Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Commun Signal ; 16(1): 42, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-30029643

RESUMO

BACKGROUND: Chronic muscle injury is characteristics of fatty infiltration and fibrosis. Recently, fibro/adipogenic progenitors (FAPs) were found to be indispensable for muscular regeneration while were also responsible for fibrosis and fatty infiltration in muscle injury. Many myokines have been proven to regulate the adipose or cell proliferation. Because the fate of FAPs is largely dependent on microenvironment and the regulation of myokines on FAPs is still unclear. We screened the potential myokines and found Interleukin-15 (IL-15) may regulate the fatty infiltration in muscle injury. In this study, we investigated how IL-15 regulated FAPs in muscle injury and the effect on muscle regeneration. METHODS: Cell proliferation assay, western blots, qRT-PCR, immunohistochemistry, flow cytometric analysis were performed to investigate the effect of IL-15 on proliferation and adipogensis of FAPs. Acute muscle injury was induced by injection of glycerol or cardiotoxin to analyze how IL-15 effected on FAPs in vivo and its function on fatty infiltration or muscle regeneration. RESULTS: We identified that the expression of IL-15 in injured muscle was negatively associated with fatty infiltration. IL-15 can stimulate the proliferation of FAPs and prevent the adipogenesis of FAPs in vitro and in vivo. The growth of FAPs caused by IL-15 was mediated through JAK-STAT pathway. In addition, desert hedgehog pathway may participate in IL-15 inhibiting adipogenesis of FAPs. Our study showed IL-15 can cause the fibrosis after muscle damage and promote the myofiber regeneration. Finally, the expression of IL-15 was positively associated with severity of fibrosis and number of FAPs in patients with chronic rotator cuff tear. CONCLUSIONS: These findings supported the potential role of IL-15 as a modulator on fate of FAPs in injured muscle and as a novel therapy for chronic muscle injury.


Assuntos
Adipogenia , Interleucina-15/metabolismo , Células-Tronco Mesenquimais/citologia , Músculos/fisiologia , Regeneração , Adipócitos/citologia , Animais , Diferenciação Celular , Regulação para Baixo , Humanos , Janus Quinases/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição STAT/metabolismo
2.
J Orthop Surg Res ; 19(1): 329, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825706

RESUMO

BACKGROUND: Fibrosis is a significant pathological feature of chronic skeletal muscle injury, profoundly affecting muscle regeneration. Fibro-adipogenic progenitors (FAPs) have the ability to differentiate into myofibroblasts, acting as a primary source of extracellular matrix (ECM). the process by which FAPs differentiate into myofibroblasts during chronic skeletal muscle injury remains inadequately explored. METHOD: mouse model with sciatic nerve denervated was constructed and miRNA expression profiles between the mouse model and uninjured mouse were analyzed. qRT/PCR and immunofluorescence elucidated the effect of miR-27b-3p on fibrosis in vivo and in vitro. Dual-luciferase reporter identified the target gene of miR-27b-3p, and finally knocked down or overexpressed the target gene and phosphorylation inhibition of Smad verified the influence of downstream molecules on the abundance of miR-27b-3p and fibrogenic differentiation of FAPs. RESULT: FAPs derived from a mouse model with sciatic nerves denervated exhibited a progressively worsening fibrotic phenotype over time. Introducing agomiR-27b-3p effectively suppressed fibrosis both in vitro and in vivo. MiR-27b-3p targeted Transforming Growth Factor Beta Receptor 1 (TGF-ßR1) and the abundance of miR-27b-3p was negatively regulated by TGF-ßR1/Smad. CONCLUSION: miR-27b-3p targeting the TGF-ßR1/Smad pathway is a novel mechanism for regulating fibrogenic differentiation of FAPs. Increasing abundance of miR-27b-3p, suppressing expression of TGF-ßR1 and inhibiting phosphorylation of smad3 presented potential strategies for treating fibrosis in chronic skeletal muscle injury.


Assuntos
Fibrose , MicroRNAs , Músculo Esquelético , Transdução de Sinais , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Camundongos , Doença Crônica , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Smad/metabolismo , Proteínas Smad/genética , Masculino , Modelos Animais de Doenças , Diferenciação Celular , Nervo Isquiático/lesões
3.
Cell Stem Cell ; 31(2): 212-226.e7, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38232727

RESUMO

The effects of exercise on fibro-adipogenic progenitors (FAPs) are unclear, and the direct molecular link is still unknown. In this study, we reveal that exercise reduces the frequency of FAPs and attenuates collagen deposition and adipose formation in injured or disused muscles through Musclin. Mechanistically, Musclin inhibits FAP proliferation and promotes apoptosis in FAPs by upregulating FILIP1L. Chromatin immunoprecipitation (ChIP)-qPCR confirms that FoxO3a is the transcription factor of FILIP1L. In addition, the Musclin/FILIP1L pathway facilitates the phagocytosis of apoptotic FAPs by macrophages through downregulating the expression of CD47. Genetic ablation of FILIP1L in FAPs abolishes the effects of exercise or Musclin on FAPs and the benefits on the reduction of fibrosis and fatty infiltration. Overall, exercise forms a microenvironment of myokines in muscle and prevents the abnormal accumulation of FAPs in a Musclin/FILIP1L-dependent manner. The administration of exogenous Musclin exerts a therapeutic effect, demonstrating a potential therapeutic approach for muscle atrophy or acute muscle injury.


Assuntos
Regulação da Expressão Gênica , Proteínas Musculares , Músculos , Fatores de Transcrição , Humanos , Adipogenia , Diferenciação Celular , Fibrose , Homeostase , Músculo Esquelético/metabolismo , Músculos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Camundongos , Proteínas Musculares/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa