Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Glob Ecol Biogeogr ; 31(8): 1526-1541, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36247232

RESUMO

Aim: Macroecological studies that require habitat suitability data for many species often derive this information from expert opinion. However, expert-based information is inherently subjective and thus prone to errors. The increasing availability of GPS tracking data offers opportunities to evaluate and supplement expert-based information with detailed empirical evidence. Here, we compared expert-based habitat suitability information from the International Union for Conservation of Nature (IUCN) with habitat suitability information derived from GPS-tracking data of 1,498 individuals from 49 mammal species. Location: Worldwide. Time period: 1998-2021. Major taxa studied: Forty-nine terrestrial mammal species. Methods: Using GPS data, we estimated two measures of habitat suitability for each individual animal: proportional habitat use (proportion of GPS locations within a habitat type), and selection ratio (habitat use relative to its availability). For each individual we then evaluated whether the GPS-based habitat suitability measures were in agreement with the IUCN data. To that end, we calculated the probability that the ranking of empirical habitat suitability measures was in agreement with IUCN's classification into suitable, marginal and unsuitable habitat types. Results: IUCN habitat suitability data were in accordance with the GPS data (> 95% probability of agreement) for 33 out of 49 species based on proportional habitat use estimates and for 25 out of 49 species based on selection ratios. In addition, 37 and 34 species had a > 50% probability of agreement based on proportional habitat use and selection ratios, respectively. Main conclusions: We show how GPS-tracking data can be used to evaluate IUCN habitat suitability data. Our findings indicate that for the majority of species included in this study, it is appropriate to use IUCN habitat suitability data in macroecological studies. Furthermore, we show that GPS-tracking data can be used to identify and prioritize species and habitat types for re-evaluation of IUCN habitat suitability data.

2.
J Surg Res ; 257: 203-212, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32858321

RESUMO

BACKGROUND: Hibernating American black bears have significantly different clotting parameters than their summer active counterparts, affording them protection against venous thromboembolism during prolonged periods of immobility. We sought to evaluate if significant differences exist between the expression of microRNAs in the plasma of hibernating black bears compared with their summer active counterparts, potentially contributing to differences in hemostasis during hibernation. MATERIALS AND METHODS: MicroRNA sequencing was assessed in plasma from 21 American black bears in summer active (n = 11) and hibernating states (n = 10), and microRNA signatures during hibernating and active state were established using both bear and human genome. MicroRNA targets were predicted using messenger RNA (mRNA) transcripts from black bear kidney cells. In vitro studies were performed to confirm the relationship between identified microRNAs and mRNA expression, using artificial microRNA and human liver cells. RESULTS: Using the bear genome, we identified 15 microRNAs differentially expressed in the plasma of hibernating black bears. Of these microRNAs, three were significantly downregulated (miR-141-3p, miR-200a-3p, and miR-200c-3p), were predicted to target SERPINC1, the gene for antithrombin, and demonstrated regulatory control of the gene mRNA expression in cell studies. CONCLUSIONS: Our findings suggest that the hibernating black bears' ability to maintain hemostasis and achieve protection from venous thromboembolism during prolonged periods of immobility may be due to changes in microRNA signatures and possible upregulation of antithrombin expression.


Assuntos
Hemostasia/genética , Hibernação/genética , MicroRNAs/metabolismo , Ursidae/genética , Tromboembolia Venosa/genética , Animais , Antitrombina III/genética , Linhagem Celular Tumoral , Feminino , Inativação Gênica , Hepatócitos , Humanos , Masculino , MicroRNAs/sangue , Estações do Ano , Regulação para Cima , Ursidae/sangue , Tromboembolia Venosa/prevenção & controle
3.
J Anim Ecol ; 89(6): 1433-1447, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32145068

RESUMO

According to the ideal-free distribution (IFD), individuals within a population are free to select habitats that maximize their chances of success. Assuming knowledge of habitat quality, the IFD predicts that average fitness will be approximately equal among individuals and between habitats, while density varies, implying that habitat selection will be density dependent. Populations are often assumed to follow an IFD, although this assumption is rarely tested with empirical data, and may be incorrect when territoriality indicates habitat selection tactics that deviate from the IFD (e.g. ideal-despotic distribution or ideal-preemptive distribution). When territoriality influences habitat selection, species' density will not directly reflect components of fitness such as reproductive success or survival. In such cases, assuming an IFD can lead to false conclusions about habitat quality. We tested theoretical models of density-dependent habitat selection on a species known to exhibit territorial behaviour in order to determine whether commonly applied habitat models are appropriate under these circumstances. We combined long-term radiotelemetry and census data from grey wolves Canis lupus in the Upper Peninsula of Michigan, USA to relate spatiotemporal variability in wolf density to underlying classifications of habitat within a hierarchical state-space modelling framework. We then iteratively applied isodar analysis to evaluate which distribution of habitat selection best described this recolonizing wolf population. The wolf population in our study expanded by >1,000% during our study (~50 to >600 individuals), and density-dependent habitat selection was most consistent with the ideal-preemptive distribution, as opposed to the ideal-free or ideal-despotic alternatives. Population density of terrestrial carnivores may not be positively correlated with the fitness value of their habitats, and density-dependent habitat selection patterns may help to explain complex predator-prey dynamics and cascading indirect effects. Source-sink population dynamics appear likely when species exhibit rapid growth and occupy interspersed habitats of contrasting quality. These conditions are likely and have implications for large carnivores in many systems, such as areas in North America and Europe where large predator species are currently recolonizing their former ranges.


Assuntos
Lobos , Animais , Ecossistema , Europa (Continente) , Michigan , América do Norte , Territorialidade
4.
Conserv Biol ; 34(4): 1017-1028, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32362060

RESUMO

Accurately quantifying species' area requirements is a prerequisite for effective area-based conservation. This typically involves collecting tracking data on species of interest and then conducting home-range analyses. Problematically, autocorrelation in tracking data can result in space needs being severely underestimated. Based on the previous work, we hypothesized the magnitude of underestimation varies with body mass, a relationship that could have serious conservation implications. To evaluate this hypothesis for terrestrial mammals, we estimated home-range areas with global positioning system (GPS) locations from 757 individuals across 61 globally distributed mammalian species with body masses ranging from 0.4 to 4000 kg. We then applied block cross-validation to quantify bias in empirical home-range estimates. Area requirements of mammals <10 kg were underestimated by a mean approximately15%, and species weighing approximately100 kg were underestimated by approximately50% on average. Thus, we found area estimation was subject to autocorrelation-induced bias that was worse for large species. Combined with the fact that extinction risk increases as body mass increases, the allometric scaling of bias we observed suggests the most threatened species are also likely to be those with the least accurate home-range estimates. As a correction, we tested whether data thinning or autocorrelation-informed home-range estimation minimized the scaling effect of autocorrelation on area estimates. Data thinning required an approximately93% data loss to achieve statistical independence with 95% confidence and was, therefore, not a viable solution. In contrast, autocorrelation-informed home-range estimation resulted in consistently accurate estimates irrespective of mass. When relating body mass to home range size, we detected that correcting for autocorrelation resulted in a scaling exponent significantly >1, meaning the scaling of the relationship changed substantially at the upper end of the mass spectrum.


Efectos del Tamaño Corporal sobre la Estimación de los Requerimientos de Área de Mamíferos Resumen La cuantificación precisa de los requerimientos de área de una especie es un prerrequisito para que la conservación basada en áreas sea efectiva. Esto comúnmente implica la recolección de datos de rastreo de la especie de interés para después realizar análisis de la distribución local. De manera problemática, la autocorrelación en los datos de rastreo puede resultar en una subestimación grave de las necesidades de espacio. Con base en trabajos previos, formulamos una hipótesis en la que supusimos que la magnitud de la subestimación varía con la masa corporal, una relación que podría tener implicaciones serias para la conservación. Para probar esta hipótesis en mamíferos terrestres, estimamos las áreas de distribución local con las ubicaciones en GPS de 757 individuos de 61 especies de mamíferos distribuidas mundialmente con una masa corporal entre 0.4 y 4,000 kg. Después aplicamos una validación cruzada en bloque para cuantificar el sesgo en estimaciones empíricas de la distribución local. Los requerimientos de área de los mamíferos <10 kg fueron subestimados por una media ∼15% y las especies con una masa ∼100 kg fueron subestimadas en ∼50% en promedio. Por lo tanto, encontramos que la estimación del área estaba sujeta al sesgo inducido por la autocorrelación, el cual era peor para las especies de talla grande. En combinación con el hecho de que el riesgo de extinción incrementa conforme aumenta la masa corporal, el escalamiento alométrico del sesgo que observamos sugiere que la mayoría de las especies amenazadas también tienen la probabilidad de ser aquellas especies con las estimaciones de distribución local menos acertadas. Como corrección, probamos si la reducción de datos o la estimación de la distribución local informada por la autocorrelación minimizan el efecto de escalamiento que tiene la autocorrelación sobre las estimaciones de área. La reducción de datos requirió una pérdida de datos del ∼93% para lograr la independencia estadística con un 95% de confianza y por lo tanto no fue una solución viable. Al contrario, la estimación de la distribución local informada por la autocorrelación resultó en estimaciones constantemente precisas sin importar la masa corporal. Cuando relacionamos la masa corporal con el tamaño de la distribución local, detectamos que la corrección de la autocorrelación resultó en un exponente de escalamiento significativamente >1, lo que significa que el escalamiento de la relación cambió sustancialmente en el extremo superior del espectro de la masa corporal.


Assuntos
Conservação dos Recursos Naturais , Mamíferos , Animais , Tamanho Corporal , Espécies em Perigo de Extinção , Comportamento de Retorno ao Território Vital , Humanos
5.
Nat Commun ; 15(1): 8079, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39278967

RESUMO

Wildlife tagging provides critical insights into animal movement ecology, physiology, and behavior amid global ecosystem changes. However, the stress induced by capture, handling, and tagging can impact post-release locomotion and activity and, consequently, the interpretation of study results. Here, we analyze post-tagging effects on 1585 individuals of 42 terrestrial mammal species using collar-collected GPS and accelerometer data. Species-specific displacements and overall dynamic body acceleration, as a proxy for activity, were assessed over 20 days post-release to quantify disturbance intensity, recovery duration, and speed. Differences were evaluated, considering species-specific traits and the human footprint of the study region. Over 70% of the analyzed species exhibited significant behavioral changes following collaring events. Herbivores traveled farther with variable activity reactions, while omnivores and carnivores were initially less active and mobile. Recovery duration proved brief, with alterations diminishing within 4-7 tracking days for most species. Herbivores, particularly males, showed quicker displacement recovery (4 days) but slower activity recovery (7 days). Individuals in high human footprint areas displayed faster recovery, indicating adaptation to human disturbance. Our findings emphasize the necessity of extending tracking periods beyond 1 week and particular caution in remote study areas or herbivore-focused research, specifically in smaller mammals.


Assuntos
Ecossistema , Mamíferos , Animais , Humanos , Mamíferos/fisiologia , Masculino , Feminino , Locomoção/fisiologia , Herbivoria/fisiologia , Animais Selvagens/fisiologia , Comportamento Animal/fisiologia , Especificidade da Espécie
6.
Curr Biol ; 33(1): 86-97.e10, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36528024

RESUMO

Color variation is a frequent evolutionary substrate for camouflage in small mammals, but the underlying genetics and evolutionary forces that drive color variation in natural populations of large mammals are mostly unexplained. The American black bear, Ursus americanus (U. americanus), exhibits a range of colors including the cinnamon morph, which has a similar color to the brown bear, U. arctos, and is found at high frequency in the American southwest. Reflectance and chemical melanin measurements showed little distinction between U. arctos and cinnamon U. americanus individuals. We used a genome-wide association for hair color as a quantitative trait in 151 U. americanus individuals and identified a single major locus (p < 10-13). Additional genomic and functional studies identified a missense alteration (R153C) in Tyrosinase-related protein 1 (TYRP1) that likely affects binding of the zinc cofactor, impairs protein localization, and results in decreased pigment production. Population genetic analyses and demographic modeling indicated that the R153C variant arose 9.36 kya in a southwestern population where it likely provided a selective advantage, spreading both northwards and eastwards by gene flow. A different TYRP1 allele, R114C, contributes to the characteristic brown color of U. arctos but is not fixed across the range.


Assuntos
Ursidae , Animais , Fluxo Gênico , Variação Genética , Genoma , Estudo de Associação Genômica Ampla , Ursidae/genética
7.
Science ; 380(6649): 1059-1064, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37289888

RESUMO

COVID-19 lockdowns in early 2020 reduced human mobility, providing an opportunity to disentangle its effects on animals from those of landscape modifications. Using GPS data, we compared movements and road avoidance of 2300 terrestrial mammals (43 species) during the lockdowns to the same period in 2019. Individual responses were variable with no change in average movements or road avoidance behavior, likely due to variable lockdown conditions. However, under strict lockdowns 10-day 95th percentile displacements increased by 73%, suggesting increased landscape permeability. Animals' 1-hour 95th percentile displacements declined by 12% and animals were 36% closer to roads in areas of high human footprint, indicating reduced avoidance during lockdowns. Overall, lockdowns rapidly altered some spatial behaviors, highlighting variable but substantial impacts of human mobility on wildlife worldwide.


Assuntos
Migração Animal , Animais Selvagens , COVID-19 , Mamíferos , Quarentena , Animais , Humanos , Animais Selvagens/fisiologia , Animais Selvagens/psicologia , COVID-19/epidemiologia , Mamíferos/fisiologia , Mamíferos/psicologia , Movimento
9.
Ecol Evol ; 12(7): e9125, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35898426

RESUMO

Although most prey have multiple predator species, few studies have quantified how prey respond to the temporal niches of multiple predators which pose different levels of danger. For example, intraspecific variation in diel activity allows white-tailed deer (Odocoileus virginianus) to reduce fawn activity overlap with coyotes (Canis latrans) but finding safe times of day may be more difficult for fawns in a multi-predator context. We hypothesized that within a multi-predator system, deer would allocate antipredation behavior optimally based on combined mortality risk from multiple sources, which would vary depending on fawn presence. We measured cause-specific mortality of 777 adult (>1-year-old) and juvenile (1-4-month-old) deer and used 300 remote cameras to estimate the activity of deer, humans, and predators including American black bears (Ursus americanus), bobcats (Lynx rufus), coyotes, and wolves (Canis lupus). Predation and vehicle collisions accounted for 5.3 times greater mortality in juveniles (16% mortality from bears, coyotes, bobcats, wolves, and vehicles) compared with adults (3% mortality from coyotes, wolves, and vehicles). Deer nursery groups (i.e., ≥1 fawn present) were more diurnal than adult deer without fawns, causing fawns to have 24-38% less overlap with carnivores and 39% greater overlap with humans. Supporting our hypothesis, deer nursery groups appeared to optimize diel activity to minimize combined mortality risk. Temporal refuge for fawns was likely the result of carnivores avoiding humans, simplifying diel risk of five species into a trade-off between diurnal humans and nocturnal carnivores. Functional redundancy among multiple predators with shared behaviors may partially explain why white-tailed deer fawn predation rates are often similar among single- and multi-predator systems.

10.
J Wildl Dis ; 58(1): 148-157, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34797913

RESUMO

The range of gray wolves (Canis lupus) in the contiguous US is expanding. Research and monitoring to support population recovery and management often involves capture via foothold traps. A population-level epidemiologic assessment of the effect of trap injuries on wolf survival remains needed to inform management. We describe the baseline rate, type, and severity of foot injuries of wolves born 1992-2013 in Michigan's Upper Peninsula, evaluate the reliability of field-scoring trap-related injuries, and the effect of injuries on wolf survival. We assessed foot injuries by physical and radiographic exam at postmortem and/or time of capture for 351 wolves using the International Organization for Standardization 10990-5 standard and the effects of injuries, sex, age, previous capture and body condition on survival using proportional hazards regression. We used ordinal regression to evaluate epidemiologic associations between sex, age, previous capture, body condition, cause of death and injury severity. Most wolves (53%) experienced no physically or radiographically discernable foot injuries over their lifetimes. Among those wolves that did experience injuries, 33% scored as mild. Foot injuries had little epidemiologically discernable effect on survival rates. Wolves with higher foot trauma scores did experience an increased risk of dying, but the magnitude of the increase was modest. Most limb injuries occurred below the carpus or tarsus, and scoring upper-limb injuries added little predictive information to population-level epidemiologic measures of survival and injury severity. There was little association between injury severity and cause of death. Based on necropsy exams, previous trap injuries likely contributed to death in only four wolves (1.1%). Our results suggest that injuries resulting from foothold traps are unlikely to be a limiting factor in recovery and ongoing survival of the Michigan gray wolf population.


Assuntos
Traumatismos do Pé , Lobos , Animais , Traumatismos do Pé/veterinária , Michigan/epidemiologia , Reprodutibilidade dos Testes
11.
Ecol Evol ; 12(2): e8542, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35154647

RESUMO

The parallel niche release hypothesis (PNR) indicates that reduced competition with dominant competitors results in greater density and niche breadth of subordinate competitors and which may support an adaptive advantage.We assessed support for the PNR by evaluating relationships between variation in niche breadth and intra- and interspecific density (an index of competition) of wolves (Canis lupus) coyotes (C. latrans), and bobcats (Lynx rufus).We estimated population density (wolf track surveys, coyote howl surveys, and bobcat hair snare surveys) and variability in space use (50% core autocorrelated kernel density home range estimators), temporal activity (hourly and overnight speed), and dietary (isotopic δ13C and δ15N) niche breadth of each species across three areas of varying wolf density in the Upper Peninsula of Michigan, USA, 2010-2019.Densities of wolves and coyotes were inversely related, and increased variability in space use, temporal activity, and dietary niche breadth of coyotes was associated with increased coyote density and decreased wolf density supporting the PNR. Variability in space use and temporal activity of wolves and dietary niche breadth of bobcats also increased with increased intraspecific density supporting the PNR.Through demonstrating decreased competition between wolves and coyotes and increased coyote niche breadth and density, our study provides multidimensional support for the PNR. Knowledge of the relationship between niche breadth and population density can inform our understanding of the role of competition in shaping the realized niche of species.

12.
Ecol Evol ; 11(3): 1413-1431, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33598141

RESUMO

Interference competition occurs when two species have similar resource requirements and one species is dominant and can suppress or exclude the subordinate species. Wolves (Canis lupus) and coyotes (C. latrans) are sympatric across much of their range in North America where white-tailed deer (Odocoileus virginianus) can be an important prey species. We assessed the extent of niche overlap between wolves and coyotes using activity, diet, and space use as evidence for interference competition during three periods related to the availability of white-tailed deer fawns in the Upper Great Lakes region of the USA. We assessed activity overlap (Δ) with data from accelerometers onboard global positioning system (GPS) collars worn by wolves (n = 11) and coyotes (n = 13). We analyzed wolf and coyote scat to estimate dietary breadth (B) and food niche overlap (α). We used resource utilization functions (RUFs) with canid GPS location data, white-tailed deer RUFs, ruffed grouse (Bonasa umbellus) and snowshoe hare (Lepus americanus) densities, and landscape covariates to compare population-level space use. Wolves and coyotes exhibited considerable overlap in activity (Δ = 0.86-0.92), diet (B = 3.1-4.9; α = 0.76-1.0), and space use of active and inactive RUFs across time periods. Coyotes relied less on deer as prey compared to wolves and consumed greater amounts of smaller prey items. Coyotes exhibited greater population-level variation in space use compared to wolves. Additionally, while active and inactive, coyotes exhibited greater selection of some land covers as compared to wolves. Our findings lend support for interference competition between wolves and coyotes with significant overlap across resource attributes examined. The mechanisms through which wolves and coyotes coexist appear to be driven largely by how coyotes, a generalist species, exploit narrow differences in resource availability and display greater population-level plasticity in resource use.

13.
Ecology ; 102(11): e03494, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34309013

RESUMO

Trophic cascades reportedly structure ecological communities through indirect species interactions. Though the predator-herbivore-autotroph relationship has received much attention, mechanistic evidence supporting intraguild trophic cascades is rare. We established 348 remote camera sites (1 August-5 September 2019) across seven study areas of varying wolf (Canis lupus) density including one study area where wolves were absent in northern Michigan, USA. Using multi-species occupancy modeling at species-relevant spatial scales, we evaluated the hypothesis that increased wolf occurrence suppresses coyote (C. latrans) occurrence with corresponding increased red fox (Vulpes vulpes) occurrence mediated by land cover edge density, human presence, and temporal partitioning. Remote cameras recorded >600,000 images and included 6,370, 10,137, and 4,876 detections of wolves, coyotes, and foxes, respectively. Fox occupancy probability was more than three times as high (0.29) at camera sites where wolves were present, relative to sites wolves were absent (0.09). Pairwise species interactions supported expected size-based dominance patterns among canids and insignificant effects were directionally consistent with reported reduced strength of top-down effects in peripheral wolf range. Increased edge density also increased co-occurrence of coyote and wolves, likely a function of increased prey availability and refugia for coyotes. Though foxes occurred in spatial proximity to wolves, competition was limited by greater temporal partitioning than observed between coyotes and foxes that were spatially segregated. Collectively, our results provide marginal support for the reported trophic cascade among wolves, coyotes, and foxes wherein top-down effects may be reduced near the edge of current wolf distributions. As predators continue to recolonize portions of their historic range, knowledge of the effects on intraguild predators has implications for species management and predicting prey population responses.


Assuntos
Coiotes , Lobos , Animais , Raposas , Michigan
14.
Sci Rep ; 11(1): 12146, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108524

RESUMO

Where two sympatric species compete for the same resource and one species is dominant, there is potential for the subordinate species to be affected through interference competition or energetic costs of avoiding predation. Fishers (Pekania pennanti) and American martens (Martes americana) often have high niche overlap, but fishers are considered dominant and potentially limiting to martens. We observed presence and vigilance of fishers and martens at winter carcass sites using remote cameras in Michigan, USA, to test the hypothesis that interference competition from fishers creates a landscape of fear for martens. Within winters, fishers co-occupied 78-88% of sites occupied by martens, and martens co-occupied 79-88% of sites occupied by fishers. Fishers displaced martens from carcasses during 21 of 6117 marten visits, while martens displaced fishers during 0 of 1359 fisher visits. Martens did not alter diel activity in response to fisher use of sites. Martens allocated 37% of time to vigilance compared to 23% for fishers, and martens increased vigilance up to 8% at sites previously visited by fishers. Fishers increased vigilance by up to 8% at sites previously visited by martens. Our results indicate that fishers were dominant over martens, and martens had greater baseline perception of risk than fishers. However, fishers appeared to be also affected as the dominant competitor by putting effort into scanning for martens. Both species appeared widespread and common in our study area, but there was no evidence that fishers spatially or temporally excluded martens from scavenging at carcasses other than occasional short-term displacement when a fisher was present. Instead, martens appeared to mitigate risk from fishers by using vigilance and short-term avoidance. Multiple short-term anti-predator behaviors within a landscape of fear may facilitate coexistence among carnivore species.

15.
Ecol Evol ; 10(3): 1666-1677, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32076542

RESUMO

A relationship between winter weather and survival of northern ungulates has long been established, yet the possible roles of biological (e.g., nutritional status) and environmental (e.g., weather) conditions make it important to determine which potential limiting factors are most influential.Our objective was to examine the potential effects of individual (body mass and age) and extrinsic (winter severity and snowmelt conditions) factors on the magnitude and timing of mortality for adult (>2.5 years old) female white-tailed deer (Odocoileus virginianus [Zimmerman, 1780]) during February-May in the Upper Peninsula of Michigan, USA.One hundred and fifty deer were captured and monitored during 2009-2015 in two areas with varying snowfall. February-May survival ranged from 0.24 to 0.89 (mean = 0.69) across years. Mortality risk increased 1.9% with each unit increase in cumulative winter severity index, decreased 8.2% with each cumulative snow-free day, and decreased 4.3% with each kg increase in body mass. Age and weekly snow depth did not influence weekly deer survival. Predation, primarily from coyote (Canis latrans [Say, 1823]) and wolves (Canis lupus [L., 1758]), accounted for 78% of known-cause mortalities.Our results suggest that cumulative winter severity, and possibly to a lesser degree deer condition entering winter, impacted deer winter survival. However, the timing of spring snowmelt appeared to be the most influential factor determining late-winter mortality of deer in our study. This supports the hypothesis that nutrition and energetic demands from weather conditions are both important to northern ungulate winter ecology. Under this model, a delay of several weeks in the timing of spring snowmelt could exert a large influence on deer survival, resulting in a survival bottleneck.

16.
R Soc Open Sci ; 6(11): 190282, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31827818

RESUMO

Habitat selection is a process that spans space, time and individual life histories. Ecological analyses of animal distributions and preferences are most accurate when they account for inherent dynamics of the habitat selection process. Strong territoriality can constrain perception of habitat availability by individual animals or groups attempting to colonize or establish new territory. Because habitat selection is a function of habitat availability, broad-scale changes in habitat availability or occupancy can drive density-dependent habitat functional responses. We investigated density-dependent habitat selection over a 19-year period of grey wolf (Canis lupus) recovery in Michigan, USA, using a generalized linear mixed model framework to develop a resource selection probability function (RSPF) with habitat coefficients conditioned on random effects for wolf packs and random year intercepts. In addition, we allowed habitat coefficients to vary as interactions with increasing wolf density over space and time. Results indicated that pack presence was driven by factors representing topography, human development, winter prey availability, forest structure, roads, streams and snow. Importantly, responses to many of these predictors were density-dependent. Spatio-temporal dynamics and population changes can cause considerable variation in wildlife-habitat relationships, possibly confounding interpretation of conventional habitat selection models. By incorporating territoriality into an RSPF analysis, we determined that wolves' habitat use in Michigan shifted over time, for example, exhibiting declining responses to winter prey indices and switching from positive to negative responses with respect to stream densities. We consider this an important example of a habitat functional response in wolves, driven by colonization, density-dependence and changes in occupancy during a time period of range expansion and population increase.

17.
Ecol Evol ; 9(8): 4906-4916, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31031953

RESUMO

Understanding the mechanisms of coexistence between ecologically similar species is an important issue in ecology. Carnivore coexistence may be facilitated by spatial segregation, temporal avoidance, and differential habitat selection. American martens Martes americana and fishers Pekania pennanti are medium-sized mustelids that occur sympatrically across portions of North America, yet mechanisms of coexistence between the two species are not fully understood. We assessed spatial and temporal partitioning in martens and fishers in the Upper Peninsula of Michigan, USA, using camera trap data collected during winter 2013-2015. To investigate spatial segregation, we used a dynamic occupancy model to estimate species' occupancy probabilities and probabilities of persistence and colonization as a function of covariates and yearly occupancy probability for the other species. Temporal segregation was assessed by estimating diel activity overlap between species. We found weak evidence of spatial or temporal niche partitioning of martens and fishers. There was high overlap in forest cover selection, and both marten and fisher occupancy were positively correlated with deciduous forests (excluding aspen [Populus tremuloides]). There was strong temporal overlap ( Δ ^ 4 = 0.81 ; CI = 0.79-0.82) with both species exhibiting largely crepuscular activity patterns. Co-occurrence of martens and fishers appears to be facilitated by mechanisms not investigated in this study, such as partitioning of snow features or diet. Our results add additional insights into resource partitioning of mesocarnivores, but further research is required to enhance our understanding of mechanisms that facilitate marten and fisher coexistence.

18.
Sci Rep ; 9(1): 13438, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31530832

RESUMO

Acquisition of resources can be costly and individuals are predicted to optimize foraging strategies to maximize net energy gain. Wolves (Canis lupus) would be expected to scavenge on subsidies from anthropogenic resources when these resources provide an energetic benefit over the capture of wild prey. We examined the effects of subsidies from anthropogenic resources in the form of livestock carcass dumps (LCDs) on wolf space use, activity, tortuosity, and diet in portions of North America's northern hardwood/boreal ecosystem. We fitted 19 wolves with global positioning system collars during May-August of 2009-2011 and 2013-2015. Wolves with LCDs within their home ranges used areas adjacent to LCDs greater than non-LCD sites and had decreased home ranges and activity as compared to wolves without LCDs in their home ranges. Additionally, cattle comprised at least 22% of wolf diet from scavenging in areas with LCDs present as compared to no cattle in the diet of wolves without access to LCDs. Subsidies from anthropogenic resources in the form of LCDs can serve as attractants for wolves and alter wolf diet, activity, and ranging behavior. Apex predators may alter their behavior where subsidies from anthropogenic resources occur and management of these subsidies should be considered when attempting to reduce the impacts of humans on wolf behavior.


Assuntos
Comportamento Alimentar/fisiologia , Comportamento Predatório/fisiologia , Lobos/fisiologia , Animais , Bovinos , Ecossistema , Feminino , Sistemas de Informação Geográfica , Comportamento de Retorno ao Território Vital , Gado , Masculino , Michigan
19.
Ecol Evol ; 8(23): 12271-12282, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30598817

RESUMO

Spatial and temporal heterogeneity are fundamental mechanisms structuring home ranges. Under optimality, an individual should structure their space use economically to maximize fitness. We evaluated support for three hypotheses related to range optimality in American black bears (Ursus americanus), predicting (a) range location on a landscape will correspond with high vegetation productivity, (b) increasing forest fragmentation will result in larger ranges, and (c) increasing proportion of forest and/or mean vegetation productivity will result in smaller ranges. We used black bear radio telemetry data from Michigan (2009-2015), Missouri (2010-2016), and Mississippi (2008-2017), USA. Annual space use excluded winter, and we separated seasonal space use into spring, summer, and fall. We collected data from 143 bears (80 females, 63 males), resulting in 97 annual and 538 seasonal ranges. We used generalized linear mixed models to evaluate productivity (estimated through Normalized Difference Vegetation Index [NDVI]) selection, and range size (km2) variation between individuals. At the annual scale, black bears consistently selected areas with greater vegetation productivity than the surrounding landscape; yet selection weakened and was more variable seasonally. Opposite to our prediction, we found that increasing fragmentation consistently resulted in smaller ranges; non-forested land covers and forest edges might provide greater abundance or more diverse foods for bears. Ranges with a greater proportion of forest were smaller, likely reflecting an increase in food and cover which could reduce movements, yet there was no support for more productive ranges also being smaller as expected from an area minimizing strategy. Black bears displayed a scale-dependent space use strategy: at larger spatial and temporal scales, productivity acted as the strongest limiting factor and energy maximizing was the dominant strategy, while an area minimizing strategy was exhibited seasonally. We revealed consistent, scale-dependent responses by black bears to environmental conditions, demonstrating the intrinsic plasticity of this adaptable omnivore.

20.
Mov Ecol ; 6: 18, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30275955

RESUMO

BACKGROUND: Increases in landscape connectivity can improve a species' ability to cope with habitat fragmentation and degradation. Wildlife corridors increase landscape connectivity and it is therefore important to identify and maintain them. Currently, corridors are mostly identified using methods that rely on generic habitat suitability measures. One important and widely held assumption is that corridors represent swaths of suitable habitat connecting larger patches of suitable habitat in an otherwise unsuitable environment. Using high-resolution GPS data of four large carnivore species, we identified corridors based on animal movement behavior within each individual's home range and quantified the spatial overlap of these corridors. We thus tested whether corridors were in fact spatial bottle necks in habitat suitability surrounded by unsuitable habitat, and if they could be characterized by their coarse-scale environmental composition. RESULTS: We found that most individuals used corridors within their home ranges and that several corridors were used simultaneously by individuals of the same species, but also by individuals of different species. When we compared the predicted habitat suitability of corridors and their immediate surrounding area we found, however, no differences. CONCLUSIONS: We could not find a direct correspondence between corridors chosen and used by wildlife on the one hand, and a priori habitat suitability measurements on the other hand. This leads us to speculate that identifying corridors relying on typically-used habitat suitability methods alone may misplace corridors at the level of space use within an individual's home range. We suggest future studies to rely more on movement data to directly identify wildlife corridors based on the observed behavior of the animals.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa