Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Pestic Biochem Physiol ; 198: 105714, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38225063

RESUMO

The rise in the utilization of pesticides within industrial and agricultural practices has been linked to the occurrence of these substances in aquatic environments. The objective of this work was to evaluate the uptake and adverse impacts of Diuron (Di) and Triclosan (TCS) on the mussel species Mytilus galloprovincialis. To accomplish this, the accumulation and toxicity of these pesticides were gauged following a brief period of exposure spanning 14 days, during which the mussels were subjected to two concentrations (50 and 100 µg/L) of each substance that are ecologically relevant. Chemical analysis of Di and TCS within gills and digestive gland showed that these pesticides could be accumulated in mussel's tissues. In addition, Di and TCS are preferably accumulated in digestive gland. Measured biomarkers included physiological parameters (filtration FC and respiration RC capacity), antioxidant enzyme activities (superoxide dismutase and catalase), oxidative damage indicator (Malondialdheyde concentration) and neurotoxicity level (acetylcholinesterase activity) were evaluated in gills and digestive glands. Both pesticides were capable of altering the physiology of this species by reducing the FC and RC in concentration and chemical dependent manner. Both pesticides induced also an oxidative imbalance causing oxidative stress. The high considered concentration exceeded the antioxidant defense capacity of the mussel and lead to membrane lipid peroxidation that resulted in cell damage. Finally, the two pesticides tested were capable of interacting with the neuromuscular barrier leading to neurotoxicity in mussel's tissues by inhibiting acetylcholinesterase. The ecotoxicological effect depended on the concentration and the chemical nature of the contaminant. Obtained results revealed also that the Di may exert toxic effects on M. galloprovincialis even at relatively low concentrations compared to TCS. In conclusion, this study presents innovative insights into the possible risks posed by Diuron (Di) and Triclosan (TCS) to the marine ecosystem. Moreover, it contributes essential data to the toxicological database necessary for developing proactive environmental protection measures.


Assuntos
Mytilus , Praguicidas , Triclosan , Poluentes Químicos da Água , Animais , Mytilus/metabolismo , Antioxidantes/farmacologia , Triclosan/toxicidade , Acetilcolinesterase/metabolismo , Diurona/toxicidade , Ecossistema , Estresse Oxidativo , Biomarcadores/metabolismo , Praguicidas/farmacologia , Poluentes Químicos da Água/toxicidade
2.
Int J Environ Health Res ; : 1-12, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700266

RESUMO

Bisphenol A (BPA) is a chemical compound extensively employed in plastic manufacturing, and this pollutant has been detected in diverse aquatic organisms, notably bivalves. In order to comprehend the ecological and toxicological consequences of BPA Bisphenol A in these organisms, it is essential to examine the physiological and biochemical effects and identify areas where our understanding is lacking. This knowledge is crucial for determining the environn ental threat posed by bisphenol A and assisting decision-makers in establishing the appropriate priorities. This investigation aimed to assess the impact of BPA on the biochemical and physiological parameters of the freshwater mussel Potomida littoralis. In a laboratory setting, mussels were subjected to two different levels of BPA (20 and 100 µg/L) for a duration of 21 days. Filtration rate was calculated from the clearance of neutral red, fed to mussels at different BPA concentrations. The mussel's filtration rate capacity declined as BPA exposure intensified, potentially due to the mussel's attempt to close its valves and minimize BPA absorption, thus preventing cellular damage. In the digestive gland tissue, key antioxidant and detoxification defenses, including catalase (CAT) activity, glutathione-S-transferase (GST) activity, and levels of H2O2 and glutathione (GSH), were activated, particularly at the 100 µg/L BPA concentration. This activation helped protect against lipid damage at higher BPA concentrations. This study underscores the significance of preventing and regulating BPA release into the environment to avert detrimental consequences for aquatic ecosystems.

3.
Molecules ; 28(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36985432

RESUMO

This study aims to evaluate the toxicity of ZnS nanoparticles (ZnS NP50 = 50 µg/L and ZnS NP100 = 100 µg/L) and diethyl (3-cyano-1-hydroxy-2-methyl-1-phenylpropyl)phosphonate or P (P50 = 50 µg/L and P100 = 100 µg/L) in the clams Ruditapes decussatus using chemical and biochemical approaches. The results demonstrated that clams accumulate ZnS NPs and other metallic elements following exposure. Moreover, ZnS NPs and P separately lead to ROS overproduction, while a mixture of both contaminants has no effect. In addition, data showed that exposure to P100 resulted in increased levels of oxidative stress enzyme activities catalase (CAT) in the gills and digestive glands. A similar trend was also observed in the digestive glands of clams treated with ZnS100. In contrast, CAT activity was decreased in the gills at the same concentration. Exposure to ZnS100 and P100 separately leads to a decrease in acetylcholinesterase (AChE) levels in both gills and digestive glands. Thus, AChE and CAT after co-exposure to an environmental mixture of nanoparticles (ZnS100) and phosphonate (P100) did not show any differences between treated and non-treated clams. The outcome of this work certifies the use of biomarkers and chemical assay when estimating the effects of phosphonate and nanoparticles as part of an ecotoxicological assessment program. An exceptional focus was given to the interaction between ZnS NPs and P. The antioxidant activity of P has been demonstrated to have an additive effect on metal accumulation and antagonistic agents against oxidative stress in clams treated with ZnS NPs.


Assuntos
Bivalves , Nanopartículas Metálicas , Organofosfonatos , Poluentes Químicos da Água , Animais , Catalase/farmacologia , Acetilcolinesterase/farmacologia , Organofosfonatos/farmacologia , Antioxidantes/farmacologia , Nanopartículas Metálicas/toxicidade , Poluentes Químicos da Água/toxicidade , Brânquias , Biomarcadores
4.
Toxicol Mech Methods ; 32(8): 569-579, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35313786

RESUMO

Purpose: In recent years, the increase in the biopesticides synthesis for alternative agricultural uses has required their impacts study. Among these compounds, several of them are known to exert endocrinedisrupting (EDs) effects causing deregulation of physiological functions affecting cell signaling pathways involved in neural cell differentiation leading to developmental neurotoxicity. The objective of our study was to determine the impact of the biopesticide A6 structurally related to estrogenic EDs on zebrafish larvae, to define its toxicity, the mechanisms responsible, and to monitor the locomotors activity at nanomolar concentrations (0. 0.5, 5 and 50 nM).Materials and methods: Using imaging analysis tools, immunohistochemistry, quantitative PCR, and an automated behavior recording system (Zebrabox) we were able to assess these effects.Results: We have shown through its blue fluorescence properties that it accumulates in different parts of the body such as the intestine, adipose tissue, muscles, yolk sac and head. A6 also disrupted swimming behavior by affecting the expression of tyrosine hydroxylase (TH) in dopaminergic neurons.Conclusions: In conclusion, our study provided a mechanistic understanding of the A6 neurotoxic effect which could be the result of its binding to the estrogen receptor.


Assuntos
Neuroquímica , Praguicidas , Animais , Expressão Gênica , Larva , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
5.
Biomarkers ; 26(3): 240-247, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33459570

RESUMO

CONTEXT: The Au-TiO2NPs have a wide range of applications and can easily enter the cells. Due to their properties, they can cause toxicity. OBJECTIVE: It was aimed to test the toxic effects of Au-TiO2 NPs in the brain, heart, kidney and liver of rats in this work. MATERIALS AND METHODS: All used rats in this work were treated using diverse concentrations (doses) of NPs (100 and 200 mg/kg bw) for 21 days. SOD, CAT, AChE activities and MDA, H2O2, NO contents were evaluated in different organs. RESULTS: The Au-TiO2 NPs exposure induced biochemical changes in different organs of rats in view of oxidative stress and neurotoxicity by the alteration of the activity of the enzyme of neurotransmitter (AChE activity). CONCLUSION: The Au-TiO2 NPs have the potential to interact with rat's biochemical status and cause undesirable effects. One of those damaging effects was oxidative stress and neurotoxicity. CLINICAL SIGNIFICANCE: The study signifies the impact of usage of Au-TiO2 NPs in the medical field for further exploration.


Assuntos
Encéfalo/efeitos dos fármacos , Ouro/toxicidade , Nanopartículas Metálicas/toxicidade , Síndromes Neurotóxicas/etiologia , Estresse Oxidativo/efeitos dos fármacos , Titânio/toxicidade , Animais , Biomarcadores/metabolismo , Encéfalo/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia , Ratos Wistar , Fatores de Tempo
6.
Ecotoxicol Environ Saf ; 205: 111084, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32810644

RESUMO

A microcosm experiment was conducted to evaluate the impacts of the fluoroquinolone antibiotic ciprofloxacin on meiobenthic taxa abundance, nematode genus structure, and functional trait parameters. Sediment samples were experimentally enriched with four different doses of ciprofloxacin [D1 (50 ppm Dry weight 'DW'), D2 (100 ppm DW), D3 (200 ppm DW), and D4 (500 ppm DW)] and were then compared with non-enriched sediments (controls). After one month of exposure, the data showed that ciprofloxacin had altered the meiofaunal taxa abundance. A change in the structure of nematofaunal genera was observed, particularly with the highest dose (D4), which was characterized by the lowest taxonomic diversity. The SIMPER analysis revealed that the average dissimilarity between nematode communities increased with increasing doses of ciprofloxacin. Two dimensional (2D) non-metric multidimensional scaling (nMDS) plots and relative abundances of functional groups of nematode genus assemblages revealed that all functional trait abundances were affected, particularly with the highest dose. However, only the amphid shape and feeding group functions showed a clear distribution separation between the control and ciprofloxacin treatments. The nMDS second-stage ordination of inter-matrix rank correlations for matrices including genus and functional traits showed that the tail shape was the closest functional trait to the generic distribution. Thus, only the curves of cumulative dominance related to the tail shape mirrored discernibly the sedimentary concentrations in ciprofloxacin.


Assuntos
Antibacterianos , Ciprofloxacina , Nematoides , Animais , Sedimentos Geológicos/química , Análise Multivariada
7.
Pestic Biochem Physiol ; 165: 104463, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32359554

RESUMO

Cypermethrin (Cyp) is a kind of pyrethroids compound that is broadly used against different species of insects and pests. Cyp can also elicit a range of neurotoxic, immunotoxic, genotoxic and reproductive toxic effects on various experimental organisms. The aim of this study was to evaluate the protective effects of Hibiscus sabdariffa against the toxicity damage induced by Cyp exposure. The Hibiscus sabdariffa calyxes extract was given to mice (200-500 mg/kg bw). The mice, which were treated with Cyp and Hibiscus sabdariffa, were divided into six groups of six mice each. Groups I, IV and VI were used as control and groups II CYP control (20 mg/kg body weight)., groups III and V were treated with Hibiscus sabdariffa extract (200 and 500 mg/kg body weight) plus (20 mg/kg body weight) for 21 days Furthermore, HPLC was used to identify the compound fraction. This result showed Cyp -induced biochemical changes in all organs of mice. Cyp caused decreased CAT activity, inhibition of AChE activity and increased the levels of H2O2 and MDA in brain, heart, liver and kidney. Hibiscus sabdariffa exhibited antioxidant effect and significantly attenuated the neurotoxicity of Cyp. Hibiscus sabdariffa exhibits neuroprotective effects and can be an effective and novel alternative approach to reduce the risk caused by pyrethroid compound.


Assuntos
Hibiscus , Piretrinas , Animais , Peróxido de Hidrogênio , Camundongos , Estresse Oxidativo , Extratos Vegetais
8.
Biomarkers ; 23(2): 167-173, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29017403

RESUMO

CONTEXT: Cypermethrin (CYP) is a synthetic pyrethroid insecticide used worldwide in agriculture, home pest control. The toxicity of CYP is well studied in many organisms. OBJECTIVE: The aim of present study was to investigate the protective effect of Zizyphus lotus (Zizyp) fruit against neurotoxicity and oxidative stress induced by CYP in mice. MATERIALS AND METHODS: Mice were divided into four groups of six each: groups I and II were used as control and CYP control (20 mg/kg body weight). While, groups III was orally treated with Zizyphus lotus fruit (5 g/kg body weight) plus CYP (20 mg/kg body weight) for 18 days. Furthermore, HPLC-ESI-MS-MS (Q-Tof) and GC-MS were used to identify the compounds fraction. RESULTS: Antioxidant enzyme catalase (CAT), neurotoxicity enzyme acetylcholinesterase (AChE) activities and hydrogen peroxide (H2O2), malondialdehyde (MDA) levels were determined in the liver, kidney and heart. CYP caused decreased CAT activity, inhibition of AChE activity and increased the levels of H2O2 and MDA in heart, liver and kidney. CONCLUSION: Our results indicate that Zizyp fruit is markedly effective in protecting mice against CYP-induced biochemical changes. This protection may be due to its antioxidant property and scavenging ability against active free radicals.


Assuntos
Frutas/química , Síndromes Neurotóxicas/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Ziziphus/química , Animais , Catalase/metabolismo , Coração/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Malondialdeído/metabolismo , Camundongos , Miocárdio/metabolismo , Miocárdio/patologia , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/etiologia , Fitoterapia/métodos , Piretrinas/toxicidade
9.
Pestic Biochem Physiol ; 129: 83-88, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27017886

RESUMO

Synthetic pyrethroids are a family of chiral pesticides with a large number of stereoisomers. Cypermethrin (CYP) is used in a variety of agricultural crops, but also has public health and veterinary uses. In this work, the freshwater mussel (Unio gibbus) was chosen to evaluate the stereoselectivity of CYP through the use of gas chromatography with mass-spectrometry. The effects of CYP on mussels were examined by measuring neurotoxicity and oxidative stress biomarkers during its uptake. The investigation was performed under laboratory conditions using nominal CYP concentrations C1=100 µg/L and C2=150 µg/L over 96 h. Preferential bioaccumulation of cis-CYP isomers was observed. Furthermore, enantiomeric characterization revealed enantioselective accumulation, most probably related to mussel metabolism. Antioxidant enzyme activities (superoxide dismutase (SOD), and catalase (CAT)), and levels of reduced glutathione (GSH) and malondialdehyde (MDA) were determined in digestive gland after 4 days of exposure. CYP significantly inhibited acetylcholine esterase activity, by 51% and 57%, respectively, in mussels treated with 100 and 150 µg/L doses. The highest and lowest CYP concentrations elicited an increase of 67 and 63%, respectively, in SOD activity compared to the controls, while CAT activity was increased by 65 and 73%. A statistically significant decrease in GSH levels (40%) was observed only with the highest CYP concentration tested (150 µg/L). In addition, lipid peroxidation was significantly higher (67%) than in controls. These results provided information on CYP-enantioselective uptake and potential biomarkers that could be effectively applied for the biomonitoring of freshwater ecosystem.


Assuntos
Bivalves/metabolismo , Piretrinas/metabolismo , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Água Doce , Estereoisomerismo
10.
Int J Mol Sci ; 17(12)2016 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-27999363

RESUMO

Despite the ever-increasing role of pesticides in modern agriculture, their deleterious effects are still underexplored. Here we examine the effect of A6, a pesticide derived from the naturally-occurring α-terthienyl, and structurally related to the endocrine disrupting pesticides anilinopyrimidines, on living zebrafish larvae. We show that both A6 and an anilinopyrimidine, cyprodinyl, decrease larval survival and affect central neurons at micromolar concentrations. Focusing on a superficial and easily observable sensory system, the lateral line system, we found that defects in axonal and sensory cell regeneration can be observed at much lower doses, in the nanomolar range. We also show that A6 accumulates preferentially in lateral line neurons and hair cells. We examined whether A6 affects the expression of putative target genes, and found that genes involved in apoptosis/cell proliferation are down-regulated, as well as genes reflecting estrogen receptor activation, consistent with previous reports that anilinopyrimidines act as endocrine disruptors. On the other hand, canonical targets of endocrine signaling are not affected, suggesting that the neurotoxic effect of A6 may be due to the binding of this compound to a recently identified, neuron-specific estrogen receptor.


Assuntos
Agentes de Controle Biológico/toxicidade , Disruptores Endócrinos/toxicidade , Larva/efeitos dos fármacos , Sistema da Linha Lateral/efeitos dos fármacos , Regeneração Nervosa/efeitos dos fármacos , Pirimidinas/toxicidade , Pirimidinonas/toxicidade , Tiofenos/toxicidade , Peixe-Zebra/embriologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Regulação da Expressão Gênica , Mecanorreceptores/efeitos dos fármacos , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Medula Espinal/citologia , Medula Espinal/efeitos dos fármacos , Tiofenos/química
11.
J Nematol ; 47(3): 198-206, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26527841

RESUMO

From the late 19th century, Africa has faced heavy exploitation of its natural resources with increasing land/water pollution, and several described species have already become extinct or close to extinction. This could also be the case for marine nematodes, which are the most abundant and diverse benthic group in marine sediments, and play major roles in ecosystem functioning. Compared to Europe and North America, only a handful of investigations on marine nematodes have been conducted to date in Africa. This is due to the scarcity of experienced taxonomists, absence of identification guides, as well as local appropriate infrastructures. A pivotal project has started recently between nematologists from Africa (Tunisia), India, and Europe (Italy) to promote taxonomic study and biodiversity estimation of marine nematodes in the African continent. To do this, as a first step, collection of permanent slides of marine nematodes (235 nominal species and 14 new to science but not yet described) was recently established at the Faculty of Sciences of Bizerte (Tunisia). Capacity building of next generation of African taxonomists have been carried out at level of both traditional and molecular taxonomy (DNA barcoding and next-generation sequencing [NGS]), but they need to be implemented. Indeed, the integration of these two approaches appears crucial to overcome lack of information on the taxonomy, ecology, and biodiversity of marine nematodes from African coastal waters.

12.
Mar Environ Res ; 196: 106424, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428315

RESUMO

Environmental research plays a crucial role in formulating novel approaches to pollution management and preservation of biodiversity. This study aims to assess the potential harm of pharmaceutical triclosan (TCS) to non-target aquatic organism, the mussel Mytilus galloprovincialis. Furthermore, our study investigates the potential effectiveness of TiO2 and ZnO nanomaterials (TiO2 NPs and ZnO NPs) in degrading TCS. To ascertain the morphology, structure, and stability of the nanomaterials, several chemical techniques were employed. To evaluate the impact of TCS, TiO2 NPs, and ZnO NPs, both physiological (filtration rate (FR) and respiration rate (RR)), antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST)) activities and malondialdehyde (MDA) contents were measured in M. galloprovincialis gills and digestive gland. The mussel's responses varied depending on the contaminant, concentration, and organ, underscoring the significance of compiling these factors in ecotoxicity tests. The main toxic mechanisms of TCS and ZnO NPs at a concentration of 100 µg/L were likely to be a decrease in FR and RR, an increase in oxidative stress, and increased lipid peroxidation. Our findings indicate that a mixture of TCS and NPs has an antagonist effect on the gills and digestive gland. This effect is particularly notable in the case of TCS2 = 100 µg/L combined with TiO2 NP2 = 100 µg/L, which warrants further investigation to determine the underlying mechanism. Additionally, our results suggest that TiO2 NPs are more effective than ZnO NPs at degrading TCS, which may have practical implications for pharmaceutical control in marine ecosystems and in water purification plants. In summary, our study provides valuable information on the impact of pharmaceuticals on non-target organisms and sheds light on potential solutions for their removal from aqueous environments.


Assuntos
Mytilus , Nanopartículas , Triclosan , Poluentes Químicos da Água , Óxido de Zinco , Animais , Organismos Aquáticos/metabolismo , Catalase/metabolismo , Ecossistema , Estresse Oxidativo , Preparações Farmacêuticas , Triclosan/toxicidade , Poluentes Químicos da Água/toxicidade
13.
J Trace Elem Med Biol ; 83: 127401, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38301314

RESUMO

BACKGROUND: While previous studies have provided insights into the effects of zinc oxide (ZnO) and titanium dioxide (TiO2) nanoparticles (NPs) on aquatic organisms, there is still a substantial amount of information lacking about the possible effects of their doped counterparts. The goal of the current work was to address this gap by examining Mytilus galloprovincialis reaction to exposure to doped and undoped nanoparticles. METHODS: Two concentrations (50 or 100 µg/L) of undoped ZnO and TiO2 NPs, as well as their gold (Au) doped counterparts, were applied on mussels for 14 days, and the effects on biomarkers activities in digestive glands and gills were assessed by spectrophotometry. RESULTS: The NPs were quasi-spherical in shape (below 100 nm), stable in seawater, and with no aggregation for both doped and undoped forms. Analytical results using inductively coupled plasma atomic emission spectroscopy indicated the uptake of NPs in mussels. Furthermore, it was found that biometal dyshomeostasis could occur following NP treatment and that doping the NPs aggravated this response. At the biochemical level, exposure to undoped NPs caused membrane damage, neurotoxic effect, and changes in the activities in the gills and digestive glands of superoxide dismutase, catalase, and glutathione-S-transferase, in a concentration and organ-dependent manner. CONCLUSION: Doping ZnO NPs and TiO2NPs with Au induced additional oxidative stress, membrane damage, and neurotoxicity in mussels.


Assuntos
Nanopartículas Metálicas , Mytilus , Nanopartículas , Poluentes Químicos da Água , Óxido de Zinco , Animais , Óxido de Zinco/toxicidade , Ouro/toxicidade , Nanopartículas/toxicidade , Estresse Oxidativo , Titânio/toxicidade , Nanopartículas Metálicas/toxicidade , Poluentes Químicos da Água/toxicidade
14.
Saudi J Biol Sci ; 30(8): 103718, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37576067

RESUMO

Inevitably, high concentrations of iron, the most widely produced ore globally, can be found in aquatic environments. To assess the toxicity of iron on aquatic organisms, Ruditapes decussatus specimens were subjected to microparticles derived from two types of iron ore (hematite and magnetite) at four different concentrations (0.5, 1, 1.5, and 5 g/L). The findings revealed that both types of iron ore were absorbed by clams in a concentration-dependent manner. Biomarkers analysis demonstrated significant and organ-specific impacts on the health of the clams caused by these microparticles, which was further supported by computational analyses on bioavailability. Within seven days of exposure, changes were observed in the activities of several enzymes, including catalase, acetylcholinesterase, and glutathione S-transferases, as well as in the rate of lipid peroxidation in both the digestive gland and gills. This study provides an environmental perspective on the toxicological effects of iron ore microparticles.

15.
Mar Pollut Bull ; 193: 115230, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37406401

RESUMO

The health status of Mytilus galloprovincialis native from a polluted habitat was surveyed before and after 30 and 60 days of in situ transplantation and in vivo experiments. The results showed a reduction in filtration rate by 24 % and 45 %, respectively, after 60 days of in vivo and in situ experiments compared to the rates at polluted sites. The respiration rate reached a minimum of 0.081 ± 0.05 mg O2.L-1 after 60 days of in situ transplantation. Moreover, the antioxidant activities were changed in a time-dependent manner for both transplantation conditions. The highest superoxide dismutase and catalase activities corresponded to the stressed mussels and declined by 76 % and 54 %, respectively, after 60 days of in situ transplantation. Changes in lipid peroxidation and acetylcholinesterase activity were observed in internal organs following 60 days of transplantation. At this time slot, the lowest content of metals and microplastics was also noticed.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Acetilcolinesterase , Descontaminação , Plásticos , Poluentes Químicos da Água/análise , Antioxidantes , Ecossistema , Biomarcadores
16.
Sci Total Environ ; 858(Pt 1): 159586, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36273566

RESUMO

As a result of the wide use of Titanium (Ti) compounds in various products, Ti and Ti nanoparticles (nTi) are released into aquatic environments, inducing varying degrees of toxicity on aquatic fauna. Ulva lactuca, green macroalgae commonly found in coastal areas, has been extensively studied due to its worldwide distribution and capacity to accumulate trace elements under toxic conditions, which makes it a good universal sorbent. The present study aimed to establish the remediation properties of U. lactuca by evaluating the toxicity of Ti and nTi in bivalves, in the presence and absence of algae. Using the bivalve species Mytilus galloprovincialis, Ti toxicity was evaluated by assessing changes in mussel's metabolic capacity and oxidative status. Results evidenced cellular damage in M. galloprovincialis exposed to Ti and nTi. This was a result of the inactivation of antioxidant defences. The presence of U. lactuca limited cellular damage, however, this was not a result of the previously demonstrated bioremediation capacity, as no accumulation of Ti was verified in algal tissues. As a metabolic depression was verified for mussels exposed to Ti/nTi in the presence of algae, we hypothesise that U. lactuca may have been responsible for changes to the water quality which induced this response.


Assuntos
Recuperação e Remediação Ambiental , Mytilus , Alga Marinha , Ulva , Poluentes Químicos da Água , Animais , Titânio/toxicidade , Titânio/metabolismo , Alga Marinha/metabolismo , Poluentes Químicos da Água/análise , Mytilus/fisiologia
17.
Environ Pollut ; 316(Pt 1): 120459, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36273696

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are toxic for humans and marine fauna alike. The current study assessed the impact of PAHs on the migratory behaviour of meiobenthic nematodes collected from the Bizerte lagoon, Tunisia. The experiment lasted for 15 days and was carried in open microcosms, which comprised a lower, contaminated and an upper, uncontaminated compartment. Three treatments were used, for each of them an untreated control was set up: sediment contaminated with chrysene (116 ng g-1 dry weight (DW), with phenanthrene (116 ng g-1 DW) and a mixture of both. The results showed a significant decrease in diversty and abundance in the lower, contaminated compartments compared to the upper zones. The results also highlighted that under an increased stress some species progressively increased in number, these were considered PAH-tolerant species such as Odontophora villoti, some others had an occasionally increased in number were considered as opportunistic species, such as Paracomesoma dubium and the species that showed a progressive decreased in number, such as Metoncholaimus pristiurus and Steineria sp., Terschellingia. longicaudata, and Oncholaimellus sp. were classified as PAH-sensitive. Moreover, an increase in the activity of biochemical biomarkers was observed following the exposure of males and gravid females of T. longicaudata to 29, 58 and 87 ng g-1 DW of chrysene and phenanthrene paralleled by a higher vulnerability of the latter demographic category. Besides, a significant decrease in fertility of females and an increase in pharyngeal sucking power were observed for both types of PAHs considered. The sex ratio was also significantly imbalanced in the favor of males, which suggest that chrysene and phenanthrene affect also the hormone system of T. longicaudata. The high affinities of these PAHs and their molecular interactions with both germ line development protein 3 (GLD-3) and sex-determining protein (SDP) may justify these results and explain the toxicokinetic attributes.


Assuntos
Nematoides , Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Animais , Humanos , Sedimentos Geológicos/química , Crisenos , Toxicocinética , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Fenantrenos/toxicidade
18.
Animals (Basel) ; 13(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36830370

RESUMO

The effects of pharmaceutical under aquatic biota are still not well established. In this investigation, we assessed the results of a common pharmaceutical's, triclosan (TCS), treatment on physiological and biochemical status of the Mediterranean mussels. Filtration and respiration rates were statistically reduced after treatment with highest considered concentration TCS2 = 100 µg·L-1. However, no modification (p > 0.05) was detected after treatment with TCS1 = 50 µg·L-1. For biochemical responses, oxidative stress parameters including H2O2 level and antioxidant enzymes were enhanced following concentration in considered organs. In parallel, Malondialdheyde content was measured in mussels after TCS treatment and lipid peroxidation occurred at high TCS concentration. Neurotoxicity evaluated by acetylcholinesterase (AChE) activity was induced in gills and digestive glands after exposure to TCS2. Overall, physiological impairment, oxidative stress, lipid peroxidation and neurotoxicity could be induced by triclosan in mussels. The association of physiological and biochemical biomarkers constitute a useful tool to measure the impact of pharmaceuticals in marine organism.

19.
Mar Pollut Bull ; 188: 114641, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36706550

RESUMO

The impact of metallic nanoparticles (NPs) on the uptake and toxicity of persistent organic pollutants by marine bivalves was assessed through a comparative laboratory study by exposing mussels to polycyclic aromatic hydrocarbon (PAHs), in the presence and absence of ZnO and TiO2 NPs. PAHs and NPs concentration was analyzed after 14 days of exposure in mussels by GC/MS and ICP/AES. Furthermore, impact on the physiology and neurotoxicity of PAHs and NPs acting alone or in mixtures were also determined. Our results confirmed the bio-uptake of PAHs and NPs by mussels. In addition, the exposure NPs-PAHs resulted in different bio-uptake profile to that of PAHs alone. The NPs and accumulation of PAHs led to disturbance of essential metals concentration and to different impact profiles in the filtration and respiration capacities as well as in the acetylcholinesterase activity. Antagonist interactions between NPs and PAHs could occur after exposure.


Assuntos
Nanopartículas Metálicas , Mytilus , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Monitoramento Ambiental/métodos , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Acetilcolinesterase
20.
Sci Total Environ ; 838(Pt 4): 156519, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35690197

RESUMO

Plastics pollution in marine environment has become an issue of increasing scientific concern. This work aims to study the temporal and spatial distribution of plastics in sediments from three different Tunisian ecosystems; Rimel Beach, Bizerta lagoon and Ichkeul lake. Sediment sampling was conducted in surface (2 cm) and depth (15 cm) during spring, summer and winter. Plastics debris were separated by size fractions: macro (>5 mm), meso (1-5 mm) and microplastics (<1 mm) to optimize the time necessary for their characterisation. Macroplastics and mesoplastics were identified using an IR Attenuated total reflectance (ATR) and microplastics with Imaging Fourier transform infrared spectroscopy (FTIR) spectroscopy after an optimized extraction protocol. Results indicate that, the lowest contamination degree with macroplastics was recorded in Ichkeul lake, 2 macro debris/m2 (marine protected area, national parc of Ichkeul). Mesoparticles were only detected in lagoon of Bizerte in large quantities (4900 item/kg of sediment in surface and 680 item/kg of sediment in depth) and were identified principally as paint products. For microplastics, the repartition was quite homogeneous between the three sites with an average abundance was 130.55 ± 65.61 items/kg for all seasons. The variations of microplastics abundances on the three sites could not be clearly related to the seasons. Whereas the polymer characterisation in the surface and depth sediments of the three studied areas were principally due to eight types of polymers (PVC, PET, PP, PE PS, Polyamide (PA) and polymeric methyl methacrylate (PMMA)) as reported in many other studies, surprisingly all MPs recovered in the study were smaller than 300 µm, >70 % being fragments. This study brings new results as regards to the state of plastic contamination in Tunisian coast and shows the importance of investigating different ecosystems in such studies.


Assuntos
Sedimentos Geológicos , Microplásticos , Poluentes Químicos da Água , Ecossistema , Sedimentos Geológicos/química , Lagos , Microplásticos/análise , Estações do Ano , Análise Espacial , Espectroscopia de Infravermelho com Transformada de Fourier , Tunísia , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa