Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biol Psychiatry ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38901723

RESUMO

BACKGROUND: Substance use disorder (SUD) is characterized by long-lasting changes in reward-related brain regions, such as the nucleus accumbens (NAc). Previous work has shown that cocaine exposure induces plasticity in broad, genetically-defined cell types in the NAc; however, in response to a stimulus, only a small percent of neurons are transcriptionally active - termed an ensemble. Here, we identify an Arc-expressing neuronal ensemble that has a unique trajectory of recruitment and causally controls drug self-administration after repeated, but not acute, cocaine exposure. METHOD: Using Arc-CreERT2 transgenic mice, we expressed transgenes in Arc+ ensembles activated by cocaine exposure [either acute (1 x 10mg/kg IP), or repeated (10 x 10mg/kg IP)]. Using genetic, optical, and physiological recording and manipulation strategies, we assessed the contribution of these ensembles to behaviors associated with SUD. RESULTS: Repeated cocaine exposure reduced the size of the ensemble, while simultaneously increasing its control over behavior. Neurons within the repeated cocaine ensemble were hyperexcitable and their optogenetic excitation was sufficient for reinforcement. Finally, lesioning the repeated cocaine, but not acute cocaine, ensemble blunted cocaine self-administration. Thus, repeated cocaine exposure reduced the size of the ensemble while simultaneously increasing its contributions to drug reinforcement. CONCLUSIONS: We show that repeated, but not acute, cocaine exposure induces a physiologically distinct ensemble characterized by the expression of the immediate early gene Arc, that is uniquely capable of modulating reinforcement behavior.

2.
Neuron ; 112(5): 835-849.e7, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38134921

RESUMO

At the core of value-based learning is the nucleus accumbens (NAc). D1- and D2-receptor-containing medium spiny neurons (MSNs) in the NAc core are hypothesized to have opposing valence-based roles in behavior. Using optical imaging and manipulation approaches in mice, we show that neither D1 nor D2 MSNs signal valence. D1 MSN responses were evoked by stimuli regardless of valence or contingency. D2 MSNs were evoked by both cues and outcomes, were dynamically changed with learning, and tracked valence-free prediction error at the population and individual neuron level. Finally, D2 MSN responses to cues were necessary for associative learning. Thus, D1 and D2 MSNs work in tandem, rather than in opposition, by signaling specific properties of stimuli to control learning.


Assuntos
Neurônios Espinhosos Médios , Receptores de Dopamina D1 , Camundongos , Animais , Camundongos Transgênicos , Receptores de Dopamina D1/metabolismo , Núcleo Accumbens/fisiologia , Neurônios/fisiologia , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa