Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brief Bioinform ; 23(4)2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35830864

RESUMO

Antibodies are versatile molecular binders with an established and growing role as therapeutics. Computational approaches to developing and designing these molecules are being increasingly used to complement traditional lab-based processes. Nowadays, in silico methods fill multiple elements of the discovery stage, such as characterizing antibody-antigen interactions and identifying developability liabilities. Recently, computational methods tackling such problems have begun to follow machine learning paradigms, in many cases deep learning specifically. This paradigm shift offers improvements in established areas such as structure or binding prediction and opens up new possibilities such as language-based modeling of antibody repertoires or machine-learning-based generation of novel sequences. In this review, we critically examine the recent developments in (deep) machine learning approaches to therapeutic antibody design with implications for fully computational antibody design.


Assuntos
Aprendizado Profundo , Anticorpos/uso terapêutico , Estudos de Viabilidade , Aprendizado de Máquina
2.
MAbs ; 16(1): 2361928, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38844871

RESUMO

The naïve human antibody repertoire has theoretical access to an estimated > 1015 antibodies. Identifying subsets of this prohibitively large space where therapeutically relevant antibodies may be found is useful for development of these agents. It was previously demonstrated that, despite the immense sequence space, different individuals can produce the same antibodies. It was also shown that therapeutic antibodies, which typically follow seemingly unnatural development processes, can arise independently naturally. To check for biases in how the sequence space is explored, we data mined public repositories to identify 220 bioprojects with a combined seven billion reads. Of these, we created a subset of human bioprojects that we make available as the AbNGS database (https://naturalantibody.com/ngs/). AbNGS contains 135 bioprojects with four billion productive human heavy variable region sequences and 385 million unique complementarity-determining region (CDR)-H3s. We find that 270,000 (0.07% of 385 million) unique CDR-H3s are highly public in that they occur in at least five of 135 bioprojects. Of 700 unique therapeutic CDR-H3, a total of 6% has direct matches in the small set of 270,000. This observation extends to a match between CDR-H3 and V-gene call as well. Thus, the subspace of shared ('public') CDR-H3s shows utility for serving as a starting point for therapeutic antibody design.


Assuntos
Produtos Biológicos , Regiões Determinantes de Complementaridade , Mineração de Dados , Descoberta de Drogas , Humanos , Mineração de Dados/métodos , Descoberta de Drogas/métodos , Produtos Biológicos/imunologia , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/imunologia , Região Variável de Imunoglobulina/imunologia , Região Variável de Imunoglobulina/genética
3.
Front Mol Biosci ; 10: 1214424, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37484529

RESUMO

AlphaFold2 has hallmarked a generational improvement in protein structure prediction. In particular, advances in antibody structure prediction have provided a highly translatable impact on drug discovery. Though AlphaFold2 laid the groundwork for all proteins, antibody-specific applications require adjustments tailored to these molecules, which has resulted in a handful of deep learning antibody structure predictors. Herein, we review the recent advances in antibody structure prediction and relate them to their role in advancing biologics discovery.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa