Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Br J Haematol ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39188028

RESUMO

Despite the clinical and molecular heterogeneity of follicular lymphoma (FL), there remains a lack of biomarker-directed therapeutic approaches in routine clinical practice, with the notable exception of the EZH2 inhibitor tazemetostat in EZH2-mutant FL. Here we examined whether gene mutation status predicts response to clinical mTOR inhibitors (mTORi) in FL, by performing targeted mutational profiling of biopsies from 21 relapsed/refractory FL patients treated with mTORi everolimus or temsirolimus within clinical trials. We observed an enrichment of mutations within the catalytic histone acetyltransferase (HAT) domain of CREBBP in mTORi-responders, and describe distinct transcriptional characteristics and co-occurring mutations of FL harbouring these mutations; reinforcing the growing appreciation of CREBBPHAT mutation as a key biological determinant and its promise as a therapeutic biomarker in FL.

2.
Blood ; 138(5): 370-381, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-33786580

RESUMO

Loss-of-function mutations in KMT2D are a striking feature of germinal center (GC) lymphomas, resulting in decreased histone 3 lysine 4 (H3K4) methylation and altered gene expression. We hypothesized that inhibition of the KDM5 family, which demethylates H3K4me3/me2, would reestablish H3K4 methylation and restore the expression of genes repressed on loss of KMT2D. KDM5 inhibition increased H3K4me3 levels and caused an antiproliferative response in vitro, which was markedly greater in both endogenous and gene-edited KMT2D mutant diffuse large B-cell lymphoma cell lines, whereas tumor growth was inhibited in KMT2D mutant xenografts in vivo. KDM5 inhibition reactivated both KMT2D-dependent and -independent genes, resulting in diminished B-cell signaling and altered expression of B-cell lymphoma 2 (BCL2) family members, including BCL2 itself. KDM5 inhibition may offer an effective therapeutic strategy for ameliorating KMT2D loss-of-function mutations in GC lymphomas.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Inibidores Enzimáticos/farmacologia , Mutação com Perda de Função , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Proteínas de Neoplasias/metabolismo , Proteína 2 de Ligação ao Retinoblastoma/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Humanos , Linfoma Difuso de Grandes Células B/enzimologia , Linfoma Difuso de Grandes Células B/genética , Camundongos , Proteínas de Neoplasias/genética , Proteína 2 de Ligação ao Retinoblastoma/genética , Proteína 2 de Ligação ao Retinoblastoma/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Am Acad Dermatol ; 89(6): 1159-1166, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37586461

RESUMO

BACKGROUND: Metastasis of cutaneous squamous cell carcinoma (cSCC) is uncommon. Current staging methods are reported to have sub-optimal performances in metastasis prediction. Accurate identification of patients with tumors at high risk of metastasis would have a significant impact on management. OBJECTIVE: To develop a robust and validated gene expression profile signature for predicting primary cSCC metastatic risk using an unbiased whole transcriptome discovery-driven approach. METHODS: Archival formalin-fixed paraffin-embedded primary cSCC with perilesional normal tissue from 237 immunocompetent patients (151 nonmetastasizing and 86 metastasizing) were collected retrospectively from four centers. TempO-seq was used to probe the whole transcriptome and machine learning algorithms were applied to derive predictive signatures, with a 3:1 split for training and testing datasets. RESULTS: A 20-gene prognostic model was developed and validated, with an accuracy of 86.0%, sensitivity of 85.7%, specificity of 86.1%, and positive predictive value of 78.3% in the testing set, providing more stable, accurate prediction than pathological staging systems. A linear predictor was also developed, significantly correlating with metastatic risk. LIMITATIONS: This was a retrospective 4-center study and larger prospective multicenter studies are now required. CONCLUSION: The 20-gene signature prediction is accurate, with the potential to be incorporated into clinical workflows for cSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Cutâneas , Humanos , Carcinoma de Células Escamosas/patologia , Prognóstico , Estudos Retrospectivos , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Transcriptoma , Estudos Prospectivos , Estadiamento de Neoplasias
4.
Proc Natl Acad Sci U S A ; 117(29): 17151-17155, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32636268

RESUMO

Inherited bone marrow failure (BMF) syndromes are a heterogeneous group of diseases characterized by defective hematopoiesis and often predisposing to myelodysplastic syndrome (MDS) and acute myelogenous leukemia. We have studied a large family consisting of several affected individuals with hematologic abnormalities, including one family member who died of acute leukemia. By whole-exome sequencing, we identified a novel frameshift variant in the ubiquitously expressed transcription factor specificity protein 1 (SP1). This heterozygous variant (c.1995delA) truncates the canonical Sp1 molecule in the highly conserved C-terminal DNA-binding zinc finger domains. Transcriptomic analysis and gene promoter characterization in patients' blood revealed a hypermorphic effect of this Sp1 variant, triggering superactivation of Sp1-mediated transcription and driving significant up-regulation of Sp1 target genes. This familial genetic study indicates a central role for Sp1 in causing autosomal dominant transmission of BMF, thereby confirming its critical role in hematopoiesis in humans.


Assuntos
Transtornos da Insuficiência da Medula Óssea/genética , Mutação da Fase de Leitura/genética , Fator de Transcrição Sp1/genética , Transcrição Gênica/genética , Feminino , Humanos , Masculino , Linhagem , Transcriptoma/genética , Regulação para Cima/genética , Dedos de Zinco/genética
5.
Br J Haematol ; 199(5): 754-764, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36156210

RESUMO

Despite the inclusion of inherited myeloid malignancies as a separate entity in the World Health Organization Classification, many established predisposing loci continue to lack functional characterization. While germline mutations in the DNA repair factor ERCC excision repair 6 like 2 (ERCC6L2) give rise to bone marrow failure and acute myeloid leukaemia, their consequences on normal haematopoiesis remain unclear. To functionally characterise the dual impact of germline ERCC6L2 loss on human primary haematopoietic stem/progenitor cells (HSPCs) and mesenchymal stromal cells (MSCs), we challenged ERCC6L2-silenced and patient-derived cells ex vivo. Here, we show for the first time that ERCC6L2-deficiency in HSPCs significantly impedes their clonogenic potential and leads to delayed erythroid differentiation. This observation was confirmed by CIBERSORTx RNA-sequencing deconvolution performed on ERCC6L2-silenced erythroid-committed cells, which demonstrated higher proportions of polychromatic erythroblasts and reduced orthochromatic erythroblasts versus controls. In parallel, we demonstrate that the consequences of ERCC6L2-deficiency are not limited to HSPCs, as we observe a striking phenotype in patient-derived and ERCC6L2-silenced MSCs, which exhibit enhanced osteogenesis and suppressed adipogenesis. Altogether, our study introduces a valuable surrogate model to study the impact of inherited myeloid mutations and highlights the importance of accounting for the influence of germline mutations in HSPCs and their microenvironment.


Assuntos
Medula Óssea , Eritropoese , Humanos , Eritropoese/genética , Mutação em Linhagem Germinativa , Reparo do DNA/genética , Células Germinativas , DNA Helicases/genética
7.
Plant J ; 75(1): 26-39, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23578292

RESUMO

A model is presented describing the gene regulatory network surrounding three similar NAC transcription factors that have roles in Arabidopsis leaf senescence and stress responses. ANAC019, ANAC055 and ANAC072 belong to the same clade of NAC domain genes and have overlapping expression patterns. A combination of promoter DNA/protein interactions identified using yeast 1-hybrid analysis and modelling using gene expression time course data has been applied to predict the regulatory network upstream of these genes. Similarities and divergence in regulation during a variety of stress responses are predicted by different combinations of upstream transcription factors binding and also by the modelling. Mutant analysis with potential upstream genes was used to test and confirm some of the predicted interactions. Gene expression analysis in mutants of ANAC019 and ANAC055 at different times during leaf senescence has revealed a distinctly different role for each of these genes. Yeast 1-hybrid analysis is shown to be a valuable tool that can distinguish clades of binding proteins and be used to test and quantify protein binding to predicted promoter motifs.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Botrytis/fisiologia , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Senescência Celular , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Ligação Proteica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
8.
J Mol Diagn ; 26(4): 245-256, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38280422

RESUMO

Tumor relapse is well recognized to arise from treatment-resistant residual populations. Strategies enriching such populations for in-depth downstream analyses focus on tumor-specific surface markers; however, enrichment using intracellular biomarkers remains challenging. Using B-cell lymphoma as an exemplar, we demonstrate feasibility to enrich B-cell lymphoma 2 (BCL2)high populations, a surrogate marker for t(14;18)+ lymphomas, for use in downstream applications. Different fixation protocols were assessed for impact on antibody expression and RNA integrity; glyoxal fixation demonstrated superior results regarding minimal effects on surface and intracellular expression, and RNA quality, compared with alternative fixatives evaluated. Furthermore, t(14;18)+ B cells were effectively detected using intracellular BCL2 overexpression to facilitate tumor cell enrichment. Tumor cell populations were enriched using the cellenONE F1.4 single-cell sorting platform, which detected and dispensed BCL2high-expressing cells directly into library preparation reagents for transcriptome analyses. Sorted glyoxal-fixed cells generated good quality sequencing libraries, with high concordance between live and fixed single-cell transcriptomic profiles, discriminating cell populations predominantly on B-cell biology. Overall, we successfully developed a proof-of-concept workflow employing a robust cell preparation protocol for intracellular markers combined with cell enrichment using the cellenONE platform, providing an alternative to droplet-based technologies when cellular input is low or requires prior enrichment to detect rare populations. This workflow has wider prognostic and therapeutic potential to study residual cells in a pan-cancer setting.


Assuntos
Recidiva Local de Neoplasia , RNA , Humanos , Fluxo de Trabalho , Neoplasia Residual , RNA/genética , Glioxal , Proteínas Proto-Oncogênicas c-bcl-2/genética
9.
Leukemia ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39187579

RESUMO

Identification of specific and therapeutically actionable vulnerabilities, ideally present across multiple mutational backgrounds, is needed to improve acute myeloid leukemia (AML) patients' outcomes. We identify stearoyl-CoA desaturase (SCD), the key enzyme in fatty acid (FA) desaturation, as prognostic of patients' outcomes and, using the clinical-grade inhibitor SSI-4, show that SCD inhibition (SCDi) is a therapeutic vulnerability across multiple AML models in vitro and in vivo. Multiomic analysis demonstrates that SCDi causes lipotoxicity, which induces AML cell death via pleiotropic effects. Sensitivity to SCDi correlates with AML dependency on FA desaturation regardless of mutational profile and is modulated by FA biosynthesis activity. Finally, we show that lipotoxicity increases chemotherapy-induced DNA damage and standard chemotherapy further sensitizes AML cells to SCDi. Our work supports developing FA desaturase inhibitors in AML while stressing the importance of identifying predictive biomarkers of response and biologically validated combination therapies to realize their full therapeutic potential.

10.
Signal Transduct Target Ther ; 8(1): 80, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36843114

RESUMO

Acute myeloid leukaemia (AML) patients harbouring certain chromosome abnormalities have particularly adverse prognosis. For these patients, targeted therapies have not yet made a significant clinical impact. To understand the molecular landscape of poor prognosis AML we profiled 74 patients from two different centres (in UK and Finland) at the proteomic, phosphoproteomic and drug response phenotypic levels. These data were complemented with transcriptomics analysis for 39 cases. Data integration highlighted a phosphoproteomics signature that define two biologically distinct groups of KMT2A rearranged leukaemia, which we term MLLGA and MLLGB. MLLGA presented increased DOT1L phosphorylation, HOXA gene expression, CDK1 activity and phosphorylation of proteins involved in RNA metabolism, replication and DNA damage when compared to MLLGB and no KMT2A rearranged samples. MLLGA was particularly sensitive to 15 compounds including genotoxic drugs and inhibitors of mitotic kinases and inosine-5-monosphosphate dehydrogenase (IMPDH) relative to other cases. Intermediate-risk KMT2A-MLLT3 cases were mainly represented in a third group closer to MLLGA than to MLLGB. The expression of IMPDH2 and multiple nucleolar proteins was higher in MLLGA and correlated with the response to IMPDH inhibition in KMT2A rearranged leukaemia, suggesting a role of the nucleolar activity in sensitivity to treatment. In summary, our multilayer molecular profiling of AML with poor prognosis and KMT2A-MLLT3 karyotypes identified a phosphoproteomics signature that defines two biologically and phenotypically distinct groups of KMT2A rearranged leukaemia. These data provide a rationale for the potential development of specific therapies for AML patients characterised by the MLLGA phosphoproteomics signature identified in this study.


Assuntos
Leucemia Mieloide Aguda , Proteômica , Humanos , Rearranjo Gênico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteínas Nucleares/genética , Fenótipo
11.
Blood Adv ; 7(5): 845-855, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35947123

RESUMO

Despite the effectiveness of immuno-chemotherapy, 40% of patients with diffuse large B-cell lymphoma (DLBCL) experience relapse or refractory disease. Longitudinal studies have previously focused on the mutational landscape of relapse but fell short of providing a consistent relapse-specific genetic signature. In our study, we have focused attention on the changes in GEP accompanying DLBCL relapse using archival paired diagnostic/relapse specimens from 38 de novo patients with DLBCL. COO remained stable from diagnosis to relapse in 80% of patients, with only a single patient showing COO switching from activated B-cell-like (ABC) to germinal center B-cell-like (GCB). Analysis of the transcriptomic changes that occur following relapse suggest ABC and GCB relapses are mediated via different mechanisms. We developed a 30-gene discriminator for ABC-DLBCLs derived from relapse-associated genes that defined clinically distinct high- and low-risk subgroups in ABC-DLBCLs at diagnosis in datasets comprising both population-based and clinical trial cohorts. This signature also identified a population of <60-year-old patients with superior PFS and OS treated with ibrutinib-R-CHOP as part of the PHOENIX trial. Altogether this new signature adds to the existing toolkit of putative genetic predictors now available in DLBCL that can be readily assessed as part of prospective clinical trials.


Assuntos
Linfoma Difuso de Grandes Células B , Recidiva Local de Neoplasia , Humanos , Pessoa de Meia-Idade , Estudos Prospectivos , Linfoma Difuso de Grandes Células B/diagnóstico , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Linfócitos B/metabolismo , Centro Germinativo/metabolismo
12.
Sci Transl Med ; 14(650): eabn3248, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35731890

RESUMO

Acute myeloid leukemia (AML) is an aggressive hematological disorder comprising a hierarchy of quiescent leukemic stem cells (LSCs) and proliferating blasts with limited self-renewal ability. AML has a dismal prognosis, with extremely low 2-year survival rates in the poorest cytogenetic risk patients, primarily due to the failure of intensive chemotherapy protocols to deplete LSCs and toxicity of therapy toward healthy hematopoietic cells. We studied the role of cyclin-dependent kinase regulatory subunit 1 (CKS1)-dependent protein degradation in primary human AML and healthy hematopoiesis xenograft models in vivo. Using a small-molecule inhibitor (CKS1i), we demonstrate a dual role for CKS1-dependent protein degradation in reducing patient-derived AML blasts in vivo and, importantly, depleting LSCs, whereas inhibition of CKS1 has the opposite effect on normal hematopoiesis, protecting normal hematopoietic stem cells from chemotherapeutic toxicity. Proteomic analysis of responses to CKS1i in our patient-derived xenograft mouse model demonstrate that inhibition of CKS1 in AML leads to hyperactivation of RAC1 and accumulation of lethal reactive oxygen species, whereas healthy hematopoietic cells enter quiescence in response to CKS1i, protecting hematopoietic stem cells. Together, these findings demonstrate that CKS1-dependent proteostasis is a key vulnerability in malignant stem cell biology.


Assuntos
Quinases relacionadas a CDC2 e CDC28 , Leucemia Mieloide Aguda , Animais , Quinases relacionadas a CDC2 e CDC28/metabolismo , Quinases relacionadas a CDC2 e CDC28/farmacologia , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Camundongos , Células-Tronco Neoplásicas , Proteômica
13.
Nat Commun ; 13(1): 7619, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494342

RESUMO

Myelodysplastic syndromes (MDS) are hematopoietic stem cell (HSC) malignancies characterized by ineffective hematopoiesis, with increased incidence in older individuals. Here we analyze the transcriptome of human HSCs purified from young and older healthy adults, as well as MDS patients, identifying transcriptional alterations following different patterns of expression. While aging-associated lesions seem to predispose HSCs to myeloid transformation, disease-specific alterations may trigger MDS development. Among MDS-specific lesions, we detect the upregulation of the transcription factor DNA Damage Inducible Transcript 3 (DDIT3). Overexpression of DDIT3 in human healthy HSCs induces an MDS-like transcriptional state, and dyserythropoiesis, an effect associated with a failure in the activation of transcriptional programs required for normal erythroid differentiation. Moreover, DDIT3 knockdown in CD34+ cells from MDS patients with anemia is able to restore erythropoiesis. These results identify DDIT3 as a driver of dyserythropoiesis, and a potential therapeutic target to restore the inefficient erythroid differentiation characterizing MDS patients.


Assuntos
Síndromes Mielodisplásicas , Fatores de Transcrição , Adulto , Humanos , Idoso , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Síndromes Mielodisplásicas/patologia , Eritropoese/genética , Células-Tronco Hematopoéticas/metabolismo , Regulação da Expressão Gênica , Fator de Transcrição CHOP/genética
14.
Patterns (N Y) ; 2(6): 100270, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34179848

RESUMO

Determining the tissue- and disease-specific circuit of biological pathways remains a fundamental goal of molecular biology. Many components of these biological pathways still remain unknown, hindering the full and accurate characterization of biological processes of interest. Here we describe ACSNI, an algorithm that combines prior knowledge of biological processes with a deep neural network to effectively decompose gene expression profiles (GEPs) into multi-variable pathway activities and identify unknown pathway components. Experiments on public GEP data show that ACSNI predicts cogent components of mTOR, ATF2, and HOTAIRM1 signaling that recapitulate regulatory information from genetic perturbation and transcription factor binding datasets. Our framework provides a fast and easy-to-use method to identify components of signaling pathways as a tool for molecular mechanism discovery and to prioritize genes for designing future targeted experiments (https://github.com/caanene1/ACSNI).

15.
Blood Adv ; 5(23): 5360-5371, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34625797

RESUMO

Gene expression profiling has long been used in understanding the contribution of genes and related pathways in disease pathogenesis and susceptibility. We have performed whole-blood transcriptomic profiling in a subset of patients with inherited bone marrow failure (IBMF) whose diseases are clinically and genetically characterized as Fanconi anemia (FA), Shwachman-Diamond syndrome (SDS), and dyskeratosis congenita (DC). We hypothesized that annotating whole-blood transcripts genome wide will aid in understanding the complexity of gene regulation across these IBMF subtypes. Initial analysis of these blood-derived transcriptomes revealed significant skewing toward upregulated genes in patients with FA when compared with controls. Patients with SDS or DC also showed similar skewing profiles in their transcriptional status revealing a common pattern across these different IBMF subtypes. Gene set enrichment analysis revealed shared pathways involved in protein translation and elongation (ribosome constituents), RNA metabolism (nonsense-mediated decay), and mitochondrial function (electron transport chain). We further identified a discovery set of 26 upregulated genes at stringent cutoff (false discovery rate < 0.05) that appeared as a unified signature across the IBMF subtypes. Subsequent transcriptomic analysis on genetically uncharacterized patients with BMF revealed a striking overlap of genes, including 22 from the discovery set, which indicates a unified transcriptional drive across the classic (FA, SDS, and DC) and uncharacterized BMF subtypes. This study has relevance in disease pathogenesis, for example, in explaining the features (including the BMF) common to all patients with IBMF and suggests harnessing this transcriptional signature for patient benefit.


Assuntos
Doenças da Medula Óssea , Disceratose Congênita , Anemia de Fanconi , Doenças da Medula Óssea/genética , Transtornos da Insuficiência da Medula Óssea , Anemia de Fanconi/genética , Perfilação da Expressão Gênica , Humanos
16.
J Invest Dermatol ; 141(7): 1664-1674.e7, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33482222

RESUMO

Actinic keratoses (AKs) are lesions of epidermal keratinocyte dysplasia and are precursors for invasive cutaneous squamous cell carcinoma (cSCC). Identifying the specific genomic alterations driving the progression from normal skin to skin with AK to skin with invasive cSCC is challenging because of the massive UVR-induced mutational burden characteristic at all stages of this progression. In this study, we report the largest AK whole-exome sequencing study to date and perform a mutational signature and candidate driver gene analysis on these lesions. We demonstrate in 37 AKs from both immunosuppressed and immunocompetent patients that there are significant similarities between AKs and cSCC in terms of mutational burden, copy number alterations, mutational signatures, and patterns of driver gene mutations. We identify 44 significantly mutated AK driver genes and confirm that these genes are similarly altered in cSCC. We identify azathioprine mutational signature in all AKs from patients exposed to the drug, providing further evidence for its role in keratinocyte carcinogenesis. cSCCs differ from AKs in having higher levels of intrasample heterogeneity. Alterations in signaling pathways also differ, with immune-related signaling and TGFß signaling significantly more mutated in cSCC. Integrating our findings with independent gene expression datasets confirms that dysregulated TGFß signaling may represent an important event in AK‒cSCC progression.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/genética , Ceratose Actínica/genética , Neoplasias Cutâneas/genética , Idoso , Idoso de 80 Anos ou mais , Biópsia , Carcinoma de Células Escamosas/patologia , Análise Mutacional de DNA , Conjuntos de Dados como Assunto , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Humanos , Queratinócitos/patologia , Ceratose Actínica/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Transdução de Sinais/genética , Pele/patologia , Neoplasias Cutâneas/patologia , Fator de Crescimento Transformador beta/metabolismo , Sequenciamento do Exoma
17.
Nat Commun ; 11(1): 1044, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32098966

RESUMO

The inclusion of familial myeloid malignancies as a separate disease entity in the revised WHO classification has renewed efforts to improve the recognition and management of this group of at risk individuals. Here we report a cohort of 86 acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) families with 49 harboring germline variants in 16 previously defined loci (57%). Whole exome sequencing in a further 37 uncharacterized families (43%) allowed us to rationalize 65 new candidate loci, including genes mutated in rare hematological syndromes (ADA, GP6, IL17RA, PRF1 and SEC23B), reported in prior MDS/AML or inherited bone marrow failure series (DNAH9, NAPRT1 and SH2B3) or variants at novel loci (DHX34) that appear specific to inherited forms of myeloid malignancies. Altogether, our series of MDS/AML families offer novel insights into the etiology of myeloid malignancies and provide a framework to prioritize variants for inclusion into routine diagnostics and patient management.


Assuntos
Mutação em Linhagem Germinativa , Leucemia Mieloide Aguda/genética , Síndromes Mielodisplásicas/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Adenosina Desaminase/genética , Dineínas do Axonema/genética , Estudos de Coortes , Humanos , Degradação do RNAm Mediada por Códon sem Sentido , Linhagem , Perforina/genética , Glicoproteínas da Membrana de Plaquetas/genética , RNA Helicases/genética , Receptores de Interleucina-17/genética , Proteínas de Transporte Vesicular/genética , Sequenciamento do Exoma
18.
Comput Struct Biotechnol J ; 17: 1348-1359, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31762958

RESUMO

Next Generation Sequencing (NGS) has dramatically improved the flexibility and outcomes of cancer research and clinical trials, providing highly sensitive and accurate high-throughput platforms for large-scale genomic testing. In contrast to whole-genome (WGS) or whole-exome sequencing (WES), targeted genomic sequencing (TS) focuses on a panel of genes or targets known to have strong associations with pathogenesis of disease and/or clinical relevance, offering greater sequencing depth with reduced costs and data burden. This allows targeted sequencing to identify low frequency variants in targeted regions with high confidence, thus suitable for profiling low-quality and fragmented clinical DNA samples. As a result, TS has been widely used in clinical research and trials for patient stratification and the development of targeted therapeutics. However, its transition to routine clinical use has been slow. Many technical and analytical obstacles still remain and need to be discussed and addressed before large-scale and cross-centre implementation. Gold-standard and state-of-the-art procedures and pipelines are urgently needed to accelerate this transition. In this review we first present how TS is conducted in cancer research, including various target enrichment platforms, the construction of target panels, and selected research and clinical studies utilising TS to profile clinical samples. We then present a generalised analytical workflow for TS data discussing important parameters and filters in detail, aiming to provide the best practices of TS usage and analyses.

20.
J Extracell Vesicles ; 6(1): 1340746, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28717426

RESUMO

Cells naïve to stress can display the effects of stress, such as DNA damage and apoptosis, when they are exposed to signals from stressed cells; this phenomenon is known as the bystander effect. We previously showed that bystander effect induced by ionising radiation are mediated by extracellular vesicles (EVs). Bystander effect can also be induced by other types of stress, including heat shock, but it is unclear whether EVs are involved. Here we show that EVs released from heat shocked cells are also able to induce bystander damage in unstressed populations. Naïve cells treated with media conditioned by heat shocked cells showed higher levels of DNA damage and apoptosis than cells treated with media from control cells. Treating naïve cells with EVs derived from media conditioned by heat shocked cells also induced a bystander effect when compared to control, with DNA damage and apoptosis increasing whilst the level of cell viability was reduced. We demonstrate that treatment of naïve cells with heat shocked cell-derived EVs leads to greater invasiveness in a trans-well Matrigel assay. Finally, we show that naïve cells treated with EVs from heat-shocked cells are more likely to survive a subsequent heat shock, suggesting that these EVs mediate an adaptive response. We propose that EVs released following stress mediate an intercellular response that leads to apparent stress in neighbouring cells but also greater robustness in the face of a subsequent insult.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa