Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
PLoS Pathog ; 14(4): e1006981, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29630665

RESUMO

Purpura fulminans is a deadly complication of Neisseria meningitidis infections due to extensive thrombosis of microvessels. Although a Disseminated Intra-vascular Coagulation syndrome (DIC) is frequently observed during Gram negative sepsis, it is rarely associated with extensive thrombosis like those observed during meningococcemia, suggesting that the meningococcus induces a specific dysregulation of coagulation. Another specific feature of N. meningitidis pathogenesis is its ability to colonize microvessels endothelial cells via type IV pili. Importantly, endothelial cells are key in controlling the coagulation cascade through the activation of the potent anticoagulant Protein C (PC) thanks to two endothelial cell receptors among which the Endothelial Protein C Receptor (EPCR). Considering that congenital or acquired deficiencies of PC are associated with purpura fulminans, we hypothesized that a defect in the activation of PC following meningococcal adhesion to microvessels is responsible for the thrombotic events observed during meningococcemia. Here we showed that the adhesion of N. meningitidis on endothelial cells results in a rapid and intense decrease of EPCR expression by inducing its cleavage in a process know as shedding. Using siRNA experiments and CRISPR/Cas9 genome edition we identified ADAM10 (A Disintegrin And Metalloproteinase-10) as the protease responsible for this shedding. Surprisingly, ADAM17, the only EPCR sheddase described so far, was not involved in this process. Finally, we showed that this ADAM10-mediated shedding of EPCR induced by the meningococcal interaction with endothelial cells was responsible for an impaired activation of Protein C. This work unveils for the first time a direct link between meningococcal adhesion to endothelial cells and a severe dysregulation of coagulation, and potentially identifies new therapeutic targets for meningococcal purpura fulminans.


Assuntos
Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Receptor de Proteína C Endotelial/metabolismo , Endotélio Vascular/patologia , Proteínas de Membrana/metabolismo , Infecções Meningocócicas/complicações , Microvasos/patologia , Proteína C/metabolismo , Púrpura Fulminante/etiologia , Proteína ADAM10/genética , Secretases da Proteína Precursora do Amiloide/genética , Aderência Bacteriana , Coagulação Sanguínea/fisiologia , Células Cultivadas , Receptor de Proteína C Endotelial/genética , Endotélio Vascular/metabolismo , Endotélio Vascular/microbiologia , Humanos , Proteínas de Membrana/genética , Infecções Meningocócicas/microbiologia , Microvasos/metabolismo , Microvasos/microbiologia , Neisseria meningitidis/fisiologia , Proteína C/genética , Púrpura Fulminante/metabolismo , Púrpura Fulminante/patologia
3.
Br J Haematol ; 180(5): 715-720, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29363751

RESUMO

Heparin anticoagulation followed by protamine reversal is commonly used in cardiopulmonary bypass (CPB). As an alternative to protamine, a recombinant inactive antithrombin (riAT) was designed as an antidote to heparin and was previously shown to be as potent as protamine in-vitro. In the present study, riAT was assessed for its ability to neutralize heparin after CPB in a rat model. After 60 min of CPB under heparin, rats received 5 mg/kg protamine, 37.5 mg/kg riAT or phosphate buffered saline (PBS) as placebo. Residual anticoagulant activity was assessed using the activated partial thromboplastin time assay before, and 10-30 min after reversion. Haemodynamic monitoring was performed and plasma histamine concentration was also measured. In this model, riAT appeared to be as efficient as protamine in neutralizing heparin. Ten minutes after injection, riAT and protamine both decreased heparin activity, to 1.8 ± 1.3 and 4.5 ± 1.4 u/ml, respectively (23.1 ± 5.1 u/ml in placebo group). Furthermore, evolution of mean carotid arterial pressure, heart rate and plasma histamine levels was comparable in rats treated with PBS or riAT, while protamine exhibited haemodynamic side effects and increased histamine plasma concentration. Thus, riAT could represent an advantage over protamine in CPB because it efficiently reverses heparin activity without negative effects on haemodynamic parameters and plasma histamine level.


Assuntos
Anticoagulantes/farmacologia , Ponte Cardiopulmonar , Antagonistas de Heparina/farmacologia , Heparina/farmacologia , Protaminas/farmacologia , Animais , Antitrombinas/farmacologia , Hemodinâmica/efeitos dos fármacos , Histamina/metabolismo , Masculino , Ratos Wistar
4.
Res Pract Thromb Haemost ; 8(4): 102426, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38882463

RESUMO

Background: The bleeding risk associated with direct oral anticoagulants (DOACs) remains a major concern, and rapid reversal of anticoagulant activity may be required. Although specific and nonspecific hemostatic biotherapies are available, there is a need for small-molecule DOAC reversal agents that are simple and cost-effective to produce, store, and administer. Objectives: To identify and characterize a small molecule with procoagulant activity as a DOAC reversal agent. Methods: We sought to identify a small procoagulant molecule by screening a chemical library with a plasma clotting assay. The selected molecule was assessed for its procoagulant properties and its ability to reverse the effects of the DOACs in a thrombin generation assay. Its activity as a DOAC reversal agent was also evaluated in a tail-clip bleeding assay in mice. Results: The hemostatic molecule (HeMo) dose-dependently promoted thrombin generation in plasma, with dose values effective in producing half-maximum response ranging between 3 and 5 µM, depending on the thrombin generation assay parameter considered. HeMo also restored impaired thrombin generation in DOAC-spiked plasma and reversed DOAC activity in the mouse bleeding model. HeMo significantly reduced apixaban-induced bleeding from 709 to 65 µL (vs 43 µL in controls; P < .01) and dabigatran-induced bleeding from 989 to 155 µL (vs 126 µL in controls; P < .01). Conclusion: HeMo is a small-molecule procoagulant that can counterbalance hemostatic disruption by a thrombin inhibitor (dabigatran) or factor Xa inhibitors (apixaban and rivaroxaban). The compound's effective clot formation and versatility make it a possible option for managing the inherent hemorrhagic risk during DOAC therapy.

5.
Blood ; 117(6): 2054-60, 2011 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-21048158

RESUMO

Heparin derivative-based therapy has evolved from unfractionated heparin (UFH) to low-molecular-weight heparins (LMWHs) and now fondaparinux, a synthetic pentasaccharide. Contrary to UFH or LMWHs, fondaparinux is not neutralized by protamine sulfate, and no antidote is available to counteract bleeding disorders associated with overdosing. To make the use of fondaparinux safer, we developed an antithrombin (AT) variant as a potent antidote to heparin derivatives. This variant (AT-N135Q-Pro394) combines 2 mutations: substitution of Asn135 by a Gln to remove a glycosylation site and increase affinity for heparins, and the insertion of a Pro between Arg393 and Ser394 to abolish its anticoagulant activity. As expected, AT-N135Q-Pro394 anticoagulant activity was almost abolished, and it exhibited a 3-fold increase in fondaparinux affinity. AT-N135Q-Pro394 was shown to reverse fondaparinux overdosing in vitro in a dose-dependent manner through a competitive process with plasma AT for fondaparinux binding. This antidote effect was also observed in vivo: administration of AT-N135Q-Pro394 in 2.5-fold molar excess versus plasma AT neutralized 86% of the anti-Xa activity within 5 minutes in mice treated with fondaparinux. These results clearly demonstrate that AT-N135Q-Pro394 can reverse the anticoagulant activity of fondaparinux and thus could be used as an antidote for this drug.


Assuntos
Anticoagulantes/antagonistas & inibidores , Antídotos/farmacologia , Proteínas Antitrombina/genética , Proteínas Antitrombina/farmacologia , Antitrombinas/farmacologia , Antagonistas de Heparina/farmacologia , Polissacarídeos/antagonistas & inibidores , Substituição de Aminoácidos , Animais , Anticoagulantes/toxicidade , Desenho de Fármacos , Feminino , Fondaparinux , Células HEK293 , Hemorragia/induzido quimicamente , Hemorragia/tratamento farmacológico , Humanos , Camundongos , Polissacarídeos/toxicidade , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia
6.
Thromb Haemost ; 122(9): 1469-1478, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35717947

RESUMO

Phosphomannomutase 2 (PMM2) deficiency is the most prevalent congenital disorder of glycosylation. It is associated with coagulopathy, including protein C deficiency. Since all components of the anticoagulant and cytoprotective protein C system are glycosylated, we sought to investigate the impact of an N-glycosylation deficiency on this system as a whole. To this end, we developed a PMM2 knockdown model in the brain endothelial cell line hCMEC/D3. The resulting PMM2low cells were less able to generate activated protein C (APC), due to lower surface expression of thrombomodulin and endothelial protein C receptor. The low protein levels were due to downregulated transcription of the corresponding genes (THBD and PROCR, respectively), which itself was related to downregulation of transcription regulators Krüppel-like factors 2 and 4 and forkhead box C2. PMM2 knockdown was also associated with impaired integrity of the endothelial cell monolayer-partly due to an alteration in the structure of VE-cadherin in adherens junctions. The expression of protease-activated receptor 1 (involved in the cytoprotective effects of APC on the endothelium) was not affected by PMM2 knockdown. Thrombin stimulation induced hyperpermeability in PMM2low cells. However, pretreatment of cells with APC before thrombin simulation was still associated with a barrier-protecting effect. Taken as a whole, our results show that the partial loss of PMM2 in hCMEC/D3 cells is associated with impaired activation of protein C and a relative increase in barrier permeability.


Assuntos
Proteína C , Trombina , Defeitos Congênitos da Glicosilação , Endotélio , Glicosilação , Humanos , Fosfotransferases (Fosfomutases)/deficiência
7.
J Thromb Haemost ; 20(7): 1653-1664, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35445541

RESUMO

BACKGROUND: Protein S (PS) is a natural anticoagulant acting as a cofactor for activated protein C (APC) in the proteolytic inactivation of activated factors V (FVa) and VIII (FVIIIa), but also for tissue factor pathway inhibitor α (TFPIα) in the inhibition of activated factor X (FXa). OBJECTIVE: For therapeutic purposes, we aimed at generating single-domain antibodies (sdAbs) that could specifically modulate the APC-cofactor activity of PS in vivo. METHODS: A llama-derived immune library of sdAbs was generated and screened on recombinant human PS by phage display. PS binders were tested in a global activated partial thromboplastin time (APTT)-based APC-cofactor activity assay. RESULTS: A PS-specific sdAb (PS003) was found to enhance the APC-cofactor activity of PS in our APTT-based assay, and this enhancing effect was greater for a bivalent form of PS003 (PS003biv). Further characterization of PS003biv demonstrated that PS003biv also enhanced the APC-cofactor activity of PS in a tissue factor (TF)-induced thrombin generation assay and stimulated APC in the inactivation of FVa, but not FVIIIa, in plasma-based assays. Furthermore, PS003biv was directed against the sex hormone-binding globulin (SHBG)-like domain but did not inhibit the binding of PS to C4b-binding protein (C4BP) and did not interfere with the TFPIα-cofactor activity of PS. In mice, PS003biv exerted an antithrombotic effect in a FeCl3 -induced thrombosis model, while not affecting physiological hemostasis in a tail-clip bleeding model. DISCUSSION: Altogether, these results showed that pharmacological enhancement of the APC-cofactor activity of PS through an original anti-PS sdAb might constitute a promising and safe antithrombotic strategy.


Assuntos
Proteína S , Anticorpos de Domínio Único , Animais , Fator VIIIa/química , Fibrinolíticos/farmacologia , Humanos , Camundongos , Proteína C/metabolismo , Proteína S/metabolismo
8.
Thromb Haemost ; 122(4): 506-516, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34134169

RESUMO

Septic shock is the archetypal clinical setting in which extensive crosstalk between inflammation and coagulation dysregulates the latter. The main anticoagulant systems are systematically impaired, depleted, and/or downregulated. Protein Z-dependent protease inhibitor (ZPI) is an anticoagulant serpin that not only targets coagulation factors Xa and XIa but also acts as an acute phase reactant whose plasma concentration rises in inflammatory settings. The objective of the present study was to assess the plasma ZPI antigen level in a cohort of patients suffering from septic shock with or without overt-disseminated intravascular coagulation (DIC). The plasma ZPI antigen level was approximately 2.5-fold higher in the patient group (n = 100; 38 with DIC and 62 without) than in healthy controls (n = 31). The elevation's magnitude did not appear to depend on the presence/absence of DIC. Furthermore, Western blots revealed the presence of cleaved ZPI in plasma from patients with severe sepsis, independently of the DIC status. In vitro, ZPI was proteolytically inactivated by purified neutrophil elastase (NE) and by NE on the surface of neutrophil extracellular traps (NETs). The electrophoretic pattern of ZPI after NE-catalyzed proteolysis was very similar to that resulting from the clotting process-suggesting that the cleaved ZPI observed in severe sepsis plasma is devoid of anticoagulant activity. Taken as a whole, our results (1) suggest that NE is involved in ZPI inactivation during sepsis, and (2) reveal a novel putative mechanism for the procoagulant activity of NETs in immunothrombosis.


Assuntos
Coagulação Intravascular Disseminada , Armadilhas Extracelulares , Sepse , Serpinas , Choque Séptico , Anticoagulantes/farmacologia , Proteínas Sanguíneas , Coagulação Intravascular Disseminada/metabolismo , Armadilhas Extracelulares/metabolismo , Humanos , Elastase de Leucócito/metabolismo , Inibidores de Proteases/metabolismo , Proteólise , Sepse/metabolismo , Serpinas/metabolismo , Choque Séptico/metabolismo
9.
TH Open ; 5(2): e220-e229, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34189397

RESUMO

The protein Z (PZ)-dependent plasma protease inhibitor (ZPI) is a glycoprotein that inhibits factor XIa and, in the presence of PZ, FXa. Recently, ZPI has been shown to be an acute-phase protein (APP). As usually APPs downregulate the harmful effects of inflammation, we tested whether ZPI could modulate the increase of cytokines observed in inflammatory states. We observed that recombinant human ZPI (rhZPI) significantly decreases the levels of interleukin (IL)-1, IL-6, and tumor necrosis factor- α (TNF-α) induced by lipopolysaccharide (LPS) in a whole blood model. This inhibitory effect was unaffected by the presence of PZ or heparin. A ZPI mutant within the reactive loop center ZPI (Y387A), lacking anticoagulant activity, still had an anti-inflammatory activity. Surprisingly, rhZPI did not inhibit the synthesis of IL-6 or TNF-α when purified monocytes were stimulated by LPS, whereas the inhibitory effect was evidenced when lymphocytes were added to monocytes. The requirement of lymphocytes could be due to the synthesis of CCL5 (RANTES), a chemokine mainly produced by activated lymphocytes which is induced by rhZPI, and which can reduce the production of proinflammatory cytokines in whole blood. Lastly, we observed that the intraperitoneal injection of rhZPI significantly decreased LPS-induced IL-6 and TNF-α production in mouse plasma.

10.
Front Cardiovasc Med ; 7: 622778, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33490121

RESUMO

Bleeding and thrombotic disorders result from imbalances in coagulation or fibrinolysis, respectively. Inhibitors from the serine protease inhibitor (serpin) family have a key role in regulating these physiological events, and thus stand out as potential therapeutic targets for modulating fibrin clot formation or dismantling. Here, we review the diversity of serpin-targeting strategies in the area of hemostasis, and detail the suggested use of modified serpins and serpin inhibitors (ranging from small-molecule drugs to antibodies) to treat or prevent bleeding or thrombosis.

11.
Hematology ; 24(1): 742-750, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31736432

RESUMO

Deep vein thrombosis is a common disease associated with a variety of complications including post-thrombotic syndrome as a late complication. It is now clear that in addition to classical deep vein thrombosis triggers such as blood flow disturbance, hypercoagulability, and vessel wall changes, inflammation has a key role in the pathophysiology of deep vein thrombosis, and there is a close relationship between inflammation and coagulation. As attested by changes in several plasma biomarkers, inflammation may have a significant role in the development of post-thrombotic syndrome. Here, we review the link between inflammation and deep vein thrombosis and thus the potential value of anti-inflammatory and/or anticoagulant drugs in the treatment of deep vein thrombosis and the prevention of post-thrombotic syndrome.


Assuntos
Inflamação/complicações , Trombose Venosa/terapia , Humanos , Trombose Venosa/patologia
12.
J Thromb Haemost ; 17(11): 1798-1807, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31271700

RESUMO

BACKGROUND: Congenital disorders of glycosylation are rare inherited diseases affecting many different proteins. The lack of glycosylation notably affects the hemostatic system and leads to deficiencies of both procoagulant and anticoagulant factors. OBJECTIVE: To assess the hemostatic balance in patients with multiple coagulation disorders by using a thrombin generation assay. METHOD: We performed conventional coagulation assays and a thrombin generation assay on samples from patients with congenital disorder of glycosylation. The thrombin generation assay was performed before and after activation of the protein C system by the addition of soluble thrombomodulin. RESULTS: A total of 35 patients were included: 71% and 57% had low antithrombin and factor XI levels, respectively. Protein C and protein S levels were abnormally low in 29% and 26% of the patients, respectively, whereas only 11% displayed low factor IX levels. Under baseline conditions, the thrombin generation assay revealed a significantly higher endogenous thrombin potential and thrombin peak in patients, relative to controls. After spiking with thrombomodulin, we observed impaired involvement of the protein C system. Hence, 54% of patients displayed a hypercoagulant phenotype in vitro. All the patients with a history of stroke-like episodes or thrombosis displayed this hypercoagulant phenotype. CONCLUSION: A thrombin generation assay revealed a hypercoagulant in vitro phenotype under baseline condition; this was accentuated by impaired involvement of the protein C system. This procoagulant phenotype may thus reflect the risk of severe vascular complications. Further research will have to determine whether the thrombin generation assay is predictive of vascular events.


Assuntos
Transtornos Herdados da Coagulação Sanguínea/sangue , Transtornos de Proteínas de Coagulação/sangue , Defeitos Congênitos da Glicosilação/sangue , Trombina/metabolismo , Adolescente , Coagulação Sanguínea/genética , Transtornos Herdados da Coagulação Sanguínea/diagnóstico , Transtornos Herdados da Coagulação Sanguínea/genética , Criança , Pré-Escolar , Transtornos de Proteínas de Coagulação/diagnóstico , Transtornos de Proteínas de Coagulação/genética , Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/genética , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Paris , Fenótipo , Estudos Retrospectivos , Espanha
14.
Ann Intensive Care ; 7(1): 118, 2017 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-29222696

RESUMO

BACKGROUND: Septic shock-induced disseminated intravascular coagulation is responsible for increased occurrence of multiple organ dysfunction and mortality. Immunothrombosis-induced coagulopathy may contribute to hypercoagulability. We aimed at determining whether recombinant human thrombomodulin (rhTM) could control exaggerated immunothrombosis by studying procoagulant responses, fibrinolysis activity borne by microvesicles (MVs) and NETosis in septic shock. METHODS: In a septic shock model after a cecal ligation and puncture-induced peritonitis (H0), rats were treated with rhTM or a placebo at H18, resuscitated and monitored during 4 h. At H22, blood was sampled to perform coagulation tests, to characterize MVs and to detect neutrophils extracellular traps (NETs). Lungs were stained with hematoxylin-eosin for inflammatory injury assessment. RESULTS: Coagulopathy was attenuated in rhTM-treated septic rats compared to placebo-treated rats, as attested by a significant decrease in procoagulant annexin A5+-MVs and plasma procoagulant activity of phospholipids and by a significant increase in antithrombin levels (84 ± 8 vs. 64 ± 6%, p < 0.05), platelet count (582 ± 157 vs. 319 ± 91 × 109/L, p < 0.05) and fibrinolysis activity borne by MVs (2.9 ± 0.26 vs. 0.48 ± 0.29 U/mL urokinase, p < 0.05). Lung histological injury score showed significantly less leukocyte infiltration. Decreased procoagulant activity and lung injury were concomitant with decreased leukocyte activation as attested by plasma leukocyte-derived MVs and NETosis reduction after rhTM treatment (neutrophil elastase/DNA: 93 ± 33 vs. 227 ± 48 and citrullinated histones H3/DNA: 96 ± 16 vs. 242 ± 180, mOD for 109 neutrophils/L, p < 0.05). CONCLUSION: Thrombomodulin limits procoagulant responses and NETosis and at least partly restores hemostasis control during immunothrombosis. Neutrophils might thus stand as a promising therapeutic target in septic shock-induced coagulopathy.

15.
Thromb Haemost ; 116(3): 452-60, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27412396

RESUMO

In the absence of specific antidote to fondaparinux, two modified forms of antithrombin (AT), one recombinant inactive (ri-AT) and the other chemically inactivated (chi-AT), were designed to antagonise AT-mediated anticoagulants, e. g. heparins or fondaparinux. These inactive ATs were previously proven to effectively neutralise anticoagulant activity associated with heparin derivatives in vitro and in vivo, as assessed by direct measurement of anti-FXa activity. This study was undertaken to evaluate in vitro the effectivity of inactive ATs to reverse anticoagulation by heparin derivatives and to compare them with non-specific fondaparinux reversal agents, like recombinant-activated factor VII (rFVIIa) or activated prothrombin-complex concentrate (aPCC), in a thrombin-generation assay (TGA). Addition of fondaparinux (3 µg/ml) to normal plasma inhibited thrombin generation by prolonging lag time (LT) as much as 244 % and lowering endogenous thrombin potential (ETP) to 17 % of their control (normal plasma) values. Fondaparinux-anticoagulant activity was reversed by ri-AT and chi-AT, as reflected by the corrections of LT up to 117 % and 114 % of its control value, and ETP recovery to 78 % and 63 %, respectively. Unlike ri-AT that had no effect on thrombin generation in normal plasma, chi-AT retained anticoagulant activity that minimises its reversal capacity. However, both ATs were more effective than rFVIIa or aPCC at neutralising fondaparinux and, unlike non-specific antidotes, inactive ATs specifically reversed AT-mediated anticoagulant activities, as suggested by their absence of procoagulant activity in anticoagulant-free plasma.


Assuntos
Antídotos/metabolismo , Antitrombinas/metabolismo , Polissacarídeos/antagonistas & inibidores , Trombina/biossíntese , Anticoagulantes/administração & dosagem , Antídotos/análise , Antitrombinas/análise , Análise Química do Sangue/métodos , Relação Dose-Resposta a Droga , Fator VIIa/análise , Fator VIIa/metabolismo , Inibidores do Fator Xa/análise , Inibidores do Fator Xa/metabolismo , Fondaparinux , Hemostáticos/análise , Hemostáticos/metabolismo , Heparina/administração & dosagem , Heparina de Baixo Peso Molecular/antagonistas & inibidores , Humanos , Técnicas In Vitro , Trombina/análise
16.
Sci Rep ; 6: 37953, 2016 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-27892504

RESUMO

Interactions between endothelial selectins and the leukocyte counter-receptor PSGL1 mediates leukocyte recruitment to inflammation sites. PSGL1 is highly sialylated, making it a potential ligand for Siglec-5, a leukocyte-receptor that recognizes sialic acid structures. Binding assays using soluble Siglec-5 variants (sSiglec-5/C4BP and sSiglec-5/Fc) revealed a dose- and calcium-dependent binding to PSGL1. Pre-treatment of PSGL1 with sialidase reduced Siglec-5 binding by 79 ± 4%. In confocal immune-fluorescence assays, we observed that 50% of Peripheral Blood Mononuclear Cells (PBMCs) simultaneously express PSGL1 and Siglec-5. Duolink-proximity ligation analysis demonstrated that PSGL1 and Siglec-5 are in close proximity (<40 nm) in 31 ± 4% of PBMCs. In vitro perfusion assays revealed that leukocyte-rolling over E- and P-selectin was inhibited by sSiglec-5/Fc or sSiglec-5/C4BP, while adhesion onto VCAM1 was unaffected. When applied to healthy mice (0.8 mg/kg), sSiglec-5/C4BP significantly reduced the number of rolling leukocytes under basal conditions (10.9 ± 3.7 versus 23.5 ± 9.3 leukocytes/field/min for sSiglec-5/C4BP-treated and control mice, respectively; p = 0.0093). Moreover, leukocyte recruitment was inhibited over a 5-h observation period in an in vivo model of TNFalpha-induced inflammation following injection sSiglec-5/C4BP (0.8 mg/kg). Our data identify PSGL1 as a ligand for Siglec-5, and soluble Siglec-5 variants appear efficient in blocking PSGL1-mediated leukocyte rolling and the inflammatory response in general.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Inflamação/patologia , Lectinas/metabolismo , Migração e Rolagem de Leucócitos/fisiologia , Glicoproteínas de Membrana/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Antígenos CD/genética , Antígenos CD/farmacologia , Antígenos de Diferenciação Mielomonocítica/genética , Antígenos de Diferenciação Mielomonocítica/farmacologia , Modelos Animais de Doenças , Selectina E/metabolismo , Feminino , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Lectinas/genética , Lectinas/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Glicoproteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Selectina-P/metabolismo , Domínios e Motivos de Interação entre Proteínas , Solubilidade , Fator de Necrose Tumoral alfa/toxicidade
17.
Sci Rep ; 6: 36462, 2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27876785

RESUMO

Plasminogen activator inhibitor-1 (PAI-1) is the main inhibitor of the tissue type and urokinase type plasminogen activators. High levels of PAI-1 are correlated with an increased risk of thrombotic events and several other pathologies. Despite several compounds with in vitro activity being developed, none of them are currently in clinical use. In this study, we evaluated a novel PAI-1 inhibitor, annonacinone, a natural product from the Annonaceous acetogenins group. Annonacinone was identified in a chromogenic screening assay and was more potent than tiplaxtinin. Annonacinone showed high potency ex vivo on thromboelastography and was able to potentiate the thrombolytic effect of tPA in vivo in a murine model. SDS-PAGE showed that annonacinone inhibited formation of PAI-1/tPA complex via enhancement of the substrate pathway. Mutagenesis and molecular dynamics allowed us to identify annonacinone binding site close to helix D and E and ß-sheets 2A.


Assuntos
4-Butirolactona/análogos & derivados , Fibrinolíticos/administração & dosagem , Inibidor 1 de Ativador de Plasminogênio/metabolismo , 4-Butirolactona/administração & dosagem , 4-Butirolactona/química , 4-Butirolactona/farmacologia , Animais , Sítios de Ligação , Regulação para Baixo , Avaliação Pré-Clínica de Medicamentos , Fibrinolíticos/química , Fibrinolíticos/farmacologia , Humanos , Ácidos Indolacéticos/administração & dosagem , Ácidos Indolacéticos/farmacologia , Camundongos , Modelos Animais , Modelos Moleculares , Simulação de Acoplamento Molecular , Inibidor 1 de Ativador de Plasminogênio/química , Inibidor 1 de Ativador de Plasminogênio/genética , Estrutura Secundária de Proteína , Tromboelastografia
18.
J Pharm Biomed Anal ; 111: 64-70, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25863018

RESUMO

With the aim to determine the binding affinity of a new generation of recombinant antithrombin (AT) toward heparin, we developed a dynamic equilibrium-affinity capillary electrophoresis (DE-ACE) method. This method allows the determination of an AT-heparin binding constant (Kd) directly from the cell culture supernatant used to produce the AT variants. Eight measurements per AT variant are sufficient to determine an accurate Kd (uncertainty ≤ 22%, regression coefficient ≥ 0.97), which is not significantly different from the value obtained from a higher number of measurements. Due to the relatively short time required to determine the Kd of one AT variant (2h), this method has the potential for being a low throughput screening method. The method was validated by analyzing five AT variants, whose Kd have been reported in the literature using fluorescence spectroscopy. Finally, the method was applied to estimate the Kd of one new AT variant and one AT conformer, a latent form, that exhibits a significant loss of affinity.


Assuntos
Antitrombinas/química , Heparina/química , Técnicas de Cultura de Células/métodos , Eletroforese Capilar/métodos , Humanos , Cinética , Espectrometria de Fluorescência/métodos
19.
J Control Release ; 194: 323-31, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25127657

RESUMO

Fondaparinux (Fpx) is the anticoagulant of choice in the treatment of short- and medium-term thromboembolic disease. To overcome the low oral bioavailability of Fpx, a new nanoparticulate carrier has been developed. The nanoparticles (NPs) contain squalenyl derivatives, known for their excellent oral bioavailability. They spontaneously self-assemble upon both electrostatic and hydrophobic interactions between the polyanionic Fpx and cationic squalenyl (CSq) derivatives. The preparation conditions were optimized to obtain monodisperse, stable NPs with a mean diameter in the range of 150-200 nm. The encapsulation efficiencies were around 80%. Fpx loadings reached 39 wt.%. According to structural and morphological analysis, Fpx and CSq organized in spherical multilamellar ("onion-type") nanoparticles. Furthermore, in vivo studies in rats suggested that Fpx was well absorbed from the orally administered NPs, which totally dissociated when reaching the blood stream, leading to the release of free Fpx. The Fpx:CSq NPs improved the plasmatic concentration of Fpx in a dose-dependent manner. However, the oral bioavailability of these new NPs remained low (around 0.3%) but of note, the Cmax obtained after oral administration of 50mg/kg NPs was close to the prophylactic plasma concentration needed to treat venous thromboembolism. Moreover, the oral bioavailability of Fpx could be dramatically increased up to 9% by including the nanoparticles into gastroresistant capsules. This study opens up new perspectives for the oral administration of Fpx and paves the way towards elaborating squalene-based NPs which self assemble without the need of covalently grafting the drug to Sq.


Assuntos
Anticoagulantes/administração & dosagem , Fibrinolíticos/administração & dosagem , Polissacarídeos/administração & dosagem , Administração Oral , Animais , Anticoagulantes/farmacocinética , Anticoagulantes/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Relação Dose-Resposta a Droga , Portadores de Fármacos , Composição de Medicamentos , Estabilidade de Medicamentos , Fibrinolíticos/farmacocinética , Fibrinolíticos/farmacologia , Fondaparinux , Injeções Intravenosas , Masculino , Nanopartículas , Tamanho da Partícula , Polissacarídeos/farmacocinética , Polissacarídeos/farmacologia , Ratos , Ratos Sprague-Dawley , Esqualeno/análogos & derivados , Esqualeno/química
20.
Eur J Pharm Biopharm ; 88(1): 275-82, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24835150

RESUMO

A new, simple and green method was developed for the manufacturing of heparin nanoassemblies active against the heparan sulfate-dependent viruses HSV-1, HSV-2, HPV-16 and RSV. These nanoassemblies were obtained by the auto-association of O-palmitoyl-heparin and α-cyclodextrin in water. The synthesized O-palmitoyl-heparin derivatives mixed with α-cyclodextrin resulted in the formation of crystalline hexagonal nanoassemblies as observed by transmission electron microscopy. The nanoassembly mean hydrodynamic diameters were modulated from 340 to 659 nm depending on the type and the initial concentration of O-palmitoyl-heparin or α-cyclodextrin. The antiviral activity of the nanoassemblies was not affected by the concentration of the components. However, the method of the synthesis of O-palmitoyl-heparin affected the antiviral activity of the formulations. We showed that reduced antiviral activity is correlated with lower sulfation degree and anticoagulant activity.


Assuntos
Biomimética/métodos , Heparina/química , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 2/efeitos dos fármacos , Papillomavirus Humano 16/efeitos dos fármacos , Nanopartículas/química , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Animais , Anticoagulantes/química , Antivirais/química , Linhagem Celular Tumoral , Sobrevivência Celular , Chlorocebus aethiops , Cristalização , Células HEK293 , Humanos , Hidrodinâmica , Microscopia Eletrônica de Transmissão , Nanotecnologia , Suínos , Células Vero , Água/química , alfa-Ciclodextrinas/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa