Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 17940, 2024 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095414

RESUMO

Spatio-temporal assessment of phylogenetic diversity gradients during the Holocene (past 12,000 years) provides an opportunity for a deeper understanding of the dynamics of species co-occurrence patterns under environmental fluctuations. Using two robust metrics of phylogenetic dispersion (PD) and 99 fossil pollen sequences containing 6557 samples/assemblages, we analyse spatio-temporal variation in PD of angiosperms and its relationship with Holocene climate in central Asia. Overall, PD throughout the Holocene decreases linearly with increasing latitude, except for a rise in mean nearest taxon distance from ca. 25 to 35° N. This indicates that phylogenetically divergent taxa decrease progressively with increasing latitude, leaving more phylogenetically closely related taxa in the assemblages, thereby increasing phylogenetic relatedness among the co-occurring taxa. The latitudinal gradient of PD has not been consistent during the Holocene, and this temporal variation is concordant with the Holocene climate dynamics. In general, profound temporal changes in the latitudinal PD toward higher latitudes implies that the major environmental changes during the Holocene have driven considerable spatio-temporal changes in the phylogenetic assembly of high-latitude angiosperm assemblages. Our results suggest that environmental filtering and the tendency of taxa and lineages to retain ancestral ecological features and geographic distributions (phylogenetic niche conservatism) are the main mechanisms underlying the phylogenetic assembly of angiosperms along the climate-latitudinal gradient. Ongoing environmental changes may pose future profound phylogenetic changes in high-latitude plant assemblages, which are adapted to harsh environmental conditions, and therefore are phylogenetically less dispersed (more conservative or clustered).


Assuntos
Fósseis , Magnoliopsida , Filogenia , Magnoliopsida/genética , Magnoliopsida/classificação , Ásia , Clima , Pólen/genética , Biodiversidade
2.
Science ; 372(6544): 860-864, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34016781

RESUMO

Global vegetation over the past 18,000 years has been transformed first by the climate changes that accompanied the last deglaciation and again by increasing human pressures; however, the magnitude and patterns of rates of vegetation change are poorly understood globally. Using a compilation of 1181 fossil pollen sequences and newly developed statistical methods, we detect a worldwide acceleration in the rates of vegetation compositional change beginning between 4.6 and 2.9 thousand years ago that is globally unprecedented over the past 18,000 years in both magnitude and extent. Late Holocene rates of change equal or exceed the deglacial rates for all continents, which suggests that the scale of human effects on terrestrial ecosystems exceeds even the climate-driven transformations of the last deglaciation. The acceleration of biodiversity change demonstrated in ecological datasets from the past century began millennia ago.

3.
J Ethnopharmacol ; 247: 112250, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31586694

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Neopicrorhiza scrophulariiflora (Pennell) Hong is important medicinal plant that is native to the eastern Himalayas and Hengduan mountains in China. It is also distributed in Nepal, north east India, Bhutan and northern Myanmar. Plant parts are traditionally used against different kinds of diseases and various compounds present in different plant parts are also effective against many diseases. Thus, N. scrophulariiflora has a high potential to maintain human health. AIM OF THE REVIEW: Although N. scrophulariiflora is very important and widely studied plant species but there is no comprehensive up-to-date review of published and unpublished literature. So, in the present article we have compiled and critically commented on the botanical characteristics, traditional uses, plant growth and cultivation, micropropagation, conservation status, secondary metabolites, pharmacology and toxicity of the plant. MATERIALS AND METHODS: Extensive literature searches both electronic online databases (Google Scholar, Scopus, Springer Link, Web of Science, ScienceDirect, ResearchGate, PubMed, ChemSpider, USPTO, Google patents and Espacenet) and library visits in Nepal were carried out to collect the literature on information published prior to April 2019. RESULTS: N. scrophulariiflora was traditionally used for 82 ailments/diseases. There are 124 major phytochemicals extracted from the plant. Several compounds are effective in bioactivity. Pharmacologically, the plant is proved to be anti-atherosclerotic, antidiabetic and anti-inflammatory in-vivo studies, and antimicrobial, antimalarial, antioxidative, hepatoprotective, immunomodulatory and nerve growth factor potentiating from in-vitro studies. Renal improvement activities were confirmed from both in-vivo and in-vitro studies. Toxicological tests and a single clinical trial in human beings have supported the notion that the plant is not poisonous but beneficial for curing wide ranges of diseases. CONCLUSION: N. scrophulariiflora is valuable medicinal plant that can serve as promising source of non-harmful and potential medicinal herbal remedies for human beings.


Assuntos
Etnofarmacologia , Medicina Tradicional/métodos , Extratos Vegetais/farmacologia , Plantaginaceae/química , Butão , China , Humanos , Índia , Mianmar , Nepal , Extratos Vegetais/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa