
Marcha , Locomoção , Animais , Extremidades , Humanos , Postura , Medula Espinal
14.
J Physiol ; 586(7): 1903-20, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18258661

RESUMO

In the present study, we investigated the modulation of short-term depression (STD) at synapses between sensory afferents and rat motoneurons by serotonin, dopamine and noradrenaline. STD was elicited with trains of 15 stimuli at 1, 5 and 10 Hz and investigated using whole-cell voltage-clamp recordings from identified motoneurons in the neonatal rat spinal cord in vitro. STD was differentially modulated by the amines. Dopamine was effective at all stimulation frequencies, whereas serotonin affected STD only during 5 and 10 Hz stimulus trains and noradrenaline during 1 and 5 Hz trains. Dopamine and serotonin homogenized the degree of depression observed with the different stimulation modalities, in contrast to noradrenaline, which amplified the rate differences. The different modulatory profiles observed with the amines were partly due to GABAergic interneuron activity. In the presence of GABA(A) and GABA(B) receptor antagonists, the rate and/or kinetics of STD did not vary with the stimulation frequency in contrast to the control condition, and noradrenaline failed to alter either synaptic amplitude or STD, suggesting indirect actions. Dopamine and serotonin strongly decreased STD and converted depression to facilitation at 5 and 10 Hz during the blockade of the GABAergic receptors in 50% of the neurons tested. Altogether, these results show that STD expressed at sensorimotor synapses in the neonatal rat not only is a function of the frequency of afferent firing but also closely depends on the neuromodulatory state of these connections, with a major contribution from GABAergic transmission.


Assuntos
Neurônios Motores/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios Aferentes/fisiologia , Neurotransmissores/farmacologia , Medula Espinal/efeitos dos fármacos , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Animais , Animais Recém-Nascidos , Dopamina/farmacologia , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/fisiologia , Neurônios Motores/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Neurônios Aferentes/efeitos dos fármacos , Norepinefrina/farmacologia , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Receptores de GABA/efeitos dos fármacos , Receptores de GABA/fisiologia , Serotonina/farmacologia , Simpatomiméticos/farmacologia , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
15.
Nat Neurosci ; 6(3): 274-81, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12592405

RESUMO

Sensory relay structures in the spinal cord dorsal horn are now thought to be active processing structures that function before supraspinal sensory integration. Dorsal horn neurons directly receive nociceptive (pain) signals from the periphery, express a high degree of functional plasticity and are involved in long-term sensitization and chronic pain. We show here that deep dorsal horn neurons (DHNs) in Wistar rats can switch their intrinsic firing properties from tonic to plateau or endogenous bursting patterns, depending upon the balance of control by metabotropic glutamate (mGlu) and GABA(B) receptors. We further show that this modulation acts on at least one common target, the inwardly rectifying potassium channel (Kir3). Finally, we found that these firing modes correspond to specific functional states of information transfer in which dorsal horn neurons can faithfully transmit, greatly enhance or block the transfer of nociceptive information.


Assuntos
Células do Corno Posterior/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização , Receptores de Glutamato Metabotrópico/metabolismo , Potenciais de Ação/fisiologia , Animais , Simulação por Computador , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G , Agonistas GABAérgicos/farmacologia , Antagonistas GABAérgicos/farmacologia , Antagonistas de Receptores de GABA-B , Técnicas In Vitro , Masculino , Inibição Neural/fisiologia , Plasticidade Neuronal/fisiologia , Técnicas de Patch-Clamp , Células do Corno Posterior/efeitos dos fármacos , Células do Corno Posterior/metabolismo , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/metabolismo , Ratos , Ratos Wistar , Receptores de GABA-B/metabolismo , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
16.
J Neurosci Methods ; 295: 51-57, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29197617

RESUMO

BACKGROUND: Locomotor activity provides an index of an animal's behavioral state. Here, we report a reliable and cost-effective method that allows long-term (days to months) simultaneous tracking of locomotion in mouse cohorts (here consisting of 24 animals). NEW METHOD: The technique is based on a motion capture system used mainly for human movement study. A reflective marker was placed on the head of each mouse using a surgical procedure and labeled animals were returned to their individual home cages. Camera-recorded data of marker displacement resulting from locomotor movements were then analyzed with custom built software. To avoid any data loss, data files were saved every hour and automatically concatenated. Long-term recordings (up to 3 months) with high spatial (<1mm) and temporal (up to 100Hz) resolution of animal movements were obtained. RESULTS: The system was validated by analyzing the spontaneous activity of mice from post-natal day 30-90. Daily motor activity increased up to 70days in correspondence with maturational changes in locomotor performance. The recorded actigrams also permitted analysis of circadian and ultradian rhythms in cohort sleep/wake behavior. COMPARISON WITH EXISTING METHOD(S): In contrast to traditional session-based experimental approaches, our technique allows locomotor activity to be recorded with minimal experimenter manipulation, thereby minimizing animal stress. CONCLUSIONS: Our method enables the continuous long-term (up to several months) monitoring of tens of animals, generating manageable amounts of data at minimal costs without requiring individual dedicated devices. The actigraphic data collected allows circadian and ultradian analysis of sleep/wake behaviors to be performed.


Assuntos
Actigrafia/métodos , Ritmo Circadiano , Imageamento Tridimensional/métodos , Atividade Motora , Sono , Vigília , Actigrafia/economia , Actigrafia/instrumentação , Animais , Automação Laboratorial/instrumentação , Automação Laboratorial/métodos , Calibragem , Estudos de Coortes , Análise Custo-Benefício , Imageamento Tridimensional/economia , Imageamento Tridimensional/instrumentação , Iluminação , Camundongos , Movimento , Reconhecimento Automatizado de Padrão/métodos , Próteses e Implantes , Software
17.
J Vet Cardiol ; 20(6): 405-414, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30526956

RESUMO

INTRODUCTION: The objectives of this study were to characterize the epidemiological, clinical, and echocardiographic features of French bulldogs (FBs) with congenital pulmonic stenosis and document their survival times and risk factors for cardiac death (CD). ANIMALS: This study included 66 FBs with congenital pulmonic stenosis. METHODS: Prospective cohort study including a survival analysis to assess time to CD. RESULTS: In most cases (53/66, 80%), at least two obstructive lesions were observed, most commonly valvular and supravalvular (42/66, 64%), with pulmonary trunk hypoplasia in 40/66 (61%) of cases. The median Doppler-derived peak trans-stenotic pressure gradient (ΔP) was very high: 170 mmHg (range = 34-291 mmHg), with ΔP ≥ 200 mmHg in 33% of FBs. Among the 51 FBs with an available follow-up and that did not undergo surgical valvuloplasty, 21/51 (41%) died, 67% (14/21) of deaths being CD. The median survival time from diagnosis to CD was 2.8 years (interquartile range = 0.8-4.6 years). Univariate Cox proportional hazard analyses revealed that age (hazard ratio [HR] = 2.3 per 1 year increase; p = 0.02), clinical signs at presentation (HR = 3.7; p = 0.03), ΔP (HR = 1.2 per 10 mmHg increase; p = 0.01), right ventricular dilation (HR = 5.0; p = 0.04), severe tricuspid regurgitation (HR = 7.6; p = 0.001), and right-sided congestive heart failure (HR = 4.8; p = 0.05) were associated with time to CD. After adjustment for age and ΔP, tricuspid regurgitation remained significantly associated with time to CD (HR = 5.1; p = 0.02). CONCLUSIONS: Pulmonic stenosis in FBs is commonly severe and complex, with at least 2 obstructive lesions in most cases, a high incidence of pulmonary trunk hypoplasia and CD, and strong association between prognosis and tricuspid regurgitation severity.


Assuntos
Doenças do Cão/mortalidade , Estenose da Valva Pulmonar/veterinária , Animais , Estudos de Coortes , Doenças do Cão/congênito , Doenças do Cão/diagnóstico por imagem , Doenças do Cão/patologia , Cães , Ecocardiografia/veterinária , Feminino , França/epidemiologia , Masculino , Linhagem , Estudos Prospectivos , Estenose da Valva Pulmonar/mortalidade , Índice de Gravidade de Doença , Análise de Sobrevida
18.
Sci Rep ; 6: 28522, 2016 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-27329279

RESUMO

Activity-dependent synaptic plasticity (ADSP) is paramount to synaptic processing and maturation. However, identifying the ADSP capabilities of the numerous synapses converging onto spinal motoneurons (MNs) remain elusive. Using spinal cord slices from mice at two developmental stages, 1-4 and 8-12 postnatal days (P1-P4; P8-P12), we found that high-frequency stimulation of presumed reticulospinal neuron axons in the ventrolateral funiculus (VLF) induced either an NMDA receptor-dependent-long-term depression (LTD), a short-term depression (STD) or no synaptic modulation in limb MNs. Our study shows that P1-P4 cervical MNs expressed the same plasticity profiles as P8-P12 lumbar MNs rather than P1-P4 lumbar MNs indicating that ADSP expression at VLF-MN synapses is linked to the rostrocaudal development of spinal motor circuitry. Interestingly, we observed that the ADSP expressed at VLF-MN was related to the functional flexor or extensor MN subtype. Moreover, heterosynaptic plasticity was triggered in MNs by VLF axon tetanisation at neighbouring synapses not directly involved in the plasticity induction. ADSP at VLF-MN synapses specify differential integrative synaptic processing by flexor and extensor MNs and could contribute to the maturation of spinal motor circuits and developmental acquisition of weight-bearing locomotion.


Assuntos
Neurônios Motores/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Animais Recém-Nascidos , Estimulação Elétrica , Feminino , Glutamatos/fisiologia , Locomoção/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Medula Espinal/citologia , Medula Espinal/crescimento & desenvolvimento , Medula Espinal/fisiologia , Sinapses/fisiologia , Suporte de Carga/fisiologia
19.
Peptides ; 26(2): 277-86, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15629539

RESUMO

It is now well established that a dynamic balance of neurotransmitters and neuromodulators finely influence the output of neuronal networks and subsequent behaviors. In the present study, to further understand the modulatory processes that control locomotor behavior, we investigated the action of 11 neuropeptides, chosen among the various peptide subfamilies, on the lumbar neuronal network in the in vitro neonatal rat spinal cord preparation. Peptides were bath-applied alone, in combination with N-methyl-D,L-aspartate (NMA) or with the classical 'locomotor cocktail' of NMA and serotonin. Using these different experimental paradigms, we show that each peptide can neuromodulate the lumbar locomotor network and that peptides exhibit different neuromodulatory profiles and potencies even within the same family. Only vasopressin, oxytocin, bombesin and thyrotropin releasing hormone triggered tonic or non-organized rhythmic activities when bath-applied alone. All the neuropeptides modulated NMA induced activity and/ or ongoing sequences of fictive locomotion to varying degrees. These results suggest that neuropeptides play an important role in the control of the neural network for locomotion in the neonatal rat. Their various profiles of action may account in part for the great flexibility of motor behaviors.


Assuntos
Animais Recém-Nascidos/fisiologia , Locomoção/fisiologia , Atividade Motora/efeitos dos fármacos , Rede Nervosa/fisiologia , Neurotransmissores/farmacologia , Medula Espinal/fisiologia , Angiotensina II/farmacologia , Animais , Bombesina/farmacologia , Bradicinina/farmacologia , Sinergismo Farmacológico , Encefalina Metionina/farmacologia , FMRFamida/farmacologia , Gânglios Espinais/fisiologia , Locomoção/efeitos dos fármacos , Região Lombossacral/fisiologia , Potenciais da Membrana/efeitos dos fármacos , N-Metilaspartato/farmacologia , Neuropeptídeos/farmacologia , Neurotensina/farmacologia , Oligopeptídeos/farmacologia , Ocitocina/farmacologia , Ratos , Ratos Wistar , Serotonina/farmacologia , Medula Espinal/efeitos dos fármacos , Tireotropina/farmacologia , Vasopressinas/farmacologia
20.
PLoS One ; 10(8): e0135525, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26305672

RESUMO

Large cholinergic synaptic terminals known as C-boutons densely innervate the soma and proximal dendrites of motoneurons that are prone to neurodegeneration in amyotrophic lateral sclerosis (ALS). Studies using the Cu/Zn-superoxide dismutase (SOD1) mouse model of ALS have generated conflicting data regarding C-bouton alterations exhibited during ALS pathogenesis. In the present work, a longitudinal study combining immunohistochemistry, biochemical approaches and extra- and intra-cellular electrophysiological recordings revealed that the whole spinal cholinergic system is modified in the SOD1 mouse model of ALS compared to wild type (WT) mice as early as the second postnatal week. In WT motoneurons, both C-bouton terminals and associated M2 postsynaptic receptors presented a complex age-related dynamic that appeared completely disrupted in SOD1 motoneurons. Indeed, parallel to C-bouton morphological alterations, analysis of confocal images revealed a clustering process of M2 receptors during WT motoneuron development and maturation that was absent in SOD1 motoneurons. Our data demonstrated for the first time that the lamina X cholinergic interneurons, the neuronal source of C-boutons, are over-abundant in high lumbar segments in SOD1 mice and are subject to neurodegeneration in the SOD1 animal model. Finally, we showed that early C-bouton system alterations have no physiological impact on the cholinergic neuromodulation of newborn motoneurons. Altogether, these data suggest a complete reconfiguration of the spinal cholinergic system in SOD1 spinal networks that could be part of the compensatory mechanisms established during spinal development.


Assuntos
Envelhecimento/metabolismo , Neurônios Colinérgicos/metabolismo , Vértebras Lombares/patologia , Neurônios Motores/metabolismo , Terminações Pré-Sinápticas/metabolismo , Animais , Animais Recém-Nascidos , Neurônios Colinérgicos/efeitos dos fármacos , Imuno-Histoquímica , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Neurônios Motores/efeitos dos fármacos , Neurotransmissores/farmacologia , Oxotremorina/farmacologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Receptores Muscarínicos/metabolismo , Medula Espinal/metabolismo , Superóxido Dismutase/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa