Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 167(6): 1481-1494.e18, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27912058

RESUMO

Autism spectrum disorders (ASD) are a group of genetic disorders often overlapping with other neurological conditions. We previously described abnormalities in the branched-chain amino acid (BCAA) catabolic pathway as a cause of ASD. Here, we show that the solute carrier transporter 7a5 (SLC7A5), a large neutral amino acid transporter localized at the blood brain barrier (BBB), has an essential role in maintaining normal levels of brain BCAAs. In mice, deletion of Slc7a5 from the endothelial cells of the BBB leads to atypical brain amino acid profile, abnormal mRNA translation, and severe neurological abnormalities. Furthermore, we identified several patients with autistic traits and motor delay carrying deleterious homozygous mutations in the SLC7A5 gene. Finally, we demonstrate that BCAA intracerebroventricular administration ameliorates abnormal behaviors in adult mutant mice. Our data elucidate a neurological syndrome defined by SLC7A5 mutations and support an essential role for the BCAA in human brain function.


Assuntos
Transtorno do Espectro Autista/genética , Barreira Hematoencefálica/fisiopatologia , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Mutação , Aminoácidos/administração & dosagem , Aminoácidos/metabolismo , Animais , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/patologia , Transtorno do Espectro Autista/fisiopatologia , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Feminino , Humanos , Lactente , Recém-Nascido , Transportador 1 de Aminoácidos Neutros Grandes/genética , Masculino , Camundongos , Camundongos Knockout , Linhagem , Biossíntese de Proteínas , Receptor TIE-2/genética
2.
Cell ; 157(3): 651-63, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24766810

RESUMO

Neurodegenerative diseases can occur so early as to affect neurodevelopment. From a cohort of more than 2,000 consanguineous families with childhood neurological disease, we identified a founder mutation in four independent pedigrees in cleavage and polyadenylation factor I subunit 1 (CLP1). CLP1 is a multifunctional kinase implicated in tRNA, mRNA, and siRNA maturation. Kinase activity of the CLP1 mutant protein was defective, and the tRNA endonuclease complex (TSEN) was destabilized, resulting in impaired pre-tRNA cleavage. Germline clp1 null zebrafish showed cerebellar neurodegeneration that was rescued by wild-type, but not mutant, human CLP1 expression. Patient-derived induced neurons displayed both depletion of mature tRNAs and accumulation of unspliced pre-tRNAs. Transfection of partially processed tRNA fragments into patient cells exacerbated an oxidative stress-induced reduction in cell survival. Our data link tRNA maturation to neuronal development and neurodegeneration through defective CLP1 function in humans.


Assuntos
Cerebelo/crescimento & desenvolvimento , Cerebelo/patologia , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Proteínas Nucleares/genética , Fosfotransferases/genética , Splicing de RNA , RNA de Transferência/genética , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Fator de Especificidade de Clivagem e Poliadenilação/genética , Feminino , Humanos , Masculino , Camundongos , Modelos Moleculares , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Proteínas Nucleares/metabolismo , Linhagem , Fosfotransferases/metabolismo , RNA de Transferência/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
3.
Proc Natl Acad Sci U S A ; 120(16): e2214997120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37043537

RESUMO

While somatic variants of TRAF7 (Tumor necrosis factor receptor-associated factor 7) underlie anterior skull-base meningiomas, here we report the inherited mutations of TRAF7 that cause congenital heart defects. We show that TRAF7 mutants operate in a dominant manner, inhibiting protein function via heterodimerization with wild-type protein. Further, the shared genetics of the two disparate pathologies can be traced to the common origin of forebrain meninges and cardiac outflow tract from the TRAF7-expressing neural crest. Somatic and inherited mutations disrupt TRAF7-IFT57 interactions leading to cilia degradation. TRAF7-mutant meningioma primary cultures lack cilia, and TRAF7 knockdown causes cardiac, craniofacial, and ciliary defects in Xenopus and zebrafish, suggesting a mechanistic convergence for TRAF7-driven meningiomas and developmental heart defects.


Assuntos
Cardiopatias Congênitas , Neoplasias Meníngeas , Meningioma , Animais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cardiopatias Congênitas/genética , Neoplasias Meníngeas/genética , Meningioma/genética , Meningioma/patologia , Mutação , Crânio/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Humanos , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral
4.
Brain ; 147(1): 311-324, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37713627

RESUMO

Highly conserved transport protein particle (TRAPP) complexes regulate subcellular trafficking pathways. Accurate protein trafficking has been increasingly recognized to be critically important for normal development, particularly in the nervous system. Variants in most TRAPP complex subunits have been found to lead to neurodevelopmental disorders with diverse but overlapping phenotypes. We expand on limited prior reports on TRAPPC6B with detailed clinical and neuroradiologic assessments, and studies on mechanisms of disease, and new types of variants. We describe 29 additional patients from 18 independent families with biallelic variants in TRAPPC6B. We identified seven homozygous nonsense (n = 12 patients) and eight canonical splice-site variants (n = 17 patients). In addition, we identified one patient with compound heterozygous splice-site/missense variants with a milder phenotype and one patient with homozygous missense variants. Patients displayed non-progressive microcephaly, global developmental delay/intellectual disability, epilepsy and absent expressive language. Movement disorders including stereotypies, spasticity and dystonia were also observed. Brain imaging revealed reductions in cortex, cerebellum and corpus callosum size with frequent white matter hyperintensity. Volumetric measurements indicated globally diminished volume rather than specific regional losses. We identified a reduced rate of trafficking into the Golgi apparatus and Golgi fragmentation in patient-derived fibroblasts that was rescued by wild-type TRAPPC6B. Molecular studies revealed a weakened interaction between mutant TRAPPC6B (c.454C>T, p.Q152*) and its TRAPP binding partner TRAPPC3. Patient-derived fibroblasts from the TRAPPC6B (c.454C>T, p.Q152*) variant displayed reduced levels of TRAPPC6B as well as other TRAPP II complex-specific members (TRAPPC9 and TRAPPC10). Interestingly, the levels of the TRAPPC6B homologue TRAPPC6A were found to be elevated. Moreover, co-immunoprecipitation experiments showed that TRAPPC6A co-precipitates equally with TRAPP II and TRAPP III, while TRAPPC6B co-precipitates significantly more with TRAPP II, suggesting enrichment of the protein in the TRAPP II complex. This implies that variants in TRAPPC6B may preferentially affect TRAPP II functions compared to TRAPP III functions. Finally, we assessed phenotypes in a Drosophila TRAPPC6B-deficiency model. Neuronal TRAPPC6B knockdown impaired locomotion and led to wing posture defects, supporting a role for TRAPPC6B in neuromotor function. Our findings confirm the association of damaging biallelic TRAPPC6B variants with microcephaly, intellectual disability, language impairments, and epilepsy. A subset of patients also exhibited dystonia and/or spasticity with impaired ambulation. These features overlap with disorders arising from pathogenic variants in other TRAPP subunits, particularly components of the TRAPP II complex. These findings suggest that TRAPPC6B is essential for brain development and function, and TRAPP II complex activity may be particularly relevant for mediating this function.


Assuntos
Distonia , Epilepsia , Deficiência Intelectual , Microcefalia , Transtornos do Neurodesenvolvimento , Animais , Humanos , Microcefalia/genética , Deficiência Intelectual/genética , Proteínas de Transporte Vesicular/genética , Transtornos do Neurodesenvolvimento/genética , Epilepsia/genética
5.
J Med Genet ; 60(8): 819-826, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36543534

RESUMO

BACKGROUND: Osteogenesis imperfecta (OI) is a heterogeneous group of inherited disorders characterised by susceptibility to fractures, primarily due to defects in type 1 collagen. The aim of this study is to present a novel OI phenotype and its causative candidate gene. METHODS: Whole-exome sequencing and clinical evaluation were performed in five patients from two unrelated families. PHLDB1 mRNA expression in blood and fibroblasts was investigated by real-time PCR, and western blot analysis was further performed on skin fibroblasts. RESULTS: The common findings among the five affected children were recurrent fractures and/or osteopaenia, platyspondyly, short and bowed long bones, and widened metaphyses. Metaphyseal and vertebral changes regressed after early childhood, and no fractures occurred under bisphosphonate treatment. We identified biallelic NM_001144758.3:c.2392dup and NM_001144758.3:c.2690_2693del pathogenic variants in PHLDB1 in the affected patients, respectively, in the families; parents were heterozygous for these variants. PHLDB1 encodes pleckstrin homology-like domain family B member-1 (PHLDB1) protein, which has a role in insulin-dependent Akt phosphorylation. Compared with controls, a decrease in the expression levels of PHLDB1 in the blood and skin fibroblast samples was detected. Western blot analysis of cultured fibroblasts further confirmed the loss of PHLDB1. CONCLUSION: Two biallelic frameshift variants in the candidate gene PHLDB1 were identified in independent families with a novel, mild-type, autosomal recessive OI. The demonstration of decreased PHLDB1 mRNA expression levels in blood and fibroblast samples supports the hypothesis that PHLDB1 pathogenic variants are causative for the observed phenotype.


Assuntos
Fraturas Ósseas , Osteogênese Imperfeita , Humanos , Pré-Escolar , Osteogênese Imperfeita/genética , Heterozigoto , Fenótipo , Mutação da Fase de Leitura/genética , Colágeno Tipo I/genética , Mutação , Proteínas do Tecido Nervoso/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética
6.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34426522

RESUMO

The construction of population-based variomes has contributed substantially to our understanding of the genetic basis of human inherited disease. Here, we investigated the genetic structure of Turkey from 3,362 unrelated subjects whose whole exomes (n = 2,589) or whole genomes (n = 773) were sequenced to generate a Turkish (TR) Variome that should serve to facilitate disease gene discovery in Turkey. Consistent with the history of present-day Turkey as a crossroads between Europe and Asia, we found extensive admixture between Balkan, Caucasus, Middle Eastern, and European populations with a closer genetic relationship of the TR population to Europeans than hitherto appreciated. We determined that 50% of TR individuals had high inbreeding coefficients (≥0.0156) with runs of homozygosity longer than 4 Mb being found exclusively in the TR population when compared to 1000 Genomes Project populations. We also found that 28% of exome and 49% of genome variants in the very rare range (allele frequency < 0.005) are unique to the modern TR population. We annotated these variants based on their functional consequences to establish a TR Variome containing alleles of potential medical relevance, a repository of homozygous loss-of-function variants and a TR reference panel for genotype imputation using high-quality haplotypes, to facilitate genome-wide association studies. In addition to providing information on the genetic structure of the modern TR population, these data provide an invaluable resource for future studies to identify variants that are associated with specific phenotypes as well as establishing the phenotypic consequences of mutations in specific genes.


Assuntos
Variação Genética/genética , Genoma Humano/genética , Alelos , Consanguinidade , Exoma , Frequência do Gene/genética , Deriva Genética , Genética Populacional/métodos , Estudo de Associação Genômica Ampla/métodos , Genótipo , Haplótipos/genética , Migração Humana/tendências , Humanos , Turquia/etnologia , Sequenciamento do Exoma/métodos
7.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33876771

RESUMO

Uterine leiomyosarcomas (uLMS) are aggressive tumors arising from the smooth muscle layer of the uterus. We analyzed 83 uLMS sample genetics, including 56 from Yale and 27 from The Cancer Genome Atlas (TCGA). Among them, a total of 55 Yale samples including two patient-derived xenografts (PDXs) and 27 TCGA samples have whole-exome sequencing (WES) data; 10 Yale and 27 TCGA samples have RNA-sequencing (RNA-Seq) data; and 11 Yale and 10 TCGA samples have whole-genome sequencing (WGS) data. We found recurrent somatic mutations in TP53, MED12, and PTEN genes. Top somatic mutated genes included TP53, ATRX, PTEN, and MEN1 genes. Somatic copy number variation (CNV) analysis identified 8 copy-number gains, including 5p15.33 (TERT), 8q24.21 (C-MYC), and 17p11.2 (MYOCD, MAP2K4) amplifications and 29 copy-number losses. Fusions involving tumor suppressors or oncogenes were deetected, with most fusions disrupting RB1, TP53, and ATRX/DAXX, and one fusion (ACTG2-ALK) being potentially targetable. WGS results demonstrated that 76% (16 of 21) of the samples harbored chromoplexy and/or chromothripsis. Clinically actionable mutational signatures of homologous-recombination DNA-repair deficiency (HRD) and microsatellite instability (MSI) were identified in 25% (12 of 48) and 2% (1 of 48) of fresh frozen uLMS, respectively. Finally, we found olaparib (PARPi; P = 0.002), GS-626510 (C-MYC/BETi; P < 0.000001 and P = 0.0005), and copanlisib (PIK3CAi; P = 0.0001) monotherapy to significantly inhibit uLMS-PDXs harboring derangements in C-MYC and PTEN/PIK3CA/AKT genes (LEY11) and/or HRD signatures (LEY16) compared to vehicle-treated mice. These findings define the genetic landscape of uLMS and suggest that a subset of uLMS may benefit from existing PARP-, PIK3CA-, and C-MYC/BET-targeted drugs.


Assuntos
Genótipo , Leiomiossarcoma/genética , Mutação , Fusão Oncogênica , Neoplasias Uterinas/genética , Animais , Antineoplásicos/uso terapêutico , Feminino , Humanos , Leiomiossarcoma/tratamento farmacológico , Redes e Vias Metabólicas , Camundongos , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular/métodos , Ftalazinas/administração & dosagem , Ftalazinas/uso terapêutico , Piperazinas/administração & dosagem , Piperazinas/uso terapêutico , Pirimidinas/administração & dosagem , Pirimidinas/uso terapêutico , Quinazolinas/administração & dosagem , Quinazolinas/uso terapêutico , Neoplasias Uterinas/tratamento farmacológico
8.
J Hum Genet ; 67(9): 553-556, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35338243

RESUMO

Heterozygous mutations in Bicaudal D2 Drosophila homolog 2 (BICD2) gene, encodes a vesicle transport protein involved in dynein-mediated movement along microtubules, are responsible for an exceedingly rare autosomal dominant spinal muscular atrophy type 2A which starts in the childhood and predominantly effects lower extremities. Recently, a more severe form, type 2B, has also been described. Here, we present a patient born to a consanguineous union and who suffered from intellectual disability, speech delay, epilepsy, happy facial expression, truncal obesity with tappering fingers, and joint hypermobility. Whole-exome sequencing analysis revealed a rare, homozygous missense mutation (c.731T>C; p.Leu244Pro) in BICD2 gene. This finding presents the first report in the literature for homozygous BICD2 mutations and its association with a Cohen-Like syndrome. Patients presenting with Cohen-Like phenotypes should be further interrogated for mutations in BICD2.


Assuntos
Deficiência Intelectual , Atrofia Muscular Espinal , Genes Dominantes , Humanos , Deficiência Intelectual/genética , Proteínas Associadas aos Microtúbulos/genética , Atrofia Muscular Espinal/genética , Mutação , Mutação de Sentido Incorreto
9.
Am J Med Genet A ; 188(1): 357-363, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34623748

RESUMO

D-bifunctional protein (DBP) deficiency is a rare, autosomal recessive peroxisomal enzyme deficiency resulting in a high burden of morbidity and early mortality. Patients with DBP deficiency resemble those with a severe Zellweger phenotype, with neonatal hypotonia, seizures, craniofacial dysmorphisms, psychomotor delay, deafness, blindness, and death typically within the first 2 years of life, although patients with residual enzyme function can survive longer. The clinical severity of the disease depends on the degree of enzyme deficiency. Loss-of-function variants typically result in no residual enzyme activity; however, splice variants may result in protein with residual function. We describe a full-term newborn presenting with hypotonia, seizures, and unexplained hypoglycemia, who was later found to have rickets at follow up. Rapid whole genome sequencing identified two HSD17B4 variants in trans; one likely pathogenic variant and one variant of uncertain significance (VUS) located in the polypyrimidine tract of intron 13. To determine the functional consequence of the VUS, we analyzed RNA from the patient's father with RNA-seq which showed skipping of Exon 14, resulting in a frameshift mutation three amino acids from the new reading frame. This RNA-seq analysis was correlated with virtually absent enzyme activity, elevated very-long-chain fatty acids in fibroblasts, and a clinically severe phenotype. Both variants are reclassified as pathogenic. Due to the clinical spectrum of DBP deficiency, this provides important prognostic information, including early mortality. Furthermore, we add persistent hypoglycemia to the clinical spectrum of the disease, and advocate for the early management of fat-soluble vitamin deficiencies to reduce complications.


Assuntos
Perda Auditiva Neurossensorial , Hipoglicemia , Deficiência de Proteína , Éxons , Perda Auditiva Neurossensorial/genética , Humanos , Hipoglicemia/genética , Recém-Nascido , Proteína Multifuncional do Peroxissomo-2/genética , Deficiência de Proteína/genética
10.
Brain ; 144(5): 1422-1434, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33970200

RESUMO

Human 4-hydroxyphenylpyruvate dioxygenase-like (HPDL) is a putative iron-containing non-heme oxygenase of unknown specificity and biological significance. We report 25 families containing 34 individuals with neurological disease associated with biallelic HPDL variants. Phenotypes ranged from juvenile-onset pure hereditary spastic paraplegia to infantile-onset spasticity and global developmental delays, sometimes complicated by episodes of neurological and respiratory decompensation. Variants included bona fide pathogenic truncating changes, although most were missense substitutions. Functionality of variants could not be determined directly as the enzymatic specificity of HPDL is unknown; however, when HPDL missense substitutions were introduced into 4-hydroxyphenylpyruvate dioxygenase (HPPD, an HPDL orthologue), they impaired the ability of HPPD to convert 4-hydroxyphenylpyruvate into homogentisate. Moreover, three additional sets of experiments provided evidence for a role of HPDL in the nervous system and further supported its link to neurological disease: (i) HPDL was expressed in the nervous system and expression increased during neural differentiation; (ii) knockdown of zebrafish hpdl led to abnormal motor behaviour, replicating aspects of the human disease; and (iii) HPDL localized to mitochondria, consistent with mitochondrial disease that is often associated with neurological manifestations. Our findings suggest that biallelic HPDL variants cause a syndrome varying from juvenile-onset pure hereditary spastic paraplegia to infantile-onset spastic tetraplegia associated with global developmental delays.


Assuntos
Oxigenases/genética , Paraplegia Espástica Hereditária/genética , Animais , Feminino , Humanos , Masculino , Camundongos , Mutação , Linhagem , Ratos , Peixe-Zebra
12.
Proc Natl Acad Sci U S A ; 116(45): 22730-22736, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31624127

RESUMO

The prognosis of advanced/recurrent cervical cancer patients remains poor. We analyzed 54 fresh-frozen and 15 primary cervical cancer cell lines, along with matched-normal DNA, by whole-exome sequencing (WES), most of which harboring Human-Papillomavirus-type-16/18. We found recurrent somatic missense mutations in 22 genes (including PIK3CA, ERBB2, and GNAS) and a widespread APOBEC cytidine deaminase mutagenesis pattern (TCW motif) in both adenocarcinoma (ACC) and squamous cell carcinomas (SCCs). Somatic copy number variants (CNVs) identified 12 copy number gains and 40 losses, occurring more often than expected by chance, with the most frequent events in pathways similar to those found from analysis of single nucleotide variants (SNVs), including the ERBB2/PI3K/AKT/mTOR, apoptosis, chromatin remodeling, and cell cycle. To validate specific SNVs as targets, we took advantage of primary cervical tumor cell lines and xenografts to preclinically evaluate the activity of pan-HER (afatinib and neratinib) and PIK3CA (copanlisib) inhibitors, alone and in combination, against tumors harboring alterations in the ERBB2/PI3K/AKT/mTOR pathway (71%). Tumors harboring ERBB2 (5.8%) domain mutations were significantly more sensitive to single agents afatinib or neratinib when compared to wild-type tumors in preclinical in vitro and in vivo models (P = 0.001). In contrast, pan-HER and PIK3CA inhibitors demonstrated limited in vitro activity and were only transiently effective in controlling in vivo growth of PIK3CA-mutated cervical cancer xenografts. Importantly, combinations of copanlisib and neratinib were highly synergistic, inducing long-lasting regression of tumors harboring alterations in the ERBB2/PI3K/AKT/mTOR pathway. These findings define the genetic landscape of cervical cancer, suggesting that a large subset of cervical tumors might benefit from existing ERBB2/PIK3CA/AKT/mTOR-targeted drugs.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/genética , Sequenciamento do Exoma , Mutação , Receptor ErbB-2/genética , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/terapia , Animais , Linhagem Celular Tumoral , Terapia Combinada , Variações do Número de Cópias de DNA , Feminino , Xenoenxertos , Humanos , Polimorfismo de Nucleotídeo Único , Neoplasias do Colo do Útero/patologia
13.
J Obstet Gynaecol Res ; 48(5): 1202-1211, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35141985

RESUMO

AIM: To identify pathogenic rare coding Mendelian/high-effect size variant(s) by whole-exome sequencing in familial polycystic ovary syndrome (PCOS) patients to elucidate PCOS-related pathways. METHODS: Twenty women and their affected available relatives diagnosed with PCOS according to Rotterdam criteria were recruited. Whole-exome sequencing on germ-line DNA from 31 PCOS probands and their affected relatives was performed. Whole-exome sequencing data were further evaluated by pathway and chemogenomics analyses. In-slico analysis of candidate variants were done by VarCards for functional predictions and VarSite for impact on three-dimensional (3D) structures in the candidate proteins. RESULTS: Two heterozygous rare FBN3 missense variants in three patients, and one FN1 missense variant in one patient from three different PCOS families were identified. CONCLUSION: We identified three novel FBN3 and FN1 variants for the first time in the literature and linked with PCOS. Further functional studies may identify causality of these newly discovered PCOS-related variants, and their role yet remains to be investigated. Our findings may improve our understanding of the biological pathways affected and identify new drug targets.


Assuntos
Fibrilinas , Fibronectinas , Síndrome do Ovário Policístico , Feminino , Fibrilinas/genética , Fibronectinas/genética , Humanos , Síndrome do Ovário Policístico/genética , Sequenciamento do Exoma
14.
Am J Hum Genet ; 103(5): 666-678, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30343943

RESUMO

Developmental and epileptic encephalopathies (DEEs) are severe neurodevelopmental disorders often beginning in infancy or early childhood that are characterized by intractable seizures, abundant epileptiform activity on EEG, and developmental impairment or regression. CACNA1E is highly expressed in the central nervous system and encodes the α1-subunit of the voltage-gated CaV2.3 channel, which conducts high voltage-activated R-type calcium currents that initiate synaptic transmission. Using next-generation sequencing techniques, we identified de novo CACNA1E variants in 30 individuals with DEE, characterized by refractory infantile-onset seizures, severe hypotonia, and profound developmental impairment, often with congenital contractures, macrocephaly, hyperkinetic movement disorders, and early death. Most of the 14, partially recurring, variants cluster within the cytoplasmic ends of all four S6 segments, which form the presumed CaV2.3 channel activation gate. Functional analysis of several S6 variants revealed consistent gain-of-function effects comprising facilitated voltage-dependent activation and slowed inactivation. Another variant located in the domain II S4-S5 linker results in facilitated activation and increased current density. Five participants achieved seizure freedom on the anti-epileptic drug topiramate, which blocks R-type calcium channels. We establish pathogenic variants in CACNA1E as a cause of DEEs and suggest facilitated R-type calcium currents as a disease mechanism for human epilepsy and developmental disorders.


Assuntos
Canais de Cálcio Tipo R/genética , Proteínas de Transporte de Cátions/genética , Contratura/genética , Discinesias/genética , Epilepsia/genética , Variação Genética/genética , Megalencefalia/genética , Espasmos Infantis/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Transtornos do Neurodesenvolvimento/genética
15.
Genet Med ; 23(12): 2455-2460, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385670

RESUMO

PURPOSE: Alternative splicing plays a critical role in mouse neurodevelopment, regulating neurogenesis, cortical lamination, and synaptogenesis, yet few human neurodevelopmental disorders are known to result from pathogenic variation in splicing regulator genes. Nuclear Speckle Splicing Regulator Protein 1 (NSRP1) is a ubiquitously expressed splicing regulator not known to underlie a Mendelian disorder. METHODS: Exome sequencing and rare variant family-based genomics was performed as a part of the Baylor-Hopkins Center for Mendelian Genomics Initiative. Additional families were identified via GeneMatcher. RESULTS: We identified six patients from three unrelated families with homozygous loss-of-function variants in NSRP1. Clinical features include developmental delay, epilepsy, variable microcephaly (Z-scores -0.95 to -5.60), hypotonia, and spastic cerebral palsy. Brain abnormalities included simplified gyral pattern, underopercularization, and/or vermian hypoplasia. Molecular analysis identified three pathogenic NSRP1 predicted loss-of-function variant alleles: c.1359_1362delAAAG (p.Glu455AlafsTer20), c.1272dupG (p.Lys425GlufsTer5), and c.52C>T (p.Gln18Ter). The two frameshift variants result in a premature termination codon in the last exon, and the mutant transcripts are predicted to escape nonsense mediated decay and cause loss of a C-terminal nuclear localization signal required for NSRP1 function. CONCLUSION: We establish NSRP1 as a gene for a severe autosomal recessive neurodevelopmental disease trait characterized by developmental delay, epilepsy, microcephaly, and spastic cerebral palsy.


Assuntos
Paralisia Cerebral , Epilepsia , Microcefalia , Transtornos do Neurodesenvolvimento , Proteínas Nucleares/genética , Paralisia Cerebral/genética , Epilepsia/genética , Humanos , Microcefalia/genética , Microcefalia/patologia , Transtornos do Neurodesenvolvimento/genética , Linhagem , Splicing de RNA
16.
J Hum Genet ; 66(2): 215-218, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32764695

RESUMO

Intellectual disability (ID) is a genetic and clinically heterogeneous common disease and underlying molecular pathogenesis can frequently not be identified by whole-exome/genome testing. Here, we report four siblings born to a consanguineous union who presented with intellectual disability and discuss the METAP1 pathway as a novel etiology of ID. Genomic analyses demonstrated that patients harbor a novel homozygous nonsense mutation in the gene METAP1. METAP1 codes for methionine aminopeptidase 1 (MetAP1) which oversees the co-translational excision of the first methionine remnants in eukaryotes. The loss-of-function mutations to this gene may result in a defect in the translation of many essential proteins within a cell. Improper neuronal function resulting from this loss of essential proteins could lead to neurologic impairment and ID.


Assuntos
Aminopeptidases/genética , Genes Recessivos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Mutação , Adolescente , Criança , Feminino , Humanos , Masculino , Linhagem , Irmãos , Sequenciamento do Exoma
17.
Am J Med Genet A ; 185(7): 2271-2277, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33837634

RESUMO

Dysosteosclerosis is a group of sclerosing bone dysplasia characterized by short stature, increased bone fragility, osteosclerosis, and platyspondyly. It is a genetically heterogeneous disorder caused by biallelic mutations in the SLC29A3, TNFRSF11A, TCIRG1, and CSF1R genes. To date, four dysosteosclerosis patients with SLC29A3 mutations have been reported. Here, we report biallelic SLC29A3 (c.303_320dupCTACTTTGAGAGCTACCT) variant in a three-year-old girl. She had large anterior fontanelle, fracture history, short stature, camptodactyly, elbow contracture, and melanocytic nevus. Initial skeletal radiographs revealed platyspondyly, dense vertebral endplates (sandwich appearance of the vertebral bodies), diffuse sclerosis of the peripheral side of the pelvic bones, sclerosis of metaphysis and diaphysis of the long bones, metaphyseal widening, and diaphyseal cortical thickening. Mild sclerosis was also present in the skull base, maxilla, rib, scapula, and phalanges. Notably, we observed that sandwich vertebrae appearance significantly resolved and sclerosis of ribs, scapula, pelvis, and long bone metaphysis regressed over a 2.5-year period. However, platyspondyly, metaphyseal widening, and diaphyseal cortical thickening persisted. In conclusion, this study demonstrates spontaneous resolution of osteosclerosis, which was not described previously in patients with dysosteosclerosis.


Assuntos
Predisposição Genética para Doença , Proteínas de Transporte de Nucleosídeos/genética , Osteosclerose/genética , Pré-Escolar , Feminino , Humanos , Mutação/genética , Osteosclerose/diagnóstico por imagem , Osteosclerose/patologia , Costelas/diagnóstico por imagem , Costelas/patologia , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/patologia , Turquia/epidemiologia
18.
Am J Med Genet A ; 185(1): 119-133, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33098347

RESUMO

Dubowitz syndrome (DubS) is considered a recognizable syndrome characterized by a distinctive facial appearance and deficits in growth and development. There have been over 200 individuals reported with Dubowitz or a "Dubowitz-like" condition, although no single gene has been implicated as responsible for its cause. We have performed exome (ES) or genome sequencing (GS) for 31 individuals clinically diagnosed with DubS. After genome-wide sequencing, rare variant filtering and computational and Mendelian genomic analyses, a presumptive molecular diagnosis was made in 13/27 (48%) families. The molecular diagnoses included biallelic variants in SKIV2L, SLC35C1, BRCA1, NSUN2; de novo variants in ARID1B, ARID1A, CREBBP, POGZ, TAF1, HDAC8, and copy-number variation at1p36.11(ARID1A), 8q22.2(VPS13B), Xp22, and Xq13(HDAC8). Variants of unknown significance in known disease genes, and also in genes of uncertain significance, were observed in 7/27 (26%) additional families. Only one gene, HDAC8, could explain the phenotype in more than one family (N = 2). All but two of the genomic diagnoses were for genes discovered, or for conditions recognized, since the introduction of next-generation sequencing. Overall, the DubS-like clinical phenotype is associated with extensive locus heterogeneity and the molecular diagnoses made are for emerging clinical conditions sharing characteristic features that overlap the DubS phenotype.


Assuntos
Eczema/diagnóstico , Eczema/genética , Predisposição Genética para Doença , Transtornos do Crescimento/diagnóstico , Transtornos do Crescimento/genética , Histona Desacetilases/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Microcefalia/diagnóstico , Microcefalia/genética , Proteínas Repressoras/genética , Adolescente , Criança , Pré-Escolar , Variações do Número de Cópias de DNA/genética , Eczema/patologia , Exoma/genética , Fácies , Feminino , Genoma Humano/genética , Genômica/métodos , Transtornos do Crescimento/patologia , Humanos , Lactente , Deficiência Intelectual/patologia , Masculino , Microcefalia/patologia , Fenótipo , Sequenciamento do Exoma
19.
J Inherit Metab Dis ; 44(4): 1001-1012, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33734437

RESUMO

Pathogenic variants in ALG13 (ALG13 UDP-N-acetylglucosaminyltransferase subunit) cause an X-linked congenital disorder of glycosylation (ALG13-CDG) where individuals have variable clinical phenotypes that include developmental delay, intellectual disability, infantile spasms, and epileptic encephalopathy. Girls with a recurrent de novo c.3013C>T; p.(Asn107Ser) variant have normal transferrin glycosylation. Using a highly sensitive, semi-quantitative flow injection-electrospray ionization-quadrupole time-of-flight mass spectrometry (ESI-QTOF/MS) N-glycan assay, we report subtle abnormalities in N-glycans that normally account for <0.3% of the total plasma glycans that may increase up to 0.5% in females with the p.(Asn107Ser) variant. Among our 11 unrelated ALG13-CDG individuals, one male had abnormal serum transferrin glycosylation. We describe seven previously unreported subjects including three novel variants in ALG13 and report a milder neurodevelopmental course. We also summarize the molecular, biochemical, and clinical data for the 53 previously reported ALG13-CDG individuals. We provide evidence that ALG13 pathogenic variants may mildly alter N-linked protein glycosylation in both female and male subjects, but the underlying mechanism remains unclear.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Deficiência Intelectual/fisiopatologia , N-Acetilglucosaminiltransferases/genética , Defeitos Congênitos da Glicosilação/fisiopatologia , Feminino , Variação Genética , Glicosilação , Humanos , Deficiência Intelectual/genética , Masculino , Fenótipo , Transferrina/metabolismo
20.
Brain ; 143(5): 1447-1461, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32282878

RESUMO

Developmental and epileptic encephalopathies are a heterogeneous group of early-onset epilepsy syndromes dramatically impairing neurodevelopment. Modern genomic technologies have revealed a number of monogenic origins and opened the door to therapeutic hopes. Here we describe a new syndromic developmental and epileptic encephalopathy caused by bi-allelic loss-of-function variants in GAD1, as presented by 11 patients from six independent consanguineous families. Seizure onset occurred in the first 2 months of life in all patients. All 10 patients, from whom early disease history was available, presented with seizure onset in the first month of life, mainly consisting of epileptic spasms or myoclonic seizures. Early EEG showed suppression-burst or pattern of burst attenuation or hypsarrhythmia if only recorded in the post-neonatal period. Eight patients had joint contractures and/or pes equinovarus. Seven patients presented a cleft palate and two also had an omphalocele, reproducing the phenotype of the knockout Gad1-/- mouse model. Four patients died before 4 years of age. GAD1 encodes the glutamate decarboxylase enzyme GAD67, a critical actor of the γ-aminobutyric acid (GABA) metabolism as it catalyses the decarboxylation of glutamic acid to form GABA. Our findings evoke a novel syndrome related to GAD67 deficiency, characterized by the unique association of developmental and epileptic encephalopathies, cleft palate, joint contractures and/or omphalocele.


Assuntos
Síndromes Epilépticas/genética , Síndromes Epilépticas/patologia , Síndromes Epilépticas/fisiopatologia , Glutamato Descarboxilase/genética , Anormalidades Múltiplas/genética , Feminino , Humanos , Recém-Nascido , Masculino , Mutação , Linhagem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa