Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 302
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 19(1): 29-40, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29242539

RESUMO

Although deletion of certain autophagy-related genes has been associated with defects in hematopoiesis, it remains unclear whether hyperactivated mitophagy affects the maintenance and differentiation of hematopoietic stem cells (HSCs) and committed progenitor cells. Here we report that targeted deletion of the gene encoding the AAA+-ATPase Atad3a hyperactivated mitophagy in mouse hematopoietic cells. Affected mice showed reduced survival, severely decreased bone-marrow cellularity, erythroid anemia and B cell lymphopenia. Those phenotypes were associated with skewed differentiation of stem and progenitor cells and an enlarged HSC pool. Mechanistically, Atad3a interacted with the mitochondrial channel components Tom40 and Tim23 and served as a bridging factor to facilitate appropriate transportation and processing of the mitophagy protein Pink1. Loss of Atad3a caused accumulation of Pink1 and activated mitophagy. Notably, deletion of Pink1 in Atad3a-deficient mice significantly 'rescued' the mitophagy defect, which resulted in restoration of the progenitor and HSC pools. Our data indicate that Atad3a suppresses Pink1-dependent mitophagy and thereby serves a key role in hematopoietic homeostasis.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Homeostase , Proteínas Mitocondriais/metabolismo , Mitofagia , Proteínas Quinases/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , Animais , Apoptose/genética , Diferenciação Celular/genética , Proliferação de Células/genética , Células HEK293 , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/genética , Proteínas Quinases/genética
2.
J Pathol ; 262(4): 427-440, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38229567

RESUMO

Radiotherapy is one of the standard therapeutic regimens for medulloblastoma (MB). Tumor cells utilize DNA damage repair (DDR) mechanisms to survive and develop resistance during radiotherapy. It has been found that targeting DDR sensitizes tumor cells to radiotherapy in several types of cancer, but whether and how DDR pathways are involved in the MB radiotherapy response remain to be determined. Single-cell RNA sequencing was carried out on 38 MB tissues, followed by expression enrichment assays. Fanconi anemia group D2 gene (FANCD2) expression was evaluated in MB samples and public MB databases. The function of FANCD2 in MB cells was examined using cell counting assays (CCK-8), clone formation, lactate dehydrogenase activity, and in mouse orthotopic models. The FANCD2-related signaling pathway was investigated using assays of peroxidation, a malondialdehyde assay, a reduced glutathione assay, and using FerroOrange to assess intracellular iron ions (Fe2+ ). Here, we report that FANCD2 was highly expressed in the malignant sonic hedgehog (SHH) MB subtype (SHH-MB). FANCD2 played an oncogenic role and predicted worse prognosis in SHH-MB patients. Moreover, FANCD2 knockdown markedly suppressed viability, mobility, and growth of SHH-MB cells and sensitized SHH-MB cells to irradiation. Mechanistically, FANCD2 deficiency led to an accumulation of Fe2+ due to increased divalent metal transporter 1 expression and impaired glutathione peroxidase 4 activity, which further activated ferroptosis and reduced proliferation of SHH-MB cells. Using an orthotopic mouse model, we observed that radiotherapy combined with silencing FANCD2 significantly inhibited the growth of SHH-MB cell-derived tumors in vivo. Our study revealed FANCD2 as a potential therapeutic target in SHH-MB and silencing FANCD2 could sensitize SHH-MB cells to radiotherapy via inducing ferroptosis. © 2024 The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias Cerebelares , Anemia de Fanconi , Ferroptose , Meduloblastoma , Camundongos , Animais , Humanos , Meduloblastoma/genética , Meduloblastoma/radioterapia , Ferroptose/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/radioterapia , Linhagem Celular Tumoral , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética
3.
Nature ; 567(7749): 525-529, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30814730

RESUMO

T cells become dysfunctional when they encounter self antigens or are exposed to chronic infection or to the tumour microenvironment1. The function of T cells is tightly regulated by a combinational co-stimulatory signal, and dominance of negative co-stimulation results in T cell dysfunction2. However, the molecular mechanisms that underlie this dysfunction remain unclear. Here, using an in vitro T cell tolerance induction system in mice, we characterize genome-wide epigenetic and gene expression features in tolerant T cells, and show that they are distinct from effector and regulatory T cells. Notably, the transcription factor NR4A1 is stably expressed at high levels in tolerant T cells. Overexpression of NR4A1 inhibits effector T cell differentiation, whereas deletion of NR4A1 overcomes T cell tolerance and exaggerates effector function, as well as enhancing immunity against tumour and chronic virus. Mechanistically, NR4A1 is preferentially recruited to binding sites of the transcription factor AP-1, where it represses effector-gene expression by inhibiting AP-1 function. NR4A1 binding also promotes acetylation of histone 3 at lysine 27 (H3K27ac), leading to activation of tolerance-related genes. This study thus identifies NR4A1 as a key general regulator in the induction of T cell dysfunction, and a potential target for tumour immunotherapy.


Assuntos
Regulação da Expressão Gênica/genética , Genoma , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Linfócitos T/metabolismo , Linfócitos T/patologia , Acetilação , Animais , Infecções por Arenaviridae/imunologia , Infecções por Arenaviridae/virologia , Linhagem Celular Tumoral , Colite/imunologia , Colite/patologia , Colite/terapia , Epigênese Genética , Feminino , Histonas/química , Histonas/metabolismo , Tolerância Imunológica/genética , Imunoterapia , Vírus da Coriomeningite Linfocítica/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Linfócitos T/imunologia , Fator de Transcrição AP-1/metabolismo , Transcrição Gênica
4.
Am J Pathol ; 193(12): 2111-2121, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37741452

RESUMO

Tumor mutation burden (TMB) is a potential biomarker for evaluating the prognosis and response to immune checkpoint inhibitors, but its costly and time-consuming method of measurement limits its widespread application. This study aimed to identify the TMB-related histopathologic features from hematoxylin and eosin slides and explore their prognostic value in gliomas. TMB-related features were detected using a graph convolutional neural network from whole-slide images of patients from The Cancer Genome Atlas data set (619 patients), and the correlation between features and TMB was evaluated in an external validation set (237 patients). TMB-related features were used for predicting overall survival (OS) of patients to investigate whether these features have potential for prognostic prediction. Moreover, biological pathways underlying the prognostic value of the features were further explored. Histopathologic features derived from whole-slide images were significantly associated with patient TMB (P = 0.007 in the external validation set). TMB-related features showed excellent performance for OS prediction, and patients with lower-grade gliomas could be further stratified into different risk groups according to the features (P = 0.00013; hazard ratio, 4.004). Pathways involved in the cell cycle and execution of immune response were enriched in patients with higher OS risk. The TMB-related features could be used to estimate TMB and aid in prognostic risk stratification of patients with glioma with dysregulated biological pathways.


Assuntos
Aprendizado Profundo , Glioma , Humanos , Glioma/genética , Ciclo Celular , Divisão Celular , Mutação , Biomarcadores Tumorais , Prognóstico
6.
Br J Cancer ; 128(1): 121-129, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36323880

RESUMO

BACKGROUND: Neoadjuvant treatment with a dual anti-human epidermal growth factor receptor 2 (HER2) blockade with pyrotinib and trastuzumab has been shown to be effective for HER2-positive breast cancer. METHODS: The genomic characteristics of 425 cancer-related genes from the archived tumour blocks of 50 patients enrolled in a prospective neoadjuvant pyrotinib and trastuzumab plus chemotherapy clinical trial (ChiCTR1900022293) were assessed by next-generation sequencing (NGS). The relationship between tumour biomarkers and the postoperative pathological complete response (pCR) were explored. RESULTS: Forty-five patients completed neoadjuvant chemotherapy and final surgery, of which 26 (58%) achieved a pCR. Among all driver gene mutations, PIK3CA mutation was screened out for having a significant relationship with the treatment response. The pCR rate of patients with wild-type PIK3CA was significantly higher than patients with mutated PIK3CA (80.8% vs. 26.3%; P = 0.00057), and remained significant after a multiple comparison adjustment (Padjusted = 0.024). We further evaluated the predictive value with logistic regression model of clinical features, genetic biomarkers or both, an AUC of 0.912 (95% CI: 0.827-0.997) was achieved in the integrated model. CONCLUSIONS: Our data suggest that HER2-positive breast cancers with activating mutations in PIK3CA are less likely to benefit from pyrotinib combined with trastuzumab neoadjuvant therapy.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Trastuzumab , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Terapia Neoadjuvante , Estudos Prospectivos , Anticorpos Monoclonais Humanizados , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Resultado do Tratamento
7.
J Virol ; 96(12): e0041222, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35652658

RESUMO

SARS-CoV-2 is the causative agent of the ongoing pandemic of coronavirus disease 2019 (COVID-19) and poses a significant threat to global health. N protein (NP), which is a major pathogenic protein among betacoronaviruses, binds to the viral RNA genome to allow viral genome packaging and viral particle release. Recent studies showed that NP antagonizes interferon (IFN) induction and mediates phase separation. Using live SARS-CoV-2 viruses, this study provides solid evidence showing that SARS-CoV-2 NP associates with G3BP1 and G3BP2 in vitro and in vivo. NPSARS-CoV-2 could efficiently suppress G3BP-mediated SG formation and potentiate viral infection by overcoming G3BP1-mediated antiviral innate immunity. G3BP1 conditional knockout mice (g3bp1fl/fL, Sftpc-Cre) exhibit significantly higher lung viral loads after SARS-CoV-2 infection than wild-type mice. Our findings contribute to the growing body of knowledge regarding the pathogenicity of NPSARS-CoV-2 and provide insight into new therapeutics targeting NPSARS-CoV-2. IMPORTANCE In this study, by in vitro assay and live SARS-CoV-2 virus infection, we provide solid evidence that the SARS-CoV-2 NP associates with G3BP1 and G3BP2 in vitro and in vivo. NPSARS-CoV-2 could efficiently suppress G3BP-mediated SG formation and potentiate viral infection by overcoming antiviral innate immunity mediated by G3BP1 in A549 cell lines and G3BP1 conditional knockout mice (g3bp1-cKO) mice, which provide in-depth evidence showing the mechanism underlying NP-related SARS-CoV-2 pathogenesis through G3BPs.


Assuntos
COVID-19 , Proteínas do Nucleocapsídeo de Coronavírus , Proteínas de Ligação a Poli-ADP-Ribose , SARS-CoV-2 , Replicação Viral , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , COVID-19/imunologia , COVID-19/virologia , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , DNA Helicases/metabolismo , Interações entre Hospedeiro e Microrganismos/imunologia , Camundongos , Fosfoproteínas/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Grânulos de Estresse , Replicação Viral/genética
8.
J Pathol ; 258(2): 121-135, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35723032

RESUMO

Tumour-associated macrophages (TAMs) abundantly infiltrate high-grade gliomas and orchestrate immune response, but their diversity in isocitrate dehydrogenase (IDH)-differential grade 4 gliomas remains largely unknown. This study aimed to dissect the transcriptional states, spatial distribution, and clinicopathological significance of distinct monocyte-derived TAM (Mo-TAM) and microglia-derived TAM (Mg-TAM) clusters across glioblastoma-IDH-wild type and astrocytoma-IDH-mutant-grade 4 (Astro-IDH-mut-G4). Single-cell RNA sequencing was performed on four cases of human glioblastoma and three cases of Astro-IDH-mut-G4. Cell clustering, single-cell regulatory network inference, and gene set enrichment analysis were performed to characterize the functional states of myeloid clusters. The spatial distribution of TAM subsets was determined in human glioma tissues using multiplex immunostaining. The prognostic value of different TAM-cluster specific gene sets was evaluated in the TCGA glioma cohort. Profiling and unbiased clustering of 24,227 myeloid cells from glioblastoma and Astro-IDH-mut-G4 identified nine myeloid cell clusters including monocytes, six Mo/Mg-TAM subsets, dendritic cells, and proliferative myeloid clusters. Different Mo/Mg-TAM clusters manifest functional and transcriptional diversity controlled by specific regulons. Multiplex immunostaining of subset-specific markers identified spatial enrichment of distinct TAM clusters at peri-vascular/necrotic areas in tumour parenchyma or at the tumour-brain interface. Glioblastoma harboured a substantially higher number of monocytes and Mo-TAM-inflammatory clusters, whereas Astro-IDH-mut-G4 had a higher proportion of TAM subsets mediating antigen presentation. Glioblastomas with a higher proportion of monocytes exhibited a mesenchymal signature, increased angiogenesis, and worse patient outcome. Our findings provide insight into myeloid cell diversity and its clinical relevance in IDH-differential grade 4 gliomas, and may serve as a resource for immunotherapy development. © 2022 The Pathological Society of Great Britain and Ireland.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Glioma , Astrocitoma/genética , Astrocitoma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioblastoma/genética , Glioblastoma/patologia , Glioma/genética , Humanos , Isocitrato Desidrogenase/genética , Mutação , Macrófagos Associados a Tumor
9.
Nature ; 545(7654): 365-369, 2017 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-28489822

RESUMO

The mechanistic target of rapamycin (mTOR) has a key role in the integration of various physiological stimuli to regulate several cell growth and metabolic pathways. mTOR primarily functions as a catalytic subunit in two structurally related but functionally distinct multi-component kinase complexes, mTOR complex 1 (mTORC1) and mTORC2 (refs 1, 2). Dysregulation of mTOR signalling is associated with a variety of human diseases, including metabolic disorders and cancer. Thus, both mTORC1 and mTORC2 kinase activity is tightly controlled in cells. mTORC1 is activated by both nutrients and growth factors, whereas mTORC2 responds primarily to extracellular cues such as growth-factor-triggered activation of PI3K signalling. Although both mTOR and GßL (also known as MLST8) assemble into mTORC1 and mTORC2 (refs 11, 12, 13, 14, 15), it remains largely unclear what drives the dynamic assembly of these two functionally distinct complexes. Here we show, in humans and mice, that the K63-linked polyubiquitination status of GßL dictates the homeostasis of mTORC2 formation and activation. Mechanistically, the TRAF2 E3 ubiquitin ligase promotes K63-linked polyubiquitination of GßL, which disrupts its interaction with the unique mTORC2 component SIN1 (refs 12, 13, 14) to favour mTORC1 formation. By contrast, the OTUD7B deubiquitinase removes polyubiquitin chains from GßL to promote GßL interaction with SIN1, facilitating mTORC2 formation in response to various growth signals. Moreover, loss of critical ubiquitination residues in GßL, by either K305R/K313R mutations or a melanoma-associated GßL(ΔW297) truncation, leads to elevated mTORC2 formation, which facilitates tumorigenesis, in part by activating AKT oncogenic signalling. In support of a physiologically pivotal role for OTUD7B in the activation of mTORC2/AKT signalling, genetic deletion of Otud7b in mice suppresses Akt activation and Kras-driven lung tumorigenesis in vivo. Collectively, our study reveals a GßL-ubiquitination-dependent switch that fine-tunes the dynamic organization and activation of the mTORC2 kinase under both physiological and pathological conditions.


Assuntos
Carcinogênese , Endopeptidases/metabolismo , Complexos Multiproteicos/metabolismo , Transdução de Sinais , Fator 2 Associado a Receptor de TNF/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Ubiquitina/metabolismo , Ubiquitinação , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Linhagem Celular , Endopeptidases/deficiência , Endopeptidases/genética , Ativação Enzimática , Feminino , Homeostase , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Complexos Multiproteicos/biossíntese , Complexos Multiproteicos/química , Fosforilação , Poliubiquitina/metabolismo , Ligação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/biossíntese , Serina-Treonina Quinases TOR/química , Homólogo LST8 da Proteína Associada a mTOR
10.
Lab Invest ; 102(12): 1304-1313, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35882906

RESUMO

Glioma progression is accompanied with increased tumor tissue stiffness, yet the underlying mechanisms are unclear. Herein, we employed atomic force microscopy analysis to show that tissue stiffness was higher in isocitrate dehydrogenase (IDH)-wild type gliomas than IDH-mutant gliomas. Bioinformatic analyses revealed that tissue inhibitor of metalloproteinase-1 (TIMP1) was one of the preferentially upregulated genes in IDH-wild type gliomas as compared to IDH-mutant gliomas, and its higher expression indicated worse prognosis of glioma patients. TIMP1 intensity determined by immunofluorescence staining on glioma tissues positively correlated with glioma tissue stiffness. Mechanistically, TIMP1 expression was positively correlated with the gene expression of two predominant extracellular matrix components, tenascin C and fibronectin, both of which were also highly expressed in IDH-wild type gliomas. By introducing IDH1-R132H-containing vectors into human IDH1-wild type glioma cells to obtain an IDH1-mutant cell line, we found that IDH1 mutation increased the TIMP1 promoter methylation through methylation-specific PCR. More importantly, IDH1-R132H mutation decreased both the expression of TIMP1, fibronectin, tenascin C, and the tumor tissue stiffness in IDH1-mutant glioma xenografts in contrast to IDH1-wild type counterparts. Moreover, TIMP1 knockdown in IDH-wild type glioma cells inhibited the expression of tenascin C and fibronectin, and decreased tissue stiffness in intracranial glioma xenografts. Conclusively, we revealed an IDH mutation status-mediated mechanism in regulating glioma tissue stiffness through modulating TIMP1 and downstream extracellular matrix components.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Fibronectinas/genética , Neoplasias Encefálicas/metabolismo , Tenascina/genética , Inibidor Tecidual de Metaloproteinase-1/genética , Glioma/metabolismo , Mutação , Matriz Extracelular/metabolismo
11.
Lab Invest ; 102(7): 722-730, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34963686

RESUMO

Glioma stem cells (GSCs) are self-renewing tumor cells with multi-lineage differentiation potential and the capacity of construct glioblastoma (GBM) heterogenicity. Mitochondrial morphology is associated with the metabolic plasticity of GBM cells. Previous studies have revealed distinct mitochondrial morphologies and metabolic phenotypes between GSCs and non-stem tumor cells (NSTCs), whereas the molecules regulating mitochondrial dynamics in GBM cells are largely unknown. Herein, we report that carnitine palmitoyltransferase 1A (CPT1A) is preferentially expressed in NSTCs, and governs mitochondrial dynamics and GSC differentiation. Expressions of CPT1A and GSC marker CD133 were mutually exclusive in human GBMs. Overexpression of CPT1A inhibited GSC self-renewal but promoted mitochondrial fusion. In contrast, disruption of CPT1A in NSTCs promoted mitochondrial fission and reprogrammed NSTCs toward GSC feature. Mechanistically, CPT1A overexpression increased the phosphorylation of dynamin-related protein 1 at Ser-637 to promote mitochondrial fusion. In vivo, CPT1A overexpression decreased the percentage of GSCs, impaired GSC-derived xenograft growth and prolonged tumor-bearing mice survival. Our work identified CPT1A as a critical regulator of mitochondrial dynamics and GSC differentiation, indicating that CPT1A could be developed as a molecular target for GBM cell-differentiation strategy.


Assuntos
Neoplasias Encefálicas , Carnitina O-Palmitoiltransferase , Glioblastoma , Glioma , Dinâmica Mitocondrial , Animais , Neoplasias Encefálicas/metabolismo , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Linhagem Celular Tumoral , Glioblastoma/metabolismo , Glioma/metabolismo , Humanos , Camundongos , Células-Tronco Neoplásicas/metabolismo
12.
Lab Invest ; 102(7): 741-752, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35351965

RESUMO

Invasive growth of glioblastoma makes residual tumor unremovable by surgery and leads to disease relapse. Temozolomide is widely used first-line chemotherapy drug to treat glioma patients, but development of temozolomide resistance is almost inevitable. Ferroptosis, an iron-dependent form of non-apoptotic cell death, is found to be related to temozolomide response of gliomas. However, whether inducing ferroptosis could affect invasive growth of glioblastoma cells and which ferroptosis-related regulators were involved in temozolomide resistance are still unclear. In this study, we treated glioblastoma cells with RSL3, a ferroptosis inducer, in vitro (cell lines) and in vivo (subcutaneous and orthotopic animal models). The treated glioblastoma cells with wild-type or mutant IDH1 were subjected to RNA sequencing for transcriptomic profiling. We then analyze data from our RNA sequencing and public TCGA glioma database to identify ferroptosis-related biomarkers for prediction of prognosis and temozolomide resistance in gliomas. Analysis of transcriptome data from RSL3-treated glioblastoma cells suggested that RSL3 could inhibit glioblastoma cell growth and suppress expression of genes involved in cell cycle. RSL3 effectively reduced mobility of glioblastoma cells through downregulation of critical genes involved in epithelial-mesenchymal transition. Moreover, RSL3 in combination with temozolomide showed suppressive efficacy on glioblastoma cell growth, providing a promising therapeutic strategy for glioblastoma treatment. Although temozolomide attenuated invasion of glioblastoma cells with mutant IDH1 more than those with wild-type IDH1, the combination of RSL3 and temozolomide similarly impaired invasive ability of glioblastoma cells in spite of IDH1 status. Finally, we noticed that both ferritin heavy chain 1 and ferritin light chain predicted unfavorable prognosis of glioma patients and were significantly correlated with mRNA levels of methylguanine methyltransferase as well as temozolomide resistance. Altogether, our study provided rationale for combination of RSL3 with temozolomide to suppress glioblastoma cells and revealed ferritin heavy chain 1 and ferritin light chain as biomarkers to predict prognosis and temozolomide resistance of glioma patients.


Assuntos
Neoplasias Encefálicas , Ferroptose , Glioblastoma , Glioma , Animais , Apoferritinas/farmacologia , Apoferritinas/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Temozolomida/farmacologia , Temozolomida/uso terapêutico
13.
J Pathol ; 255(4): 374-386, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34370292

RESUMO

Calcyphosine (CAPS) was initially identified from the canine thyroid. It also exists in many types of tumor, but its expression and function in glioma remain unknown. Here we explored the clinical significance and the functional mechanisms of CAPS in glioma. We found that CAPS was highly expressed in glioma and high expression of CAPS was correlated with poor survival, in glioma patients and public databases. Cox regression analysis showed that CAPS was an independent prognostic factor for glioma patients. Knockdown of CAPS suppressed the proliferation, whereas overexpression of CAPS promoted the proliferation of glioma both in vitro and in vivo. CAPS regulated the G2/M phase transition of the cell cycle, but had no obvious effect on apoptosis. CAPS affected PLK1 phosphorylation through interaction with MYPT1. CAPS knockdown decreased p-MYPT1 at S507 and p-PLK1 at S210. Expression of MYPT1 S507 phosphomimic rescued PLK1 phosphorylation and the phenotype caused by CAPS knockdown. The PLK1 inhibitor volasertib enhanced the therapeutic effect of temozolomide in glioma. Our data suggest that CAPS promotes the proliferation of glioma by regulating the cell cycle and the PLK1 inhibitor volasertib might be a chemosensitizer of glioma. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias Encefálicas/patologia , Proteínas de Ligação ao Cálcio/metabolismo , Glioma/patologia , Adulto , Idoso , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Neoplasias Encefálicas/metabolismo , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Feminino , Glioma/metabolismo , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Pteridinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
14.
J Pathol ; 253(3): 339-350, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33104252

RESUMO

The cathelin-related antimicrobial peptide CRAMP protects the mouse colon from inflammation, inflammation-associated carcinogenesis, and disrupted microbiome balance, as shown in systemic Cnlp-/- mice (also known as Camp-/- mice). However, the mechanistic basis for the role and the cellular source of CRAMP in colon pathophysiology are ill defined. This study, using either epithelial or myeloid conditional Cnlp-/- mice, demonstrated that epithelial cell-derived CRAMP played a major role in supporting normal development of colon crypts, mucus production, and repair of injured mucosa. On the other hand, myeloid cell-derived CRAMP potently supported colon epithelial resistance to bacterial invasion during acute inflammation with exacerbated mucosal damage and higher rate of mouse mortality. Therefore, a well concerted cooperation of epithelial- and myeloid-derived CRAMP is essential for colon mucosal homeostasis. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Células Epiteliais/metabolismo , Homeostase/fisiologia , Mucosa Intestinal/metabolismo , Macrófagos/metabolismo , Animais , Colo/fisiologia , Camundongos , Camundongos Knockout , Catelicidinas
15.
PLoS Biol ; 16(7): e2005869, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30052635

RESUMO

Chemotherapeutic resistance in triple-negative breast cancer (TNBC) has brought great challenges to the improvement of patient survival. The mechanisms of taxane chemoresistance in TNBC have not been well investigated. Our results illustrated C-C motif chemokine ligand 20 (CCL20) was significantly elevated during taxane-containing chemotherapy in breast cancer patients with nonpathologic complete response. Furthermore, CCL20 promoted the self-renewal and maintenance of breast cancer stem cells (BCSCs) or breast cancer stem-like cells through protein kinase Cζ (PKCζ) or p38 mitogen-activated protein kinase (MAPK)-mediated activation of p65 nuclear factor kappa B (NF-κB) pathway, significantly increasing the frequency and taxane resistance of BCSCs. Moreover, CCL20-promoted NF-κB activation increased ATP-binding cassette subfamily B member 1 (ABCB1)/multidrug resistance 1 (MDR1) expression, leading to the extracellular efflux of taxane. These results suggested that chemotherapy-induced CCL20 mediated chemoresistance via up-regulating ABCB1. In addition, NF-κB activation increased CCL20 expression, forming a positive feedback loop between NF-κB and CCL20 pathways, which provides sustained impetus for chemoresistance in breast cancer cells. Our results suggest that CCL20 can be a novel predictive marker for taxane response, and the blockade of CCL20 or its downstream pathway might reverse the taxane resistance in breast cancer patients.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Quimiocina CCL20/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Aldeído Desidrogenase/metabolismo , Animais , Neoplasias da Mama/genética , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Hidrocarbonetos Aromáticos com Pontes/uso terapêutico , Linhagem Celular Tumoral , Quimioterapia Adjuvante , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , NF-kappa B/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Prognóstico , Proteína Quinase C/metabolismo , Indução de Remissão , Taxoides/farmacologia , Taxoides/uso terapêutico , Resultado do Tratamento , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Regulação para Cima , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
Gastric Cancer ; 24(2): 402-416, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33159601

RESUMO

BACKGROUND: Aberrant activation of Wnt/ß-catenin signaling by dysregulated post-translational protein modifications, especially ubiquitination is causally linked to cancer development and progression. Although Lys48-linked ubiquitination is known to regulate Wnt/ß-catenin signaling, it remains largely obscure how other types of ubiquitination, such as linear ubiquitination governs its signaling activity. METHODS: The expression and regulatory mechanism of linear ubiquitin chain assembly complex (LUBAC) on Wnt/ß-catenin signaling was examined by immunoprecipitation, western blot and immunohistochemical staining. The ubiquitination status of ß-catenin was detected by ubiquitination assay. The impacts of SHARPIN, a core component of LUBAC on malignant behaviors of gastric cancer cells were determined by various functional assays in vitro and in vivo. RESULTS: Unlike a canonical role in promoting linear ubiquitination, SHARPIN specifically interacts with ß-catenin to maintain its protein stability. Mechanistically, SHARPIN competes with the E3 ubiquitin ligase ß-Trcp1 for ß-catenin binding, thereby decreasing ß-catenin ubiquitination levels to abolish its proteasomal degradation. Importantly, SHARPIN is required for invasiveness and malignant growth of gastric cancer cells in vitro and in vivo, a function that is largely dependent on its binding partner ß-catenin. In line with these findings, elevated expression of SHARPIN in gastric cancer tissues is associated with disease malignancy and correlates with ß-catenin expression levels. CONCLUSIONS: Our findings reveal a novel molecular link connecting linear ubiquitination machinery and Wnt/ß-catenin signaling via SHARPIN-mediated stabilization of ß-catenin. Targeting the linear ubiquitination-independent function of SHARPIN could be exploited to inhibit the hyperactive ß-catenin signaling in a subset of human gastric cancers.


Assuntos
Carcinogênese/genética , Neoplasias Gástricas/genética , Ubiquitinação/genética , Ubiquitinas/genética , beta Catenina/genética , Humanos , Via de Sinalização Wnt/genética
17.
Breast Cancer Res ; 22(1): 61, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32517735

RESUMO

Triple-negative breast cancer (TNBC), a specific subtype of breast cancer that does not express estrogen receptor (ER), progesterone receptor (PR), or human epidermal growth factor receptor 2 (HER-2), has clinical features that include high invasiveness, high metastatic potential, proneness to relapse, and poor prognosis. Because TNBC tumors lack ER, PR, and HER2 expression, they are not sensitive to endocrine therapy or HER2 treatment, and standardized TNBC treatment regimens are still lacking. Therefore, development of new TNBC treatment strategies has become an urgent clinical need. By summarizing existing treatment regimens, therapeutic drugs, and their efficacy for different TNBC subtypes and reviewing some new preclinical studies and targeted treatment regimens for TNBC, this paper aims to provide new ideas for TNBC treatment.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Animais , Feminino , Humanos , Terapia de Alvo Molecular , Receptor ErbB-2/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
18.
Lab Invest ; 100(4): 619-629, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31748682

RESUMO

Tumor-associated macrophages (TAMs) constitute a large population of glioblastoma and facilitate tumor growth and invasion of tumor cells, but the underlying mechanism remains undefined. In this study, we demonstrate that chemokine (C-C motif) ligand 8 (CCL8) is highly expressed by TAMs and contributes to pseudopodia formation by GBM cells. The presence of CCL8 in the glioma microenvironment promotes progression of tumor cells. Moreover, CCL8 induces invasion and stem-like traits of GBM cells, and CCR1 and CCR5 are the main receptors that mediate CCL8-induced biological behavior. Finally, CCL8 dramatically activates ERK1/2 phosphorylation in GBM cells, and blocking TAM-secreted CCL8 by neutralized antibody significantly decreases invasion of glioma cells. Taken together, our data reveal that CCL8 is a TAM-associated factor to mediate invasion and stemness of GBM, and targeting CCL8 may provide an insight strategy for GBM treatment.


Assuntos
Quimiocina CCL8/metabolismo , Glioblastoma/metabolismo , Macrófagos/metabolismo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Invasividade Neoplásica/fisiopatologia , Células-Tronco Neoplásicas/citologia , Células Tumorais Cultivadas
19.
Lab Invest ; 100(6): 812-823, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31949244

RESUMO

Glioblastoma multiforme (GBM) is characterized by highly invasive growth, which leads to extensive infiltration and makes complete tumor excision difficult. Since cytoskeleton proteins are related to leading processes and cell motility, and through analysis of public GBM databases, we determined that an actin-interacting protein, zyxin (ZYX), may involved in GBM invasion. Our own glioma cohort as well as the cancer genome atlas (TCGA), Rembrandt, and Gravendeel databases consistently showed that increased ZYX expression was related to tumor progression and poor prognosis of glioma patients. In vitro and in vivo experiments further confirmed the oncogenic roles of ZYX and demonstrated the role of ZYX in GBM invasive growth. Moreover, RNA-seq and mass-spectrum data from GBM cells with or without ZYX revealed that stathmin 1 (STMN1) was a potential target of ZYX. Subsequently, we found that both mRNA and protein levels of STMN1 were positively regulated by ZYX. Functionally, STMN1 not only promoted invasion of GBM cells but also rescued the invasion repression caused by ZYX loss. Taken together, our results indicate that high ZYX expression was associated with worse prognosis and highlighted that the ZYX-STMN1 axis might be a potential therapeutic target for GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Invasividade Neoplásica/patologia , Zixina , Animais , Biomarcadores Tumorais , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidade , Linhagem Celular Tumoral , Movimento Celular/genética , Técnicas de Silenciamento de Genes , Glioblastoma/diagnóstico , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/mortalidade , Humanos , Camundongos , Camundongos Endogâmicos NOD , Prognóstico , Estatmina/análise , Estatmina/genética , Estatmina/metabolismo , Zixina/análise , Zixina/genética , Zixina/metabolismo
20.
Am J Pathol ; 189(1): 162-176, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30312580

RESUMO

miR-135a-5p has been reported as a tumor suppressor in several extracranial tumors. However, its exact roles in gliomagenesis and relevance to the patients' prognoses are largely unknown. Herein, we detected the miR-135a-5p and tumor necrosis factor receptor-associated factor 5 (TRAF5) levels in 120 human glioma specimens and 20 nontumoral brain tissues; we found the miR-135a-5p level decreased, whereas the TRAF5 level increased, with the elevation of glioma grade. Their labeling indexes were inversely correlated with each other and showed strong negative (miR-135a-5p) and positive (TRAF5) correlation with the Ki-67 index. Cox regression demonstrated that both of their expression levels were independent survival predictors, whereas Kaplan-Meier analysis showed that subgrouping the glioma patients according to their levels could perfectly reflect the patients' prognoses regardless of the similarities in pathologic, molecular, and clinical features. In the following in vitro and in vivo studies, it was demonstrated that miR-135a-5p induced G1 arrest and inhibited the proliferation of glioma cells by targeting TRAF5 and subsequently blocking AKT phosphorylation as well as c-Myc and cyclin D1 expression. These effects could be reversed by TRAF5 overexpression and simulated by specific TRAF5 silencing. This study highlights the importance of miR-135a-5p and TRAF5 in gliomagenesis and progression and implies their potential prognostic and therapeutic values in malignant glioma.


Assuntos
Neoplasias Encefálicas/metabolismo , Genes Supressores de Tumor , Glioblastoma/metabolismo , MicroRNAs/metabolismo , RNA Neoplásico/metabolismo , Fator 5 Associado a Receptor de TNF/metabolismo , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Ciclina D1/genética , Ciclina D1/metabolismo , Glioblastoma/genética , Glioblastoma/mortalidade , Glioblastoma/patologia , Humanos , Estimativa de Kaplan-Meier , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Estadiamento de Neoplasias , Transplante de Neoplasias , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Neoplásico/genética , Fator 5 Associado a Receptor de TNF/genética , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa