Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 143(20): 2059-2072, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38437498

RESUMO

ABSTRACT: BRG1 (SMARCA4) and BRM (SMARCA2) are the mutually exclusive core ATPases of the chromatin remodeling BAF (BRG1/BRM-associated factor) complexes. They enable transcription factors/cofactors to access enhancers/promoter and modulate gene expressions responsible for cell growth and differentiation of acute myeloid leukemia (AML) stem/progenitor cells. In AML with MLL1 rearrangement (MLL1r) or mutant NPM1 (mtNPM1), although menin inhibitor (MI) treatment induces clinical remissions, most patients either fail to respond or relapse, some harboring menin mutations. FHD-286 is an orally bioavailable, selective inhibitor of BRG1/BRM under clinical development in AML. Present studies show that FHD-286 induces differentiation and lethality in AML cells with MLL1r or mtNPM1, concomitantly causing perturbed chromatin accessibility and repression of c-Myc, PU.1, and CDK4/6. Cotreatment with FHD-286 and decitabine, BET inhibitor (BETi) or MI, or venetoclax synergistically induced in vitro lethality in AML cells with MLL1r or mtNPM1. In models of xenografts derived from patients with AML with MLL1r or mtNPM1, FHD-286 treatment reduced AML burden, improved survival, and attenuated AML-initiating potential of stem-progenitor cells. Compared with each drug, cotreatment with FHD-286 and BETi, MI, decitabine, or venetoclax significantly reduced AML burden and improved survival, without inducing significant toxicity. These findings highlight the FHD-286-based combinations as a promising therapy for AML with MLL1r or mtNPM1.


Assuntos
DNA Helicases , Leucemia Mieloide Aguda , Células-Tronco Neoplásicas , Proteínas Nucleares , Nucleofosmina , Proteínas Proto-Oncogênicas , Fatores de Transcrição , Humanos , Animais , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/genética , Camundongos , DNA Helicases/antagonistas & inibidores , DNA Helicases/genética , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral , Proteínas que Contêm Bromodomínio , Proteínas
2.
Blood ; 139(6): 907-921, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34601571

RESUMO

The majority of RUNX1 mutations in acute myeloid leukemia (AML) are missense or deletion-truncation and behave as loss-of-function mutations. Following standard therapy, AML patients expressing mtRUNX1 exhibit inferior clinical outcome than those without mutant RUNX1. Studies presented here demonstrate that as compared with AML cells lacking mtRUNX1, their isogenic counterparts harboring mtRUNX1 display impaired ribosomal biogenesis and differentiation, as well as exhibit reduced levels of wild-type RUNX1, PU.1, and c-Myc. Compared with AML cells with only wild-type RUNX1, AML cells expressing mtRUNX1 were also more sensitive to the protein translation inhibitor homoharringtonine (omacetaxine) and BCL2 inhibitor venetoclax. Homoharringtonine treatment repressed enhancers and their BRD4 occupancy and was associated with reduced levels of c-Myc, c-Myb, MCL1, and Bcl-xL. Consistent with this, cotreatment with omacetaxine and venetoclax or BET inhibitor induced synergistic in vitro lethality in AML expressing mtRUNX1. Compared with each agent alone, cotreatment with omacetaxine and venetoclax or BET inhibitor also displayed improved in vivo anti-AML efficacy, associated with improved survival of immune-depleted mice engrafted with AML cells harboring mtRUNX1. These findings highlight superior efficacy of omacetaxine-based combination therapies for AML harboring mtRUNX1.


Assuntos
Antineoplásicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Mepesuccinato de Omacetaxina/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Inibidores da Síntese de Proteínas/farmacologia , Sulfonamidas/farmacologia , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Leucemia Mieloide Aguda/genética , Mutação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores
3.
Blood ; 135(15): 1255-1269, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32068780

RESUMO

The promising activity of BET protein inhibitors (BETi's) is compromised by adaptive or innate resistance in acute myeloid leukemia (AML). Here, modeling of BETi-persister/resistance (BETi-P/R) in human postmyeloproliferative neoplasm (post-MPN) secondary AML (sAML) cells demonstrated accessible and active chromatin in specific superenhancers/enhancers, which was associated with increased levels of nuclear ß-catenin, TCF7L2, JMJD6, and c-Myc in BETi-P/R sAML cells. Following BETi treatment, c-Myc levels were rapidly restored in BETi-P/R sAML cells. CRISPR/Cas9-mediated knockout of TCF7L2 or JMJD6 reversed BETi-P/R, whereas ectopic overexpression conferred BETi-P/R in sAML cells, confirming the mechanistic role of the ß-catenin-TCF7L2-JMJD6-c-Myc axis in BETi resistance. Patient-derived, post-MPN, CD34+ sAML blasts exhibiting relative resistance to BETi, as compared with sensitive sAML blasts, displayed higher messenger RNA and protein expression of TCF7L2, JMJD6, and c-Myc and following BETi washout exhibited rapid restoration of c-Myc and JMJD6. CRISPR/Cas9 knockout of TCF7L2 and JMJD6 depleted their levels, inducing loss of viability of the sAML blasts. Disruption of colocalization of nuclear ß-catenin with TBL1 and TCF7L2 by the small-molecule inhibitor BC2059 combined with depletion of BRD4 by BET proteolysis-targeting chimera reduced c-Myc levels and exerted synergistic lethality in BETi-P/R sAML cells. This combination also reduced leukemia burden and improved survival of mice engrafted with BETi-P/R sAML cells or patient-derived AML blasts innately resistant to BETi. Therefore, multitargeted disruption of the ß-catenin-TCF7L2-JMJD6-c-Myc axis overcomes adaptive and innate BETi resistance, exhibiting preclinical efficacy against human post-MPN sAML cells.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Leucemia Mieloide Aguda/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/antagonistas & inibidores , Antineoplásicos/química , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Leucemia Mieloide Aguda/metabolismo , Proteólise/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Fatores de Transcrição/metabolismo , beta Catenina/metabolismo
4.
J Pharmacol Exp Ther ; 378(2): 77-86, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34006586

RESUMO

The central role of ß-catenin in the Wnt pathway makes it an attractive therapeutic target for cancers driven by aberrant Wnt signaling. We recently developed a small-molecule inhibitor, BC-2059, that promotes apoptosis by disrupting the ß-catenin/transducin ß-like 1 (TBL1) complex through an unknown mechanism of action. In this study, we show that BC-2059 directly interacts with high affinity for TBL1 when in complex with ß-catenin. We identified two amino acids in a hydrophobic pocket of TBL1 that are required for binding with ß-catenin, and computational modeling predicted that BC-2059 interacts at the same hydrophobic pocket. Although this pocket in TBL1 is involved in binding with NCoR/SMRT complex members G Protein Pathway Suppressor 2 (GSP2) and SMRT and p65 NFκB subunit, BC-2059 failed to disrupt the interaction of TBL1 with either NCoR/SMRT or NFκB. Together, our results show that BC-2059 selectively targets TBL1/ß-catenin protein complex, suggesting BC-2059 as a therapeutic for tumors with deregulated Wnt signaling pathway. SIGNIFICANCE STATEMENT: This study reports the mechanism of action of a novel Wnt pathway inhibitor, characterizing the selective disruption of the transducin ß-like 1/ß-catenin protein complex. As Wnt signaling is dysregulated across cancer types, this study suggests BC-2059 has the potential to benefit patients with tumors reliant on this pathway.


Assuntos
Transducina , beta Catenina , Comunicação Celular , Humanos , Fator de Transcrição RelA
5.
Blood ; 134(1): 59-73, 2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-31023702

RESUMO

RUNX1 transcription factor regulates normal and malignant hematopoiesis. Somatic or germline mutant RUNX1 (mtRUNX1) is associated with poorer outcome in acute myeloid leukemia (AML). Knockdown or inhibition of RUNX1 induced more apoptosis of AML expressing mtRUNX1 versus wild-type RUNX1 and improved survival of mice engrafted with mtRUNX1-expressing AML. CRISPR/Cas9-mediated editing-out of RUNX1 enhancer (eR1) within its intragenic super-enhancer, or BET protein BRD4 depletion by short hairpin RNA, repressed RUNX1, inhibited cell growth, and induced cell lethality in AML cells expressing mtRUNX1. Moreover, treatment with BET protein inhibitor or degrader (BET-proteolysis targeting chimera) repressed RUNX1 and its targets, inducing apoptosis and improving survival of mice engrafted with AML expressing mtRUNX1. Library of Integrated Network-based Cellular Signatures 1000-connectivity mapping data sets queried with messenger RNA signature of RUNX1 knockdown identified novel expression-mimickers (EMs), which repressed RUNX1 and exerted in vitro and in vivo efficacy against AML cells expressing mtRUNX1. In addition, the EMs cinobufagin, anisomycin, and narciclasine induced more lethality in hematopoietic progenitor cells (HPCs) expressing germline mtRUNX1 from patients with AML compared with HPCs from patients with familial platelet disorder (FPD), or normal untransformed HPCs. These findings highlight novel therapeutic agents for AML expressing somatic or germline mtRUNX1.


Assuntos
Antineoplásicos/farmacologia , Subunidade alfa 2 de Fator de Ligação ao Core/antagonistas & inibidores , Leucemia Mieloide Aguda/genética , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Técnicas de Silenciamento de Genes , Mutação em Linhagem Germinativa , Células-Tronco Hematopoéticas/efeitos dos fármacos , Humanos , Camundongos
6.
J Immunol ; 201(1): 124-133, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29752313

RESUMO

Epigenetic mechanisms, such as DNA methylation, determine immune cell phenotype. To understand the epigenetic alterations induced by helminth coinfections, we evaluated the longitudinal effect of ascariasis and schistosomiasis infection on CD4+ T cell DNA methylation and the downstream tuberculosis (TB)-specific and bacillus Calmette-Guérin-induced immune phenotype. All experiments were performed on human primary immune cells from a longitudinal cohort of recently TB-exposed children. Compared with age-matched uninfected controls, children with active Schistosoma haematobium and Ascaris lumbricoides infection had 751 differentially DNA-methylated genes, with 72% hypermethylated. Gene ontology pathway analysis identified inhibition of IFN-γ signaling, cellular proliferation, and the Th1 pathway. Targeted real-time quantitative PCR after methyl-specific endonuclease digestion confirmed DNA hypermethylation of the transcription factors BATF3, ID2, STAT5A, IRF5, PPARg, RUNX2, IRF4, and NFATC1 and cytokines or cytokine receptors IFNGR1, TNFS11, RELT (TNF receptor), IL12RB2, and IL12B (p < 0.001; Sidak-Bonferroni). Functional blockage of the IFN-γ signaling pathway was confirmed, with helminth-infected individuals having decreased upregulation of IFN-γ-inducible genes (Mann-Whitney p < 0.05). Hypomethylation of the IL-4 pathway and DNA hypermethylation of the Th1 pathway was confirmed by Ag-specific multidimensional flow cytometry demonstrating decreased TB-specific IFN-γ and TNF and increased IL-4 production by CD4+ T cells (Wilcoxon signed-rank p < 0.05). In S. haematobium-infected individuals, these DNA methylation and immune phenotypic changes persisted at least 6 mo after successful deworming. This work demonstrates that helminth infection induces DNA methylation and immune perturbations that inhibit TB-specific immune control and that the duration of these changes are helminth specific.


Assuntos
Ascaríase/imunologia , Ascaris lumbricoides/imunologia , Vacina BCG/imunologia , Metilação de DNA/genética , Schistosoma haematobium/imunologia , Esquistossomose/imunologia , Células Th1/imunologia , Animais , Proliferação de Células/fisiologia , Células Cultivadas , Humanos , Interferon gama/genética , Interferon gama/imunologia , Interleucina-4/biossíntese , Interleucina-4/genética , Receptores de Citocinas/genética , Fatores de Transcrição/genética , Tuberculose/imunologia
7.
Am J Hematol ; 94(1): 74-79, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30328139

RESUMO

The outcome of patients with myelodysplastic syndromes (MDSs) after failure of hypomethylating agents (HMAs) failure is poor with a median overall survival (OS) of only 4-6 months. Omacetaxine mepesuccinate (OM) is safe and effective in myeloid malignancies but has not been studied in MDS with HMA failure. We conducted a phase II study of OM in patients with MDS or chronic myelomonocytic leukemia (CMML) who had previously failed or been intolerant to HMAs. Patients received OM at a dose of 1.25 mg/m2 subcutaneously every 12 hours for 3 consecutive days on a 4- to 7-week schedule. The primary endpoints were the overall response rate (ORR) and OS. A total of 42 patients were enrolled with a median age of 76 years. The ORR was 33%. Patients with diploid cytogenetics were more likely to respond to OM than were those with cytogenetic abnormalities (58% vs 23%, respectively; P = .03). Overall, the median OS was 7.5 months and 1-year OS rate was 25%. Patients with diploid cytogenetics had superior OS to those with cytogenetic abnormalities (median OS 14.8 vs 6.8 months, respectively; P = .01). Two patients had ongoing response to OM of 2 years or longer (both MDS with diploid cytogenetics and RUNX1 mutation). The most common grade ≥ 3 adverse events were infections in 11 patients (26%), febrile neutropenia in 4 (10%), and hemorrhage in 3 (7%). Overall, OM was safe and active in patients with MDS or CMML who experienced HMA failure. These results support the further development of OM in this setting.


Assuntos
Antineoplásicos/uso terapêutico , Mepesuccinato de Omacetaxina/uso terapêutico , Leucemia Mielomonocítica Crônica/tratamento farmacológico , Síndromes Mielodisplásicas/tratamento farmacológico , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/efeitos adversos , Aberrações Cromossômicas , Análise Mutacional de DNA , Intervalo Livre de Doença , Esquema de Medicação , Resistencia a Medicamentos Antineoplásicos , Substituição de Medicamentos , Fadiga/induzido quimicamente , Neutropenia Febril/induzido quimicamente , Feminino , Gastroenteropatias/induzido quimicamente , Hemorragia/induzido quimicamente , Mepesuccinato de Omacetaxina/efeitos adversos , Humanos , Estimativa de Kaplan-Meier , Leucemia Mielomonocítica Crônica/genética , Masculino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/genética
8.
Am J Hematol ; 93(3): 401-407, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29218851

RESUMO

INTRODUCTION: Venetoclax (VEN), a selective BCL2 inhibitor, has single-agent activity in relapsed and refractory (R/R) acute myeloid leukemia (AML), and efficacy in lower intensity combinations for treatment-naïve elderly AML patients. VEN treatment combinations in R/R AML have not been previously reported. METHODS: All R/R myeloid patients (including AML, myelodysplastic syndrome (MDS), and blastic plasmacytoid dendritic cell neoplasm (BPDCN)) treated with VEN combinations in the salvage setting were reviewed. RESULTS: Forty-three patients with median age 68 (range, 25-83) were treated for AML (91%), MDS (5%), or BPDCN (5%). Most (n = 36, 84%) were ≥ salvage-2 treatment status, including prior hypomethylating agent (HMA) in 77%. In combination with VEN, most patients received HMA therapy (n = 31, 72%); eight (19%) received low-dose cytarabine (LDAC). Patients received a median of 2 treatment cycles (range, 1-4). Objective response was observed in 9 (21%) patients, including 2 complete responses (CR), 3 CRi, and 4 morphologic leukemia-free state (MLFS). Median survival was 3.0 months (range, 0.5-8.0), and estimated 6-month survival was 24%. Responses were observed in five (24%) of 21 patients with intermediate-risk cytogenetics, 3 (27%) of 11 IDH1/2-mutant, and 4 (50%) of 8 RUNX1-mutated patients. Two (20%) of 10 TP53-mutated patients responded; both had concurrent RUNX1 mutations. Of the 3 (15%) responding patients with adverse cytogenetics, all had concurrent RUNX1 mutations. CONCLUSION: Low-intensity chemotherapy, including HMAs or LDAC, in combination with VEN is a viable salvage option, even in multiply relapsed/refractory patients with AML, MDS, and BPDCN. Notable responses were identified in patients with diploid/intermediate cytogenetics, RUNX1, and/or IDH1/2 mutations.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Terapia de Alvo Molecular , Síndromes Mielodisplásicas/tratamento farmacológico , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Terapia de Salvação , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Adulto , Idoso , Idoso de 80 Anos ou mais , Antimetabólitos Antineoplásicos/administração & dosagem , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Inibidores do Citocromo P-450 CYP3A/administração & dosagem , Células Dendríticas , Feminino , Genes p53 , Humanos , Isocitrato Desidrogenase/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidade , Masculino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/mortalidade , Recidiva , Sulfonamidas/administração & dosagem , Sulfonamidas/farmacologia
9.
Breast Cancer Res Treat ; 165(2): 375-382, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28623430

RESUMO

PURPOSE: Suberoylanilide hydroxamic acid (SAHA; vorinostat), a small molecule inhibitor of histone deacetylase, attenuates signaling pathways known to confer trastuzumab resistance. A combination of SAHA and trastuzumab may be a promising strategy to improve the efficacy of trastuzumab against breast cancer. In this Phase I/II study, we evaluated the toxicity and response rate after treatment with SAHA and trastuzumab in patients with HER2-overexpressing metastatic breast cancer with trastuzumab-resistant progressive disease. METHODS: In Phase I, the SAHA dose was modified in cohorts of 3-6 patients to find the dose level at which 0 or 1 patients experienced a dose-limiting toxicity (DLT) during the first cycle of therapy. In the Phase II study, response to the recommended dose identified in Phase I was based on the response evaluation criteria in solid tumors. Overall survival and time to progression were also evaluated. RESULTS: The recommended dose was determined to be 200 mg twice a day on days 1-14 and IV trastuzumab 6 mg/kg on day 1 of a 21-day cycle (n = 6). The Phase II study (n = 10) was terminated when the pre-planned efficacy evaluation found that none of the patients in the primary analysis set responded to combination SAHA and trastuzumab treatment. CONCLUSIONS: In patients with HER2-positive metastatic breast cancer who had relapsed or progressed during trastuzumab therapy, we observed no DLTs with SAHA 200 mg twice daily combined with trastuzumab; however, there was insufficient statistical evidence that adding SAHA reversed trastuzumab resistance in these patients.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Amplificação de Genes , Receptor ErbB-2/genética , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Biomarcadores Tumorais , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Terapia Combinada , Progressão da Doença , Feminino , Humanos , Ácidos Hidroxâmicos/administração & dosagem , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Estadiamento de Neoplasias , Cooperação do Paciente , Retratamento , Parede Torácica/patologia , Fatores de Tempo , Trastuzumab/administração & dosagem , Resultado do Tratamento , Vorinostat
10.
Blood ; 126(13): 1565-74, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26254443

RESUMO

Mantle cell lymphoma (MCL) cells exhibit increased B-cell receptor and nuclear factor (NF)-κB activities. The bromodomain and extra-terminal (BET) protein bromodomain 4 is essential for the transcriptional activity of NF-κB. Here, we demonstrate that treatment with the BET protein bromodomain antagonist (BA) JQ1 attenuates MYC and cyclin-dependent kinase (CDK)4/6, inhibits the nuclear RelA levels and the expression of NF-κB target genes, including Bruton tyrosine kinase (BTK) in MCL cells. Although lowering the levels of the antiapoptotic B-cell lymphoma (BCL)2 family proteins, BA treatment induces the proapoptotic protein BIM and exerts dose-dependent lethality against cultured and primary MCL cells. Cotreatment with BA and the BTK inhibitor ibrutinib synergistically induces apoptosis of MCL cells. Compared with each agent alone, cotreatment with BA and ibrutinib markedly improved the median survival of mice engrafted with the MCL cells. BA treatment also induced apoptosis of the in vitro isolated, ibrutinib-resistant MCL cells, which overexpress CDK6, BCL2, Bcl-xL, XIAP, and AKT, but lack ibrutinib resistance-conferring BTK mutation. Cotreatment with BA and panobinostat (pan-histone deacetylase inhibitor) or palbociclib (CDK4/6 inhibitor) or ABT-199 (BCL2 antagonist) synergistically induced apoptosis of the ibrutinib-resistant MCL cells. These findings highlight and support further in vivo evaluation of the efficacy of the BA-based combinations with these agents against MCL, including ibrutinib-resistant MCL.


Assuntos
Antineoplásicos/uso terapêutico , Azepinas/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores Enzimáticos/uso terapêutico , Linfoma de Célula do Manto/tratamento farmacológico , Proteínas Nucleares/antagonistas & inibidores , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Fatores de Transcrição/antagonistas & inibidores , Triazóis/uso terapêutico , Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia , Animais , Antineoplásicos/farmacologia , Azepinas/farmacologia , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/metabolismo , Sinergismo Farmacológico , Inibidores Enzimáticos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Linfoma de Célula do Manto/metabolismo , Linfoma de Célula do Manto/patologia , Camundongos Endogâmicos NOD , Camundongos SCID , NF-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Piperidinas , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Pirazóis/farmacologia , Pirimidinas/farmacologia , Fator de Transcrição RelA/metabolismo , Fatores de Transcrição/metabolismo , Triazóis/farmacologia
11.
Haematologica ; 102(3): 519-528, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27927766

RESUMO

A vailable tyrosine kinase inhibitors for chronic myeloid leukemia bind in an adenosine 5'-triphosphate-binding pocket and are affected by evolving mutations that confer resistance. Rebastinib was identified as a switch control inhibitor of BCR-ABL1 and FLT3 and may be active against resistant mutations. A Phase 1, first-in-human, single-agent study investigated rebastinib in relapsed or refractory chronic or acute myeloid leukemia. The primary objectives were to investigate the safety of rebastinib and establish the maximum tolerated dose and recommended Phase 2 dose. Fifty-seven patients received treatment with rebastinib. Sixteen patients were treated using powder-in-capsule preparations at doses from 57 mg to 1200 mg daily, and 41 received tablet preparations at doses of 100 mg to 400 mg daily. Dose-limiting toxicities were dysarthria, muscle weakness, and peripheral neuropathy. The maximum tolerated dose was 150 mg tablets administered twice daily. Rebastinib was rapidly absorbed. Bioavailability was 3- to 4-fold greater with formulated tablets compared to unformulated capsules. Eight complete hematologic responses were achieved in 40 evaluable chronic myeloid leukemia patients, 4 of which had a T315I mutation. None of the 5 patients with acute myeloid leukemia responded. Pharmacodynamic analysis showed inhibition of phosphorylation of substrates of BCR-ABL1 or FLT3 by rebastinib. Although clinical activity was observed, clinical benefit was insufficient to justify continued development in chronic or acute myeloid leukemia. Pharmacodynamic analyses suggest that other kinases inhibited by rebastinib, such as TIE2, may be more relevant targets for the clinical development of rebastinib (clinicaltrials.gov Identifier:00827138).


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mieloide Aguda/tratamento farmacológico , Inibidores de Proteínas Quinases/administração & dosagem , Quinolinas/administração & dosagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Monitoramento de Medicamentos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Proteínas de Fusão bcr-abl/genética , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mieloide Aguda/genética , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Mutação , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/farmacocinética , Quinolinas/efeitos adversos , Quinolinas/farmacocinética , Resultado do Tratamento , Adulto Jovem
12.
Proc Natl Acad Sci U S A ; 110(17): 6841-6, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23569248

RESUMO

Autophagy is a stress-induced catabolic process in which cytoplasmic components, sequestered in double-membrane autophagic vesicles (AVs) or autophagosomes, are delivered to lysosomes for degradation and recycling [Kroemer G, Mariño G, Levine B (2010) Mol Cell 40(2):280-293]. Activity of the class III phosphatidylinositol-3-OH-kinase (PI3K) vacuolar protein-sorting (Vps) 34, bound to coiled-coil moesin-like B-cell lymphoma 2 (Bcl-2)-interacting protein Beclin-1, is required for phosphoinositide generation, essential for AV formation in autophagy [Cuervo AM (2010) Nat Cell Biol 12(8):735-737]. However, how autophagy-inducing stress regulates Vps34 activity has not been fully elucidated. Our findings demonstrate that autophagy-inducing stress increases intracellular levels of acetylated inducible heat shock protein (hsp) 70, which binds to the Beclin-1-Vps34 complex. Acetylated hsp70 also recruits E3 ligase for SUMOylation, KRAB-ZFP-associated protein 1 (KAP1), inducing Lys840 SUMOylation and increasing Vps34 activity bound to Beclin 1. Knockdown of hsp70 abolished the Beclin-1-Vps34 complex formation, as well as inhibited KAP1 binding to Vps34 and AV formation. Notably, autophagy-inducing stress due to histone deacetylase inhibitor treatment induced AV formation in the wild-type but not hsp70.1/3 knockout mouse embryonic fibroblasts MEFs. These findings highlight a regulatory mechanism of Vps34 activity, which involves acetylated hsp70 and KAP1-dependent SUMOylation of Vps34 bound to Beclin 1.


Assuntos
Autofagia/fisiologia , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Fagossomos/metabolismo , Proteínas Repressoras/metabolismo , Acetilação , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Beclina-1 , Vetores Genéticos/genética , Células HEK293 , Proteínas de Choque Térmico HSP70/genética , Humanos , Immunoblotting , Imunoprecipitação , Células MCF-7 , Espectrometria de Massas , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Fagossomos/fisiologia , Sumoilação , Proteína 28 com Motivo Tripartido
13.
Blood Cancer J ; 14(1): 25, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316746

RESUMO

Germline, mono-allelic mutations in RUNX1 cause familial platelet disorder (RUNX1-FPD) that evolves into myeloid malignancy (FPD-MM): MDS or AML. FPD-MM commonly harbors co-mutations in the second RUNX1 allele and/or other epigenetic regulators. Here we utilized patient-derived (PD) FPD-MM cells and established the first FPD-MM AML cell line (GMR-AML1). GMR-AML1 cells exhibited active super-enhancers of MYB, MYC, BCL2 and CDK6, augmented expressions of c-Myc, c-Myb, EVI1 and PLK1 and surface markers of AML stem cells. In longitudinally studied bone marrow cells from a patient at FPD-MM vs RUNX1-FPD state, we confirmed increased chromatin accessibility and mRNA expressions of MYB, MECOM and BCL2 in FPD-MM cells. GMR-AML1 and PD FPD-MM cells were sensitive to homoharringtonine (HHT or omacetaxine) or mebendazole-induced lethality, associated with repression of c-Myc, EVI1, PLK1, CDK6 and MCL1. Co-treatment with MB and the PLK1 inhibitor volasertib exerted synergistic in vitro lethality in GMR-AML1 cells. In luciferase-expressing GMR-AML1 xenograft model, MB, omacetaxine or volasertib monotherapy, or co-treatment with MB and volasertib, significantly reduced AML burden and improved survival in the immune-depleted mice. These findings highlight the molecular features of FPD-MM progression and demonstrate HHT, MB and/or volasertib as effective agents against cellular models of FPD-MM.


Assuntos
Transtornos Plaquetários , Leucemia Mieloide Aguda , Humanos , Animais , Camundongos , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mepesuccinato de Omacetaxina , Plaquetas/patologia , Transtornos Plaquetários/complicações , Transtornos Plaquetários/genética , Transtornos Plaquetários/patologia , Proteínas Proto-Oncogênicas c-bcl-2
14.
Leukemia ; 38(3): 545-556, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38086946

RESUMO

AML with chromosomal alterations involving 3q26 overexpresses the transcription factor (TF) EVI1, associated with therapy refractoriness and inferior overall survival in AML. Consistent with a CRISPR screen highlighting BRD4 dependency, treatment with BET inhibitor (BETi) repressed EVI1, LEF1, c-Myc, c-Myb, CDK4/6, and MCL1, and induced apoptosis of AML cells with 3q26 lesions. Tegavivint (TV, BC-2059), known to disrupt the binding of nuclear ß-catenin and TCF7L2/LEF1 with TBL1, also inhibited co-localization of EVI1 with TBL1 and dose-dependently induced apoptosis in AML cell lines and patient-derived (PD) AML cells with 3q26.2 lesions. TV treatment repressed EVI1, attenuated enhancer activity at ERG, TCF7L2, GATA2 and MECOM loci, abolished interactions between MYC enhancers, repressing AML stemness while upregulating mRNA gene-sets of interferon/inflammatory response, TGF-ß signaling and apoptosis-regulation. Co-treatment with TV and BETi or venetoclax induced synergistic in vitro lethality and reduced AML burden, improving survival of NSG mice harboring xenografts of AML with 3q26.2 lesions.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Animais , Camundongos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína do Locus do Complexo MDS1 e EVI1/genética , Proteína do Locus do Complexo MDS1 e EVI1/metabolismo , Proteínas Nucleares/genética , Antineoplásicos/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Epigênese Genética , Proto-Oncogenes , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular/genética
15.
Hum Mol Genet ; 20(1): 126-40, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20940144

RESUMO

DNA methylation is an epigenetic mark critical for regulating transcription, chromatin structure and genome stability. Although many studies have shed light on how methylation impacts transcription and interfaces with the histone code, far less is known about how it regulates genome stability. We and others have shown that DNA methyltransferase 1 (DNMT1), the maintenance methyltransferase, contributes to the cellular response to DNA damage, yet DNMT1's exact role in this process remains unclear. DNA damage, particularly in the form of double-strand breaks (DSBs), poses a major threat to genome integrity. Cells therefore possess a potent system to respond to and repair DSBs, or to initiate cell death. In the current study, we used a near-infrared laser microirradiation system to directly study the link between DNMT1 and DSBs. Our results demonstrate that DNMT1 is rapidly but transiently recruited to DSBs. DNMT1 recruitment is dependent on its ability to interact with both PCNA and the ATR effector kinase CHK1, but is independent of its catalytic activity. In addition, we show for the first time that DNMT1 interacts with the 9-1-1 PCNA-like sliding clamp and that this interaction also contributes to DNMT1 localization to DNA DSBs. Finally, we demonstrate that DNMT1 modulates the rate of DSB repair and is essential for suppressing abnormal activation of the DNA damage response in the absence of exogenous damage. Taken together, our studies provide compelling additional evidence for DNMT1 acting as a regulator of genome integrity and as an early responder to DNA DSBs.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Quebras de DNA de Cadeia Dupla , Quinase 1 do Ponto de Checagem , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/genética , Dano ao DNA/genética , Metilação de DNA/genética , Reparo do DNA/genética , Instabilidade Genômica/genética , Células HCT116 , Humanos , Antígeno Nuclear de Célula em Proliferação/genética , Proteínas Quinases/genética
16.
Br J Haematol ; 162(3): 326-35, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23701016

RESUMO

Myelofibrosis (MF) is a Philadelphia chromosome-negative stem cell myeloproliferative neoplasm (MPN) associated with cytopenias, splenomegaly, constitutional symptoms, and poor prognosis. MF patients commonly express JAK2 V617F mutation and activation of Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signalling. Agents targeting the JAK/STAT pathway have demonstrated efficacy in patients with MF. This study evaluated panobinostat, a pan-deacetylase inhibitor that depletes JAK2 V617F levels and JAK/STAT signalling in MPN cells, in patients with primary MF, post-essential thrombocythaemia MF, and post-polycythaemia vera MF. Patients received panobinostat 40 mg administered three times per week. Dose reductions were permitted for toxicities. The primary endpoint was response rate at 6 months using International Working Group for Myelofibrosis Research and Treatment (IWG-MRT) consensus criteria. Analyses of peripheral blood cells from treated patients revealed that panobinostat inhibited JAK/STAT signalling, decreased inflammatory cytokine levels, and decreased JAK2 V617F allelic burden. However, panobinostat was poorly tolerated at the dose and schedule evaluated, and only 16 of 35 patients completed ≥2 cycles of treatment. One patient (3%) achieved an IWG-MRT response. Common adverse events were thrombocytopenia (71.4%) and diarrhoea (80.0%). Although molecular correlative analyses suggested that panobinostat inhibits key intracellular targets, limited clinical activity was observed because of poor tolerance.


Assuntos
Inibidores de Histona Desacetilases/uso terapêutico , Ácidos Hidroxâmicos/uso terapêutico , Indóis/uso terapêutico , Policitemia Vera/complicações , Mielofibrose Primária/tratamento farmacológico , Trombocitemia Essencial/complicações , Administração Oral , Adulto , Idoso , Idoso de 80 Anos ou mais , Citocinas/sangue , Esquema de Medicação , Feminino , Inibidores de Histona Desacetilases/efeitos adversos , Humanos , Ácidos Hidroxâmicos/efeitos adversos , Indóis/efeitos adversos , Mediadores da Inflamação/sangue , Janus Quinase 2/sangue , Masculino , Pessoa de Meia-Idade , Panobinostat , Mielofibrose Primária/sangue , Mielofibrose Primária/etiologia , Resultado do Tratamento
17.
Blood ; 127(18): 2168-70, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-27151736
18.
Blood ; 118(11): 3096-106, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21719597

RESUMO

Nucleophosmin 1 (NPM1) is an oligomeric, nucleolar phosphoprotein that functions as a molecular chaperone for both proteins and nucleic acids. NPM1 is mutated in approximately one-third of patients with AML. The mutant NPM1c+ contains a 4-base insert that results in extra C-terminal residues encoding a nuclear export signal, which causes NPM1c+ to be localized in the cytoplasm. Here, we determined the effects of targeting NPM1 in cultured and primary AML cells. Treatment with siRNA to NPM1 induced p53 and p21, decreased the percentage of cells in S-phase of the cell cycle, as well as induced differentiation of the AML OCI-AML3 cells that express both NPMc+ and unmutated NPM1. Notably, knockdown of NPM1 by shRNA abolished lethal AML phenotype induced by OCI-AML3 cells in NOD/SCID mice. Knockdown of NPM1 also sensitized OCI-AML3 to all-trans retinoic acid (ATRA) and cytarabine. Inhibition of NPM1 oligomerization by NSC348884 induced apoptosis and sensitized OCI-AML3 and primary AML cells expressing NPM1c+ to ATRA. This effect was significantly less in AML cells coexpressing FLT3-ITD, or in AML or normal CD34+ progenitor cells expressing wild-type NPM1. Thus, attenuating levels or oligomerization of NPM1 selectively induces apoptosis and sensitizes NPM1c+ expressing AML cells to treatment with ATRA and cytarabine.


Assuntos
Antineoplásicos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/fisiologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Sinergismo Farmacológico , Feminino , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Células HL-60 , Humanos , Leucemia Mieloide Aguda/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas Mutantes/metabolismo , Proteínas Mutantes/fisiologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Multimerização Proteica/efeitos dos fármacos , Multimerização Proteica/fisiologia , RNA Interferente Pequeno/farmacologia , Células U937 , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Blood ; 117(4): 1141-5, 2011 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-21098399

RESUMO

Nilotinib is a potent selective inhibitor of the BCR-ABL tyrosine kinase approved for use in patients with newly diagnosed chronic myeloid leukemia in chronic phase (CML-CP), and in CML-CP and CML-accelerated phase after imatinib failure. Nilotinib (400 mg twice daily) was approved on the basis of the initial results of this phase 2 open-label study. The primary study endpoint was the proportion of patients achieving major cytogenetic response (CyR). All patients were followed for ≥ 24 months or discontinued early. Of 321 patients, 124 (39%) continue on nilotinib treatment. Overall, 59% of patients achieved major CyR; this was complete CyR (CCyR) in 44%. Of patients achieving CCyR, 56% achieved major molecular response. CyRs were durable, with 84% of patients who achieved CCyR maintaining response at 24 months. The overall survival at 24 months was 87%. Adverse events were mostly mild to moderate, generally transient, and easily managed. This study indicates that nilotinib is effective, with a manageable safety profile, and can provide favorable long-term benefits for patients with CML-CP after imatinib failure.


Assuntos
Leucemia Mieloide de Fase Crônica/tratamento farmacológico , Piperazinas/efeitos adversos , Piperazinas/uso terapêutico , Pirimidinas/efeitos adversos , Pirimidinas/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Benzamidas , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Tolerância a Medicamentos/fisiologia , Seguimentos , Humanos , Mesilato de Imatinib , Pessoa de Meia-Idade , Pirimidinas/administração & dosagem , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
20.
Haematologica ; 98(10): 1499-509, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24091929

RESUMO

Primary myelofibrosis is a member of the myeloproliferative neoplasms, a diverse group of bone marrow malignancies. Symptoms of myelofibrosis, particularly those associated with splenomegaly (abdominal distention and pain, early satiety, dyspnea, and diarrhea) and constitutional symptoms, represent a substantial burden to patients. Most patients eventually die from the disease, with a median survival ranging from approximately 5-7 years. Mutations in Janus kinase 2 (JAK2), a kinase that is essential for the normal development of erythrocytes, granulocytes, and platelets, notably the V617F mutation, have been identified in approximately 50% of patients with myelofibrosis. The approval of a JAK2 inhibitor in 2011 has improved the outlook of many patients with myelofibrosis and has changed the treatment landscape. This article focuses on some of the important issues in current myelofibrosis treatment management, including differentiation of myelofibrosis from essential thrombocythemia and polycythemia vera, up-dated data on the results of JAK2 inhibitor therapy, the role of epigenetic mechanisms in myelofibrosis pathogenesis, investigational therapies for myelofibrosis, and advances in hematopoietic stem cell transplant. Three myelofibrosis cases are included to underscore the issues in diagnosing and treating this complex disease.


Assuntos
Janus Quinase 2/antagonistas & inibidores , Mielofibrose Primária/diagnóstico , Mielofibrose Primária/terapia , Inibidores de Proteínas Quinases/administração & dosagem , Adulto , Idoso , Animais , Feminino , Humanos , Janus Quinase 2/metabolismo , Masculino , Pessoa de Meia-Idade , Nitrilas , Mielofibrose Primária/enzimologia , Pirazóis/administração & dosagem , Pirimidinas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa