Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Pathol ; 192(1): 160-177, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34710383

RESUMO

Sigma 1 receptor (Sigmar1) is a widely expressed, multitasking molecular chaperone protein that plays functional roles in several cellular processes. Mutations in the Sigmar1 gene are associated with several distal neuropathies with strong manifestation in skeletal muscle dysfunction with phenotypes like muscle wasting and atrophy. However, the physiological function of Sigmar1 in skeletal muscle remains unknown. Herein, the physiological role of Sigmar1 in skeletal muscle structure and function in gastrocnemius, quadriceps, soleus, extensor digitorum longus, and tibialis anterior muscles was determined. Quantification of myofiber cross-sectional area showed altered myofiber size distribution and changes in myofiber type in the skeletal muscle of the Sigmar1-/- mice. Interestingly, ultrastructural analysis by transmission electron microscopy showed the presence of abnormal mitochondria, and immunostaining showed derangements in dystrophin localization in skeletal muscles from Sigmar1-/- mice. In addition, myopathy in Sigmar1-/- mice was associated with an increased number of central nuclei, increased collagen deposition, and fibrosis. Functional studies also showed reduced endurance and exercise capacity in the Sigmar1-/- mice without any changes in voluntary locomotion, markers for muscle denervation, and muscle atrophy. Overall, this study shows, for the first time, a potential physiological function of Sigmar1 in maintaining healthy skeletal muscle structure and function.


Assuntos
Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Receptores sigma/deficiência , Animais , Colágeno/metabolismo , Distrofina/metabolismo , Fibrose , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/ultraestrutura , Condicionamento Físico Animal , Transporte Proteico , Receptores sigma/metabolismo , Receptor Sigma-1
2.
J Pharmacol Sci ; 151(2): 128-133, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36707178

RESUMO

The Sigma-1 receptor (Sigmar1) is downregulated in heart failure model mice with mitochondrial dysfunction. However, the mechanism in detail has not been investigated. In this study, we investigated the role of Sigmar1 in ER-mitochondria proximity using Sigmar1-knockdown or -overexpressed neonatal rat ventricular myocytes (NRVMs). The endothelin-1 (ET-1)-induced cardiomyocyte hypertrophy was aggravated with the dysregulation of mitochondrial function and ER-mitochondrial junctional formation in Sigmar1-knockdown NRVMs, whereas improved in Sigmar1 overexpressed NRVMs. Our data suggests that the reduction of the cardiac Sigmar1 results in decrease mitochondrial Ca2+ influx and promotes mitochondrial fission, followed by reduced ER-mitochondria proximity, exacerbating ET-1-induced cardiomyocyte injury.


Assuntos
Insuficiência Cardíaca , Receptores sigma , Animais , Camundongos , Ratos , Homeostase/genética , Mitocôndrias , Miócitos Cardíacos/metabolismo , Receptores sigma/genética , Receptores sigma/metabolismo , Retículo Endoplasmático/metabolismo , Cálcio/metabolismo , Receptor Sigma-1
3.
GeoJournal ; 88(3): 3239-3248, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36531533

RESUMO

Using data from the Louisiana Department of Public Health, we explored the spatial relationships between the Social Vulnerability Index (SVI) and COVID-19-related vaccination and mortality rates. Publicly available COVID-19 vaccination and mortality data accrued from December 2020 to October 2021 was downloaded from the Louisiana Department of Health website and merged with the SVI data; geospatial analysis was then performed to identify the spatial association between the SVI and vaccine uptake and mortality rate. Bivariate Moran's I analysis revealed significant clustering of high SVI ranking with low COVID-19 vaccination rates (1.00, p < 0.001) and high smoothed mortality rates (0.61, p < 0.001). Regression revealed that for each 10% increase in SVI ranking, COVID-19 vaccination rates decreased by 3.02-fold (95% CI = 3.73-2.30), and mortality rates increased by a factor of 1.19 (95% CI = 0.99-1.43). SVI values are spatially linked and significantly associated with Louisiana's COVID-19-related vaccination and mortality rates. We also found that vaccination uptake was higher in whites than in blacks. These findings can help identify regions with low vaccination rates and high mortality, enabling the necessary steps to increase vaccination rates in disadvantaged neighborhoods.

4.
Exp Mol Pathol ; 127: 104815, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35870494

RESUMO

Intracellular Ca2+-calmodulin (CaM) signaling plays an important role in Ca2+-CaM-dependent kinase (CaMKII) and calcineurin (CaN)-mediated cardiac biology. While neurogranin (Ng) is known as a major Ca2+-CaM modulator in the brain, its pathophysiological role in cardiac hypertrophy has never been studied before. In the present study, we report that Ng is expressed in the heart and depletion of Ng dysregulates Ca2+ homeostasis and promotes cardiac failure in mice. 10-month-old Ng null mice demonstrate significantly increased heart-to-body weight ratios compared to wild-type. Using histological approaches, we identified that depletion of Ng increases cardiac hypertrophy, fibrosis, and collagen deposition near perivascular areas in the heart tissue of Ng null mice. Ca2+ spark experiments revealed that cardiac myocytes isolated from Ng null mice have decreased spark frequency and width, while the duration of sparks is significantly increased. We also identified that a lack of Ng increases CaMKIIδ signaling and periostin protein expression in these mouse hearts. Overall, we are the first study to explore how Ng expression in the heart plays an important role in Ca2+ homeostasis in cardiac myocytes as well as the pathophysiology of cardiac hypertrophy and fibrosis.


Assuntos
Cálcio , Neurogranina , Animais , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Calmodulina/metabolismo , Cardiomegalia/metabolismo , Fibrose , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Neurogranina/genética , Neurogranina/metabolismo
5.
Int J Mol Sci ; 23(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35456953

RESUMO

Endothelial permeability is a major complication that must be addressed during stroke treatment. Study of the mechanisms underlying blood−brain barrier (BBB) disruption and management of the hypoxic stress-induced permeability of the endothelium following reperfusion are both urgently needed for stroke management. Lysophosphatidic acid (LPA), a bioactive lipid essential for basic cellular functions, causes unfavorable outcomes during stroke progression. LPA-producing enzyme autotaxin (ATX) is regulated in ischemic stroke. We used an electrical cell-substrate impedance sensor (ECIS) to measure endothelial permeability. Mitochondrial bioenergetics were obtained using a Seahorse analyzer. AR-2 probe fluorescence assay was used to measure ATX activity. LPA increased endothelial permeability and reduced junctional protein expression in mouse brain microvascular endothelial cells (MBMEC). LPA receptor inhibitors Ki16425 and AM095 attenuated the LPA-induced changes in the endothelial permeability and junctional proteins. LPA significantly diminished mitochondrial function in MBMEC. ATX was upregulated (p < 0.05) in brain microvascular endothelial cells under hypoxic reperfusion. ATX activity and permeability were attenuated with the use of an ATX inhibitor in a mouse stroke model. The upregulation of ATX with hypoxic reperfusion leads to LPA production in brain endothelial cells favoring permeability. Inhibition of the ATX−LPA−LPAR axis could be therapeutically targeted in stroke to achieve better outcomes.


Assuntos
Permeabilidade Capilar , AVC Isquêmico , Animais , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Lisofosfolipídeos/metabolismo , Camundongos , Diester Fosfórico Hidrolases/metabolismo , Reperfusão
6.
Int J Mol Sci ; 23(9)2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35563066

RESUMO

Reactive oxygen species (ROS) cause oxidative stress by generating reactive aldehydes known as 4-hydroxynonenal (4-HNE). 4-HNE modifies protein via covalent adduction; however, little is known about the degradation mechanism of 4-HNE-adducted proteins. Autophagy is a dynamic process that maintains cellular homeostasis by removing damaged organelles and proteins. In this study, we determined the role of a superoxide dismutase (SOD) mimetic MnTnBuOE-2-PyP5+ (MnP, BMX-001) on rotenone-induced 4-HNE aggresome degradation in HL-1 cardiomyocytes. A rotenone treatment (500 nM) given for 24 h demonstrated both increased ROS and 4-HNE aggresome accumulation in HL-1 cardiomyocytes. In addition, cardiomyocytes treated with rotenone displayed an increase in the autophagy marker LC3-II, as shown by immunoblotting and immunofluorescence. A pre-treatment with MnP (20 µM) for 24 h attenuated rotenone-induced ROS formation. An MnP pre-treatment showed decreased 4-HNE aggresomes and LC3-II formation. A rotenone-induced increase in autophagosomes was attenuated by a pre-treatment with MnP, as shown by fluorescent-tagged LC3 (tfLC3). Rotenone increased tubulin hyperacetylation through the ROS-mediated pathway, which was attenuated by MnP. The disruption of autophagy caused HL-1 cell death because a 3-methyladenine inhibitor of autophagosomes caused reduced cell death. Yet, rapamycin, an inducer of autophagy, increased cell death. These results indicated that a pre-treatment with MnP decreased rotenone-induced 4-HNE aggresomes by enhancing the degradation process.


Assuntos
Miócitos Cardíacos , Rotenona , Autofagossomos/metabolismo , Autofagia , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Rotenona/metabolismo , Rotenona/toxicidade
7.
Mol Pharm ; 17(12): 4676-4690, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33151075

RESUMO

The molecular architecture of pH-responsive amphiphilic block copolymers, their self-assembly behavior to form nanoparticles (NPs), and doxorubicin (DOX)-loading technique govern the extent of DOX-induced cardiotoxicity. We observed that the choice of pH-sensitive tertiary amines, surface charge, and DOX-loading techniques within the self-assembled NPs strongly influence the release and stimulation of DOX-induced cardiotoxicity in primary cardiomyocytes. However, covalent conjugation of DOX to a pH-sensitive nanocarrier through a "conditionally unstable amide" linkage (PCPY-cDOX; PC = polycarbonate and PY = 2-pyrrolidine-1-yl-ethyl-amine) significantly reduced the cardiotoxicity of DOX in cardiomyocytes as compared to noncovalently encapsulated DOX NPs (PCPY-eDOX). When these formulations were tested for drug release in serum-containing media, the PCPY-cDOX systems showed prolonged control over drug release (for ∼72 h) at acidic pH compared to DOX-encapsulated nanocarriers, as expected. We found that DOX-encapsulated nanoformulations triggered cardiotoxicity in primary cardiomyocytes more acutely, while conjugated systems such as PCPY-cDOX prevented cardiotoxicity by disabling the nuclear entry of the drug. Using 2D and 3D (spheroid) cultures of an ER + breast cancer cell line (MCF-7) and a triple-negative breast cancer cell line (MDA-MB-231), we unravel that, similar to encapsulated systems (PCPY-eDOX-type) as reported earlier, the PCPY-cDOX system suppresses cellular proliferation in both cell lines and enhances trafficking through 3D spheroids of MDA-MB-231 cells. Collectively, our studies indicate that PCPY-cDOX is less cardiotoxic as compared to noncovalently encapsulated variants without compromising the chemotherapeutic properties of the drug. Thus, our studies suggest that the appropriate selection of the nanocarrier for DOX delivery may prove fruitful in shifting the balance between low cardiotoxicity and triggering the chemotherapeutic potency of DOX.


Assuntos
Cardiotoxicidade/prevenção & controle , Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Neoplasias/tratamento farmacológico , Polímeros/química , Animais , Animais Recém-Nascidos , Cardiotoxicidade/etiologia , Linhagem Celular Tumoral , Doxorrubicina/farmacocinética , Doxorrubicina/toxicidade , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Concentração de Íons de Hidrogênio , Miócitos Cardíacos , Nanopartículas/química , Neoplasias/patologia , Cimento de Policarboxilato , Cultura Primária de Células , Pirrolidinas/química , Ratos , Esferoides Celulares , Testes de Toxicidade Aguda
8.
Circ Res ; 123(12): 1285-1297, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30566042

RESUMO

RATIONALE: Hypertrophic cardiomyopathy occurs with a frequency of about 1 in 500 people. Approximately 30% of those affected carry mutations within the gene encoding cMyBP-C (cardiac myosin binding protein C). Cardiac stress, as well as cMyBP-C mutations, can trigger production of a 40kDa truncated fragment derived from the amino terminus of cMyBP-C (Mybpc340kDa). Expression of the 40kDa fragment in mouse cardiomyocytes leads to hypertrophy, fibrosis, and heart failure. Here we use genetic approaches to establish a causal role for excessive myofibroblast activation in a slow, progressive genetic cardiomyopathy-one that is driven by a cardiomyocyte-intrinsic genetic perturbation that models an important human disease. OBJECTIVE: TGFß (transforming growth factor-ß) signaling is implicated in a variety of fibrotic processes, and the goal of this study was to define the role of myofibroblast TGFß signaling during chronic Mybpc340kDa expression. METHODS AND RESULTS: To specifically block TGFß signaling only in the activated myofibroblasts in Mybpc340kDa transgenic mice and quadruple compound mutant mice were generated, in which the TGFß receptor II (TßRII) alleles ( Tgfbr2) were ablated using the periostin ( Postn) allele, myofibroblast-specific, tamoxifen-inducible Cre ( Postnmcm) gene-targeted line. Tgfbr2 was ablated either early or late during pathological fibrosis. Early myofibroblast-specific Tgfbr2 ablation during the fibrotic response reduced cardiac fibrosis, alleviated cardiac hypertrophy, preserved cardiac function, and increased lifespan of the Mybpc340kDa transgenic mice. Tgfbr2 ablation late in the pathological process reduced cardiac fibrosis, preserved cardiac function, and prolonged Mybpc340kDa mouse survival but failed to reverse cardiac hypertrophy. CONCLUSIONS: Fibrosis and cardiac dysfunction induced by cardiomyocyte-specific expression of Mybpc340kDa were significantly decreased by Tgfbr2 ablation in the myofibroblast. Surprisingly, preexisting fibrosis was partially reversed if the gene was ablated subsequent to fibrotic deposition, suggesting that continued TGFß signaling through the myofibroblasts was needed to maintain the heart fibrotic response to a chronic, disease-causing cardiomyocyte-only stimulus.


Assuntos
Cardiomiopatia Hipertrófica/metabolismo , Proteínas de Transporte/genética , Miócitos Cardíacos/metabolismo , Miofibroblastos/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Transdução de Sinais , Animais , Cardiomiopatia Hipertrófica/genética , Proteínas de Transporte/metabolismo , Células Cultivadas , Camundongos , Mutação , Receptor do Fator de Crescimento Transformador beta Tipo II/genética
9.
Arterioscler Thromb Vasc Biol ; 39(9): 1739-1746, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31433698

RESUMO

While the opioid epidemic has garnered significant attention, the use of methamphetamines is growing worldwide independent of wealth or region. Following overdose and accidents, the leading cause of death in methamphetamine users is cardiovascular disease, because of significant effects of methamphetamine on vasoconstriction, pulmonary hypertension, atherosclerotic plaque formation, cardiac arrhythmias, and cardiomyopathy. In this review, we examine the current literature on methamphetamine-induced changes in cardiovascular health, discuss the potential mechanisms regulating these varied effects, and highlight our deficiencies in understanding how to treat methamphetamine-associated cardiovascular dysfunction.


Assuntos
Doenças Cardiovasculares/induzido quimicamente , Metanfetamina/toxicidade , Arritmias Cardíacas/induzido quimicamente , Aterosclerose/induzido quimicamente , Cardiomiopatias/induzido quimicamente , Humanos , Hipertensão Pulmonar/induzido quimicamente , Vasoconstrição/efeitos dos fármacos
10.
Proc Natl Acad Sci U S A ; 111(48): E5178-86, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25404307

RESUMO

Proteinopathy causes cardiac disease, remodeling, and heart failure but the pathological mechanisms remain obscure. Mutated αB-crystallin (CryAB(R120G)), when expressed only in cardiomyocytes in transgenic (TG) mice, causes desmin-related cardiomyopathy, a protein conformational disorder. The disease is characterized by the accumulation of toxic misfolded protein species that present as perinuclear aggregates known as aggresomes. Previously, we have used the CryAB(R120G) model to determine the underlying processes that result in these pathologic accumulations and to explore potential therapeutic windows that might be used to decrease proteotoxicity. We noted that total ventricular protein is hypoacetylated while hyperacetylation of α-tubulin, a substrate of histone deacetylase 6 (HDAC6) occurs. HDAC6 has critical roles in protein trafficking and autophagy, but its function in the heart is obscure. Here, we test the hypothesis that tubulin acetylation is an adaptive process in cardiomyocytes. By modulating HDAC6 levels and/or activity genetically and pharmacologically, we determined the effects of tubulin acetylation on aggregate formation in CryAB(R120G) cardiomyocytes. Increasing HDAC6 accelerated aggregate formation, whereas siRNA-mediated knockdown or pharmacological inhibition ameliorated the process. HDAC inhibition in vivo induced tubulin hyperacetylation in CryAB(R120G) TG hearts, which prevented aggregate formation and significantly improved cardiac function. HDAC6 inhibition also increased autophagic flux in cardiomyocytes, and increased autophagy in the diseased heart correlated with increased tubulin acetylation, suggesting that autophagy induction might underlie the observed cardioprotection. Taken together, our data suggest a mechanistic link between tubulin hyperacetylation and autophagy induction and points to HDAC6 as a viable therapeutic target in cardiovascular disease.


Assuntos
Adaptação Fisiológica , Autofagia , Miocárdio/metabolismo , Tubulina (Proteína)/metabolismo , Acetilação/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Células Cultivadas , Coração/efeitos dos fármacos , Coração/fisiologia , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/farmacologia , Immunoblotting , Imuno-Histoquímica , Camundongos Transgênicos , Microscopia Eletrônica , Mutação , Miocárdio/citologia , Miocárdio/ultraestrutura , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Cultura Primária de Células , Ratos Sprague-Dawley , Vorinostat , Cadeia B de alfa-Cristalina/genética , Cadeia B de alfa-Cristalina/metabolismo
11.
Pflugers Arch ; 468(10): 1685-95, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27568194

RESUMO

Cardiac myosin-binding protein C (cMyBP-C) is an integral part of the sarcomeric machinery in cardiac muscle that enables normal function. cMyBP-C regulates normal cardiac contraction by functioning as a brake through interactions with the sarcomere's thick, thin, and titin filaments. cMyBP-C's precise effects as it binds to the different filament systems remain obscure, particularly as it impacts on the myosin heavy chain's head domain, contained within the subfragment 2 (S2) region. This portion of the myosin heavy chain also contains the ATPase activity critical for myosin's function. Mutations in myosin's head, as well as in cMyBP-C, are a frequent cause of familial hypertrophic cardiomyopathy (FHC). We generated transgenic lines in which endogenous cMyBP-C was replaced by protein lacking the residues necessary for binding to S2 (cMyBP-C(S2-)). We found, surprisingly, that cMyBP-C lacking the S2 binding site is incorporated normally into the sarcomere, although systolic function is compromised. We show for the first time the acute and chronic in vivo consequences of ablating a filament-specific interaction of cMyBP-C. This work probes the functional consequences, in the whole animal, of modifying a critical structure-function relationship, the protein's ability to bind to a region of the critical enzyme responsible for muscle contraction, the subfragment 2 domain of the myosin heavy chain. We show that the binding is not critical for the protein's correct insertion into the sarcomere's architecture, but is essential for long-term, normal function in the physiological context of the heart.


Assuntos
Proteínas de Transporte/metabolismo , Miocárdio/metabolismo , Miosinas/metabolismo , Animais , Sítios de Ligação , Proteínas de Transporte/genética , Camundongos , Contração Muscular , Mutação , Ligação Proteica , Sarcômeros/metabolismo
12.
J Pharmacol Sci ; 131(3): 172-83, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27435383

RESUMO

Haloperidol is an antipsychotic drug that inhibits the dopamine D2 receptor among others. Haloperidol also binds the sigma-1 receptor (σ1R) and inhibits it irreversibly. A serious outcome of haloperidol treatment of schizophrenia patients is death due to sudden cardiac failure. Although the cause remains unclear, we hypothesized that these effects were mediated by chronic haloperidol inhibition of cardiac σ1R. To test this, we treated neonatal rat cardiomyocytes with haloperidol, exposed them to angiotensin II and assessed hypertrophy, σ1R expression, mitochondrial Ca(2+) transport and ATP levels. In this context, haloperidol treatment altered mitochondrial Ca(2+) transport resulting in decreased ATP content by inactivating cardiac σ1R and/or reducing its expression. We also performed transverse aortic constriction (TAC) and then treated mice with haloperidol. After two weeks, haloperidol-treated mice showed enhanced heart failure marked by deteriorated cardiac function, reduced ATP production and increasing mortality relative to TAC only mice. ATP supplementation via sodium pyruvate rescued phenotypes seen in haloperidol-treated TAC mice. We conclude that σ1R inactivation or downregulation in response to haloperidol treatment impairs mitochondrial Ca(2+) mobilization, depleting ATP depletion from cardiomyocytes. These findings suggest a novel approach to mitigate haloperidol-related adverse effects in schizophrenia patients by ATP supplementation.


Assuntos
Antipsicóticos/farmacologia , Aorta/patologia , Haloperidol/farmacologia , Insuficiência Cardíaca/etiologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Angiotensina II/farmacologia , Animais , Cálcio/metabolismo , Constrição , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Mitocôndrias Cardíacas/fisiologia
13.
Sci Rep ; 14(1): 8996, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637671

RESUMO

Alzheimer's disease (AD), a neurodegenerative disease that mostly affects the elderly, slowly impairs memory, cognition, and daily tasks. AD has long been one of the most debilitating chronic neurological disorders, affecting mostly people over 65. In this study, we investigated the use of Vision Transformer (ViT) for Magnetic Resonance Image processing in the context of AD diagnosis. ViT was utilized to extract features from MRIs, map them to a feature sequence, perform sequence modeling to maintain interdependencies, and classify features using a time series transformer. The proposed model was evaluated using ADNI T1-weighted MRIs for binary and multiclass classification. Two data collections, Complete 1Yr 1.5T and Complete 3Yr 3T, from the ADNI database were used for training and testing. A random split approach was used, allocating 60% for training and 20% for testing and validation, resulting in sample sizes of (211, 70, 70) and (1378, 458, 458), respectively. The performance of our proposed model was compared to various deep learning models, including CNN with BiL-STM and ViT with Bi-LSTM. The suggested technique diagnoses AD with high accuracy (99.048% for binary and 99.014% for multiclass classification), precision, recall, and F-score. Our proposed method offers researchers an approach to more efficient early clinical diagnosis and interventions.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Idoso , Doença de Alzheimer/patologia , Doenças Neurodegenerativas/patologia , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
14.
Front Cardiovasc Med ; 11: 1412867, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39022622

RESUMO

Background: Peripheral artery disease (PAD) is on the rise worldwide, ranking as the third leading cause of atherosclerosis-related morbidity; much less is known about its trends in hospitalizations among methamphetamine and cocaine users. Objectives: We aim to evaluate the overall trend in the prevalence of hospital admission for PAD with or without the use of stimulant abuse (methamphetamine and cocaine) across the United States. Additionally, we evaluated the PAD-related hospitalizations trend stratified by age, race, sex, and geographic location. Methods: We used the National Inpatient Sample (NIS) database from 2008 to 2020. The Cochran Armitage trend test was used to compare the trend between groups. Multivariate logistic regression was used to examine adjusted odds for PAD and CLI hospitalizations among methamphetamine and cocaine users. Results: Between 2008 and 2020, PAD-related hospitalizations showed an increasing trend in Hispanics, African Americans, and western states, while a decreasing trend in southern and Midwestern states (p-trend <0.05). Among methamphetamine users, an overall increasing trend was observed in men, women, western, southern, and midwestern states (p-trend <0.05). However, among cocaine users, PAD-related hospitalization increased significantly for White, African American, age group >64 years, southern and western states (p-trend <0.05). Overall, CLI-related hospitalizations showed an encouraging decreasing trend in men and women, age group >64 years, and CLI-related amputations declined for women, White patient population, age group >40, and all regions (p-trend <0.05). However, among methamphetamine users, a significantly increasing trend in CLI-related hospitalization was seen in men, women, White & Hispanic population, age group 26-45, western, southern, and midwestern regions. Conclusions: There was an increasing trend in PAD-related hospitalizations among methamphetamine and cocaine users for both males and females. Although an overall decreasing trend in CLI-related hospitalization was observed for both genders, an up-trend in CLI was seen among methamphetamine users. The upward trends were more prominent for White, Hispanic & African Americans, and southern and western states, highlighting racial and geographic variations over the study period.

15.
Sci Rep ; 14(1): 16715, 2024 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030247

RESUMO

Alzheimer's Disease (AD) is a progressive neurodegenerative disease caused by the deposition of Aß aggregates or neurofibrillary tangles. AD patients are primarily diagnosed with the concurrent development of several cardiovascular dysfunctions. While few studies have indicated the presence of intramyocardial Aß aggregates, none of the studies have performed detailed analyses for pathomechanism of cardiac dysfunction in AD patients. This manuscript used aged APPSWE/PS1 Tg and littermate age-matched wildtype (Wt) mice to characterize cardiac dysfunction and analyze associated pathophysiology. Detailed assessment of cardiac functional parameters demonstrated the development of diastolic dysfunction in APPSWE/PS1 Tg hearts compared to Wt hearts. Muscle function evaluation showed functional impairment (decreased exercise tolerance and muscle strength) in APPSWE/PS1 Tg mice. Biochemical and histochemical analysis revealed Aß aggregate accumulation in APPSWE/PS1 Tg mice myocardium. APPSWE/PS1 Tg mice hearts also demonstrated histopathological remodeling (increased collagen deposition and myocyte cross-sectional area). Additionally, APPSWE/PS1 Tg hearts showed altered mitochondrial dynamics, reduced antioxidant protein levels, and impaired mitochondrial proteostasis compared to Wt mice. APPSWE/PS1 Tg hearts also developed mitochondrial dysfunction with decreased OXPHOS and PDH protein complex expressions, altered ETC complex dynamics, decreased complex activities, and reduced mitochondrial respiration. Our results indicated that Aß aggregates in APPSWE/PS1 Tg hearts are associated with defects in mitochondrial respiration and complex activities, which may collectively lead to cardiac diastolic dysfunction and myocardial pathological remodeling.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Modelos Animais de Doenças , Camundongos Transgênicos , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Camundongos , Peptídeos beta-Amiloides/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Mitocôndrias/metabolismo , Diástole , Humanos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Masculino
16.
medRxiv ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38947006

RESUMO

Heart disease is the leading cause of death worldwide, and cardiac function as measured by ejection fraction (EF) is an important determinant of outcomes, making accurate measurement a critical parameter in PT evaluation. Echocardiograms are commonly used for measuring EF, but human interpretation has limitations in terms of intra- and inter-observer (or reader) variance. Deep learning (DL) has driven a resurgence in machine learning, leading to advancements in medical applications. We introduce the ViViEchoformer DL approach, which uses a video vision transformer to directly regress the left ventricular function (LVEF) from echocardiogram videos. The study used a dataset of 10,030 apical-4-chamber echocardiography videos from patients at Stanford University Hospital. The model accurately captures spatial information and preserves inter-frame relationships by extracting spatiotemporal tokens from video input, allowing for accurate, fully automatic EF predictions that aid human assessment and analysis. The ViViEchoformer's prediction of ejection fraction has a mean absolute error of 6.14%, a root mean squared error of 8.4%, a mean squared log error of 0.04, and an R 2 of 0.55. ViViEchoformer predicted heart failure with reduced ejection fraction (HFrEF) with an area under the curve of 0.83 and a classification accuracy of 87 using a standard threshold of less than 50% ejection fraction. Our video-based method provides precise left ventricular function quantification, offering a reliable alternative to human evaluation and establishing a fundamental basis for echocardiogram interpretation.

17.
Front Physiol ; 15: 1386296, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38742156

RESUMO

Sigmar1 is a ubiquitously expressed, multifunctional protein known for its cardioprotective roles in cardiovascular diseases. While accumulating evidence indicate a critical role of Sigmar1 in cardiac biology, its physiological function in the vasculature remains unknown. In this study, we characterized the expression of Sigmar1 in the vascular wall and assessed its physiological function in the vascular system using global Sigmar1 knockout (Sigmar1-/-) mice. We determined the expression of Sigmar1 in the vascular tissue using immunostaining and biochemical experiments in both human and mouse blood vessels. Deletion of Sigmar1 globally in mice (Sigmar1-/-) led to blood vessel wall reorganizations characterized by nuclei disarray of vascular smooth muscle cells, altered organizations of elastic lamina, and higher collagen fibers deposition in and around the arteries compared to wildtype littermate controls (Wt). Vascular function was assessed in mice using non-invasive time-transit method of aortic stiffness measurement and flow-mediated dilation (FMD) of the left femoral artery. Sigmar1-/- mice showed a notable increase in arterial stiffness in the abdominal aorta and failed to increase the vessel diameter in response to reactive-hyperemia compared to Wt. This was consistent with reduced plasma and tissue nitric-oxide bioavailability (NOx) and decreased phosphorylation of endothelial nitric oxide synthase (eNOS) in the aorta of Sigmar1-/- mice. Ultrastructural analysis by transmission electron microscopy (TEM) of aorta sections showed accumulation of elongated shaped mitochondria in both vascular smooth muscle and endothelial cells of Sigmar1-/- mice. In accordance, decreased mitochondrial respirometry parameters were found in ex-vivo aortic rings from Sigmar1 deficient mice compared to Wt controls. These data indicate a potential role of Sigmar1 in maintaining vascular homeostasis.

18.
JACC Adv ; 3(7): 100840, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39130045

RESUMO

Background: Methamphetamine is an emerging drug threat. The disparity in cardiomyopathy-associated hospital admissions among methamphetamine users (CAHMA) over the decade remains unknown. Objectives: The purpose of this study was to determine the trends and prevalence of CAHMA by age, sex, race, and geographical region. Methods: We used data from 2008 to 2020 from the National Inpatient Sample database. We identified 12,845,919 cardiomyopathy-associated hospital admissions; among them, 222,727 were diagnosed as methamphetamine users. A generalized linear model with binomial link function was used to compute the prevalence ratio and 95% CI. Those who used other substances along with methamphetamine were excluded from the analysis. Results: CAHMA increased by 231% (P trend <0.001) from 2008 to 2020. CAHMA increased 345% for men (P trend <0.001) and 122% for women (P trend <0.001), 271% for non-Hispanic White (P trend <0.001), 254% for non-Hispanic Black (p trend <0.001), 565% for Hispanic (P trend <0.001), and 645% for non-Hispanic Asian (P trend <0.001) population. CAHMA also increased significantly in the West region (530%) (P trend <0.001) and South region (200%) (P trend <0.001) of the United States. Men, Hispanic population, age groups 26 to 40 and 41 to 64 years, and Western regions showed a significantly higher uptrend than their counterparts (P trend <0.001). Conclusions: CAHMA have increased significantly in the United States. Men, Hispanics, non-Hispanic Asian, age groups 41 to 64. and western regions showed a higher proportional increase highlighting gender-based, racial/ethnic, and regional disparities over the study period.

19.
Blood Adv ; 8(9): 2104-2117, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38498701

RESUMO

ABSTRACT: Venous thromboembolic events are significant contributors to morbidity and mortality in patients with stroke. Neutrophils are among the first cells in the blood to respond to stroke and are known to promote deep vein thrombosis (DVT). Integrin α9 is a transmembrane glycoprotein highly expressed on neutrophils and stabilizes neutrophil adhesion to activated endothelium via vascular cell adhesion molecule 1 (VCAM-1). Nevertheless, the causative role of neutrophil integrin α9 in poststroke DVT remains unknown. Here, we found higher neutrophil integrin α9 and plasma VCAM-1 levels in humans and mice with stroke. Using mice with embolic stroke, we observed enhanced DVT severity in a novel model of poststroke DVT. Neutrophil-specific integrin α9-deficient mice (α9fl/flMrp8Cre+/-) exhibited a significant reduction in poststroke DVT severity along with decreased neutrophils and citrullinated histone H3 in thrombi. Unbiased transcriptomics indicated that α9/VCAM-1 interactions induced pathways related to neutrophil inflammation, exocytosis, NF-κB signaling, and chemotaxis. Mechanistic studies revealed that integrin α9/VCAM-1 interactions mediate neutrophil adhesion at the venous shear rate, promote neutrophil hyperactivation, increase phosphorylation of extracellular signal-regulated kinase, and induce endothelial cell apoptosis. Using pharmacogenomic profiling, virtual screening, and in vitro assays, we identified macitentan as a potent inhibitor of integrin α9/VCAM-1 interactions and neutrophil adhesion to activated endothelial cells. Macitentan reduced DVT severity in control mice with and without stroke, but not in α9fl/flMrp8Cre+/- mice, suggesting that macitentan improves DVT outcomes by inhibiting neutrophil integrin α9. Collectively, we uncovered a previously unrecognized and critical pathway involving the α9/VCAM-1 axis in neutrophil hyperactivation and DVT.


Assuntos
Integrinas , Neutrófilos , Acidente Vascular Cerebral , Molécula 1 de Adesão de Célula Vascular , Trombose Venosa , Animais , Humanos , Masculino , Camundongos , Adesão Celular , Modelos Animais de Doenças , Integrinas/metabolismo , Camundongos Knockout , Ativação de Neutrófilo , Neutrófilos/metabolismo , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/etiologia , Molécula 1 de Adesão de Célula Vascular/metabolismo , Trombose Venosa/metabolismo , Trombose Venosa/etiologia
20.
Am J Physiol Heart Circ Physiol ; 305(8): H1201-12, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23934856

RESUMO

Although pentazocine binds to σ1-receptor (σ1R) with high affinity, the physiological relevance of its binding remains unclear. We first confirmed that σ1R stimulation with pentazocine rescues contractile dysfunction following pressure overload (PO)-induced cardiac hypertrophy ovariectomized (OVX) female rats. In in vivo studies, vehicle, pentazocine (0.5-1.0 mg/kg ip), and NE-100 (1.0 mg/kg po), a σ1R antagonist, were administered for 4 wk (once daily) starting from the onset of aortic banding after OVX. We also examined antihypertrophic effects of pentazocine (0.5-1 µM) in cultured cardiomyocytes exposed to angiotensin II. Pentazocine administration significantly inhibited PO-induced cardiac hypertrophy and rescued hypertrophy-induced impairment of cardiac dysfunctions such as left ventricular end-diastolic pressure, left ventricular developed pressure, and left ventricular contraction and relaxation (±dp/dt) rates. Coadministration of NE-100 with pentazocine eliminated pentazocine-induced amelioration of heart dysfunction. Interestingly, pentazocine administration inhibited PO-induced σ1R reduction and inositol-1,4,5-trisphosphate (IP3) receptor type 2 (IP3R2) upregulation in heart. Therefore, the reduced mitochondrial ATP production following PO was restored by pentazocine administration. Furthermore, we found that σ1R binds to the ryanodine receptor (RyR) in addition to IP3 receptor (IP3R) in cardiomyocytes. The σ1R/RyR complexes were decreased following OVX-PO and restored by pentazocine administration. We noticed that pentazocine inhibits the ryanodine-induced Ca(2+) release from sarcoplasmic reticulum (SR) in cultured cardiomyocytes. Taken together, the stimulation of σ1R by pentazocine rescues cardiac dysfunction by restoring IP3R-mediated mitochondrial ATP production and by suppressing RyR-mediated Ca(2+) leak from SR in cardiomyocytes.


Assuntos
Receptores de Inositol 1,4,5-Trifosfato/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Entorpecentes/farmacologia , Pentazocina/farmacologia , Receptores sigma/agonistas , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos , Trifosfato de Adenosina/biossíntese , Angiotensina II/farmacologia , Animais , Anisóis/farmacologia , Cálcio/metabolismo , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatologia , Células Cultivadas , Feminino , Coração/efeitos dos fármacos , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/fisiopatologia , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Mitocôndrias/metabolismo , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Antagonistas de Entorpecentes/farmacologia , Ovariectomia , Propilaminas/farmacologia , Ratos , Ratos Wistar , Receptores sigma/antagonistas & inibidores , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , Vasoconstritores/farmacologia , Receptor Sigma-1
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa