Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(25): 14584-14592, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32513746

RESUMO

Inbreeding may increase the extinction risk of small populations. Yet, studies using modern genomic tools to investigate inbreeding depression in nature have been limited to single populations, and little is known about the dynamics of inbreeding depression in subdivided populations over time. Natural populations often experience different environmental conditions and differ in demographic history and genetic composition, characteristics that can affect the severity of inbreeding depression. We utilized extensive long-term data on more than 3,100 individuals from eight islands in an insular house sparrow metapopulation to examine the generality of inbreeding effects. Using genomic estimates of realized inbreeding, we discovered that inbred individuals had lower survival probabilities and produced fewer recruiting offspring than noninbred individuals. Inbreeding depression, measured as the decline in fitness-related traits per unit inbreeding, did not vary appreciably among populations or with time. As a consequence, populations with more resident inbreeding (due to their demographic history) paid a higher total fitness cost, evidenced by a larger variance in fitness explained by inbreeding within these populations. Our results are in contrast to the idea that effects of inbreeding generally depend on ecological factors and genetic differences among populations, and expand the understanding of inbreeding depression in natural subdivided populations.


Assuntos
Aptidão Genética/fisiologia , Depressão por Endogamia/fisiologia , Pardais/fisiologia , Animais , Feminino , Masculino , Linhagem , Dinâmica Populacional , Análise Espaço-Temporal
2.
Mol Ecol ; 21(6): 1487-99, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22335620

RESUMO

Inbreeding is common in small and threatened populations and often has a negative effect on individual fitness and genetic diversity. Thus, inbreeding can be an important factor affecting the persistence of small populations. In this study, we investigated the effects of inbreeding on fitness in a small, wild population of house sparrows (Passer domesticus) on the island of Aldra, Norway. The population was founded in 1998 by four individuals (one female and three males). After the founder event, the adult population rapidly increased to about 30 individuals in 2001. At the same time, the mean inbreeding coefficient among adults increased from 0 to 0.04 by 2001 and thereafter fluctuated between 0.06 and 0.10, indicating a highly inbred population. We found a negative effect of inbreeding on lifetime reproductive success, which seemed to be mainly due to an effect of inbreeding on annual reproductive success. This resulted in selection against inbred females. However, the negative effect of inbreeding was less strong in males, suggesting that selection against inbred individuals is at least partly sex specific. To examine whether individuals avoided breeding with close relatives, we compared observed inbreeding and kinship coefficients in the population with those obtained from simulations of random mating. We found no significant differences between the two, indicating weak or absent inbreeding avoidance. We conclude that there was inbreeding depression in our population. Despite this, birds did not seem to actively avoid mating with close relatives, perhaps as a consequence of constraints on mating possibilities in such a small population.


Assuntos
Endogamia , Dinâmica Populacional , Pardais/fisiologia , Animais , Feminino , Masculino , Noruega , Linhagem , Comportamento Sexual Animal , Pardais/genética
3.
Mol Ecol Resour ; 20(2): 544-559, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31912659

RESUMO

The house sparrow is an important model species for studying physiological, ecological and evolutionary processes in wild populations. Here, we present a medium density, genome wide linkage map for house sparrow (Passer domesticus) that has aided the assembly of the house sparrow reference genome, and that will provide an important resource for ongoing mapping of genes controlling important traits in the ecology and evolution of this species. Using a custom house sparrow 10 K iSelect Illumina SNP chip we have assigned 6,498 SNPs to 29 autosomal linkage groups, based on a mean of 430 informative meioses per SNP. The map was constructed by combining the information from linkage with that of the physical position of SNPs within scaffold sequences in an iterative process. Averaged between the sexes; the linkage map had a total length of 2,004 cM, with a longer map for females (2,240 cM) than males (1,801 cM). Additionally, recombination rates also varied along the chromosomes. Comparison of the linkage map to the reference genomes of zebra finch, collared flycatcher and chicken, showed a chromosome fusion of the two avian chromosomes 8 and 4A in house sparrow. Lastly, information from the linkage map was utilized to conduct analysis of linkage disequilibrium (LD) in eight populations with different effective population sizes (Ne ) in order to quantify the background level LD. Together, these results aid the design of future association studies, facilitate the development of new genomic tools and support the body of research that describes the evolution of the avian genome.


Assuntos
Aves/genética , Evolução Molecular , Genoma , Pardais/genética , Animais , Aves/classificação , Galinhas/classificação , Galinhas/genética , Mapeamento Cromossômico , Cromossomos/genética , Feminino , Tentilhões/classificação , Tentilhões/genética , Ligação Genética , Masculino , Polimorfismo de Nucleotídeo Único , Pardais/classificação
4.
Mol Ecol Resour ; 17(4): 770-782, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27813315

RESUMO

Experimental evolution studies can be used to explore genomic response to artificial and natural selection. In such studies, loci that display larger allele frequency change than expected by genetic drift alone are assumed to be directly or indirectly associated with traits under selection. However, such studies report surprisingly many loci under selection, suggesting that current tests for allele frequency change may be subject to P-value inflation and hence be anticonservative. One factor known from genomewide association (GWA) studies to cause P-value inflation is population stratification, such as relatedness among individuals. Here, we suggest that by treating presence of an individual in a population after selection as a binary response variable, existing GWA methods can be used to account for relatedness when estimating allele frequency change. We show that accounting for relatedness like this effectively reduces false-positives in tests for allele frequency change in simulated data with varying levels of population structure. However, once relatedness has been accounted for, the power to detect causal loci under selection is low. Finally, we demonstrate the presence of P-value inflation in allele frequency change in empirical data spanning multiple generations from an artificial selection experiment on tarsus length in two free-living populations of house sparrow and correct for this using genomic control. Our results indicate that since allele frequencies in large parts of the genome may change when selection acts on a heritable trait, such selection is likely to have considerable and immediate consequences for the eco-evolutionary dynamics of the affected populations.


Assuntos
Evolução Molecular , Frequência do Gene , Modelos Genéticos , Seleção Genética , Animais , Deriva Genética , Genética Populacional , Pardais/genética
5.
Mol Ecol Resour ; 13(3): 429-39, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23480404

RESUMO

With the advent of next generation sequencing, new avenues have opened to study genomics in wild populations of non-model species. Here, we describe a successful approach to a genome-wide medium density Single Nucleotide Polymorphism (SNP) panel in a non-model species, the house sparrow (Passer domesticus), through the development of a 10 K Illumina iSelect HD BeadChip. Genomic DNA and cDNA derived from six individuals were sequenced on a 454 GS FLX system and generated a total of 1.2 million sequences, in which SNPs were detected. As no reference genome exists for the house sparrow, we used the zebra finch (Taeniopygia guttata) reference genome to determine the most likely position of each SNP. The 10 000 SNPs on the SNP-chip were selected to be distributed evenly across 31 chromosomes, giving on average one SNP per 100 000 bp. The SNP-chip was screened across 1968 individual house sparrows from four island populations. Of the original 10 000 SNPs, 7413 were found to be variable, and 99% of these SNPs were successfully called in at least 93% of all individuals. We used the SNP-chip to demonstrate the ability of such genome-wide marker data to detect population sub-division, and compared these results to similar analyses using microsatellites. The SNP-chip will be used to map Quantitative Trait Loci (QTL) for fitness-related phenotypic traits in natural populations.


Assuntos
Genética Populacional/métodos , Genoma/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Pardais/genética , Animais , Sequência de Bases , DNA Complementar/genética , Repetições de Microssatélites/genética , Dados de Sequência Molecular , Noruega , Análise de Sequência de DNA , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa