Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Nat Immunol ; 15(1): 72-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24241692

RESUMO

IFNL3, which encodes interferon-λ3 (IFN-λ3), has received considerable attention in the hepatitis C virus (HCV) field, as many independent genome-wide association studies have identified a strong association between polymorphisms near IFNL3 and clearance of HCV. However, the mechanism underlying this association has remained elusive. In this study, we report the identification of a functional polymorphism (rs4803217) in the 3' untranslated region (UTR) of IFNL3 mRNA that dictated transcript stability. We found that this polymorphism influenced AU-rich element (ARE)-mediated decay (AMD) of IFNL3 mRNA, as well as the binding of HCV-induced microRNAs during infection. Together these pathways mediated robust repression of the unfavorable IFNL3 polymorphism. Our data reveal a previously unknown mechanism by which HCV attenuates the antiviral response and indicate new potential therapeutic targets for HCV treatment.


Assuntos
Elementos Ricos em Adenilato e Uridilato/genética , Interleucinas/genética , MicroRNAs/genética , Polimorfismo de Nucleotídeo Único , Estabilidade de RNA/genética , Regiões 3' não Traduzidas/genética , Sequência de Bases , Linhagem Celular Tumoral , Citometria de Fluxo , Genótipo , Células Hep G2 , Hepacivirus/fisiologia , Hepatite C/genética , Hepatite C/virologia , Interações Hospedeiro-Patógeno , Humanos , Interferons , Interleucinas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico
2.
RNA Biol ; 17(9): 1324-1330, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32476596

RESUMO

Secondary structure prediction approaches rely typically on models of equilibrium free energies that are themselves based on in vitro physical chemistry. Recent transcriptome-wide experiments of in vivo RNA structure based on SHAPE-MaP experiments provide important information that may make it possible to extend current in vitro-based RNA folding models in order to improve the accuracy of computational RNA folding simulations with respect to the experimentally measured in vivo RNA secondary structure. Here we present a machine learning approach that utilizes RNA secondary structure prediction results and nucleotide sequence in order to predict in vivo SHAPE scores. We show that this approach has a higher Pearson correlation coefficient with experimental SHAPE scores than thermodynamic folding. This could be an important step towards augmenting experimental results with computational predictions and help with RNA secondary structure predictions that inherently take in-vivo folding properties into account.


Assuntos
Biologia Computacional , Aprendizado Profundo , Modelos Moleculares , Conformação de Ácido Nucleico , Dobramento de RNA , RNA/química , Códon de Iniciação , Biologia Computacional/métodos , Redes Neurais de Computação , RNA/genética
3.
Bioinformatics ; 34(24): 4297-4299, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29912310

RESUMO

Summary: Creating clear, visually pleasing 2D depictions of RNA and DNA strands and their interactions is important to facilitate and communicate insights related to nucleic acid structure. Here we present RiboSketch, a secondary structure image production application that enables the visualization of multistranded structures via layout algorithms, comprehensive editing capabilities, and a multitude of simulation modes. These interactive features allow RiboSketch to create publication quality diagrams for structures with a wide range of composition, size and complexity. The program may be run in any web browser without the need for installation, or as a standalone Java application. Availability and implementation: https://rnastructure.cancer.gov/ribosketch.


Assuntos
DNA/química , Conformação de Ácido Nucleico , RNA/química , Software , Algoritmos , Gráficos por Computador
4.
Nucleic Acids Res ; 45(4): 2210-2220, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28108656

RESUMO

We introduce a new concept that utilizes cognate nucleic acid nanoparticles which are fully complementary and functionally-interdependent to each other. In the described approach, the physical interaction between sets of designed nanoparticles initiates a rapid isothermal shape change which triggers the activation of multiple functionalities and biological pathways including transcription, energy transfer, functional aptamers and RNA interference. The individual nanoparticles are not active and have controllable kinetics of re-association and fine-tunable chemical and thermodynamic stabilities. Computational algorithms were developed to accurately predict melting temperatures of nanoparticles of various compositions and trace the process of their re-association in silico. Additionally, tunable immunostimulatory properties of described nanoparticles suggest that the particles that do not induce pro-inflammatory cytokines and high levels of interferons can be used as scaffolds to carry therapeutic oligonucleotides, while particles with strong interferon and mild pro-inflammatory cytokine induction may qualify as vaccine adjuvants. The presented concept provides a simple, cost-effective and straightforward model for the development of combinatorial regulation of biological processes in nucleic acid nanotechnology.


Assuntos
Nanopartículas/química , Ácidos Nucleicos/química , Aptâmeros de Nucleotídeos , Linhagem Celular Tumoral , Citocinas/metabolismo , DNA/química , DNA/genética , DNA/imunologia , Humanos , Imageamento Tridimensional , Leucócitos Mononucleares/metabolismo , Microscopia de Força Atômica , Modelos Moleculares , Nanotecnologia , Conformação de Ácido Nucleico , Ácidos Nucleicos/genética , Ácidos Nucleicos/imunologia , Oligonucleotídeos/química , Oligonucleotídeos/imunologia , RNA/química , RNA/genética , RNA/imunologia , Interferência de RNA , Termodinâmica , Transcrição Gênica , Transfecção
5.
Molecules ; 23(12)2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30558267

RESUMO

Cells frequently simultaneously express RNAs and cognate antisense transcripts without necessarily leading to the formation of RNA duplexes. Here, we present a novel transcriptome-wide experimental approach to ascertain the presence of accessible double-stranded RNA structures based on sequencing of RNA fragments longer than 18 nucleotides that were not degraded by single-strand cutting nucleases. We applied this approach to four different cell lines with respect to three different treatments (native cell lysate, removal of proteins, and removal of ribosomal RNA and proteins). We found that long accessible RNA duplexes were largely absent in native cell lysates, while the number of RNA duplexes was dramatically higher when proteins were removed. The majority of RNA duplexes involved ribosomal transcripts. The duplex formation between different non-ribosomal transcripts appears to be largely of a stochastic nature. These results suggest that cells are-via RNA-binding proteins-mostly devoid of long RNA duplexes, leading to low "noise" in the molecular patterns that are utilized by the innate immune system. These findings have implications for the design of RNA interference (RNAi)-based therapeutics by imposing structural constraints on designed RNA complexes that are intended to have specific properties with respect to Dicer cleavage and target gene downregulation.


Assuntos
RNA de Cadeia Dupla/metabolismo , RNA de Cadeia Dupla/uso terapêutico , Proteínas de Ligação a RNA/metabolismo , Sequência de Bases , Endorribonucleases/metabolismo , Células HEK293 , Humanos , Ligação Proteica , RNA de Cadeia Dupla/química , RNA Ribossômico/metabolismo , Ribossomos/metabolismo , Solventes
6.
Methods ; 103: 128-37, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27090005

RESUMO

Designing self-assembling RNA ring structures based on known 3D structural elements connected via linker helices is a challenging task due to the immense number of motif combinations, many of which do not lead to ring-closure. We describe an in silico solution to this design problem by combinatorial assembly of RNA 3-way junctions, bulges, and kissing loops, and tabulating the cases that lead to ring formation. The solutions found are made available in the form of a web-accessible Ring Catalog. As an example of a potential use of this resource, we chose a predicted RNA square structure consisting of five RNA strands and demonstrate experimentally that the self-assembly of those five strands leads to the formation of a square-like complex. This is a demonstration of a novel "design by catalog" approach to RNA nano-structure generation. The URL https://rnajunction.ncifcrf.gov/ringdb can be used to access the resource.


Assuntos
RNA/química , Bases de Dados de Ácidos Nucleicos , Dimerização , Nanoestruturas , Conformação de Ácido Nucleico , Software
7.
Nano Lett ; 16(3): 1726-35, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26926528

RESUMO

RNA is an attractive material for the creation of molecular logic gates that release programmed functionalities only in the presence of specific molecular interaction partners. Here we present HyperFold, a multistrand RNA/DNA structure prediction approach for predicting nucleic acid complexes that can contain pseudoknots. We show that HyperFold also performs competitively compared to other published folding algorithms. We performed a large variety of RNA/DNA hybrid reassociation experiments for different concentrations, DNA toehold lengths, and G+C content and find that the observed tendencies for reassociation correspond well to computational predictions. Importantly, we apply this method to the design and experimental verification of a two-stranded RNA molecular switch that upon binding to a single-stranded RNA toehold disease-marker trigger mRNA changes its conformation releasing an shRNA-like Dicer substrate structure. To demonstrate the concept, connective tissue growth factor (CTGF) mRNA and enhanced green fluorescent protein (eGFP) mRNA were chosen as trigger and target sequences, respectively. In vitro experiments confirm the formation of an RNA switch and demonstrate that the functional unit is being released when the trigger RNA interacts with the switch toehold. The designed RNA switch is shown to be functional in MDA-MB-231 breast cancer cells. Several other switches were also designed and tested. We conclude that this approach has considerable potential because, in principle, it allows the release of an siRNA designed against a gene that differs from the gene that is utilized as a biomarker for a disease state.


Assuntos
DNA/química , RNA/química , Linhagem Celular Tumoral , Fator de Crescimento do Tecido Conjuntivo/genética , DNA/metabolismo , Proteínas de Fluorescência Verde/genética , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , RNA/genética , RNA/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ribonuclease III/metabolismo , Transfecção
8.
Nano Lett ; 16(3): 1746-53, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26926382

RESUMO

Current work reports the use of single-stranded RNA toeholds of different lengths to promote the reassociation of various RNA-DNA hybrids, which results in activation of multiple split functionalities inside human cells. The process of reassociation is analyzed and followed with a novel computational multistrand secondary structure prediction algorithm and various experiments. All of our previously designed RNA/DNA nanoparticles employed single-stranded DNA toeholds to initiate reassociation. The use of RNA toeholds is advantageous because of the simpler design rules, the shorter toeholds, and the smaller size of the resulting nanoparticles (by up to 120 nucleotides per particle) compared to the same hybrid nanoparticles with single-stranded DNA toeholds. Moreover, the cotranscriptional assemblies result in higher yields for hybrid nanoparticles with ssRNA toeholds.


Assuntos
DNA de Cadeia Simples/química , Nanopartículas/química , Interferência de RNA , RNA Interferente Pequeno/química , Linhagem Celular Tumoral , DNA de Cadeia Simples/genética , Células HeLa , Humanos , Modelos Moleculares , Nanotecnologia , Hibridização de Ácido Nucleico , RNA Interferente Pequeno/genética , Transfecção
9.
Nucleic Acids Res ; 42(3): 2085-97, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24194608

RESUMO

Control over the simultaneous delivery of different functionalities and their synchronized intracellular activation can greatly benefit the fields of RNA and DNA biomedical nanotechnologies and allow for the production of nanoparticles and various switching devices with controllable functions. We present a system of multiple split functionalities embedded in the cognate pairs of RNA-DNA hybrids which are programmed to recognize each other, re-associate and form a DNA duplex while also releasing the split RNA fragments which upon association regain their original functions. Simultaneous activation of three different functionalities (RNAi, Förster resonance energy transfer and RNA aptamer) confirmed by multiple in vitro and cell culture experiments prove the concept. To automate the design process, a novel computational tool that differentiates between the thermodynamic stabilities of RNA-RNA, RNA-DNA and DNA-DNA duplexes was developed. Moreover, here we demonstrate that besides being easily produced by annealing synthetic RNAs and DNAs, the individual hybrids carrying longer RNAs can be produced by RNA polymerase II-dependent transcription of single-stranded DNA templates.


Assuntos
DNA/química , RNA/química , Aptâmeros de Nucleotídeos/química , Linhagem Celular Tumoral , Transferência Ressonante de Energia de Fluorescência , Humanos , Modelos Moleculares , Interferência de RNA , RNA Polimerase II/metabolismo , Termodinâmica , Transcrição Gênica
10.
RNA ; 19(9): 1171-82, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23887147

RESUMO

Functionally important nucleotide base-pairing often manifests itself in sequence alignments in the form of compensatory base changes (covariation). We developed a novel index-based computational method (CovaRNA) to detect long-range covariation on a genomic scale, as well as another computational method (CovStat) for determining the statistical significance of observed covariation patterns in alignment pairs. Here we present an all-versus-all search for nucleotide covariation in Drosophila genomic alignments. The search is genome wide, with the restriction that only alignments that correspond to euchromatic regions, which consist of at least 10 Drosophila species, are being considered (59% of the euchromatic genome of Drosophila melanogaster). We find that long-range covariations are especially prevalent between exons of mRNAs as well as noncoding RNAs; the majority of the observed covariations appear as not reverse complementary, but as synchronized mutations, which could be due to interactions with common interaction partners or due to the involvement of genomic elements that are antisense of annotated transcripts. The involved genes are enriched for functions related to regionalization as well as neural and developmental processes. These results are computational evidence that RNA-RNA long-range interactions are a widespread phenomenon that is of fundamental importance to a variety of cellular processes.


Assuntos
Drosophila/genética , Genoma de Inseto , RNA/genética , Animais , Pareamento de Bases , Biologia Computacional , Sequência Conservada , Mutação , Nucleotídeos/genética , RNA/metabolismo , RNA Mensageiro/genética , RNA não Traduzido/genética , Alinhamento de Sequência
11.
Acc Chem Res ; 47(6): 1731-41, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24758371

RESUMO

CONSPECTUS: The use of RNAs as scaffolds for biomedical applications has several advantages compared with other existing nanomaterials. These include (i) programmability, (ii) precise control over folding and self-assembly, (iii) natural functionalities as exemplified by ribozymes, riboswitches, RNAi, editing, splicing, and inherent translation and transcription control mechanisms, (iv) biocompatibility, (v) relatively low immune response, and (vi) relatively low cost and ease of production. We have tapped into several of these properties and functionalities to construct RNA-based functional nanoparticles (RNA NPs). In several cases, the structural core and the functional components of the NPs are inherent in the same construct. This permits control over the spatial disposition of the components, intracellular availability, and precise stoichiometry. To enable the generation of RNA NPs, a pipeline is being developed. On one end, it encompasses the rational design and various computational schemes that promote design of the RNA-based nanoconstructs, ultimately producing a set of sequences consisting of RNA or RNA-DNA hybrids, which can assemble into the designed construct. On the other end of the pipeline is an experimental component, which takes the produced sequences and uses them to initialize and characterize their proper assembly and then test the resulting RNA NPs for their function and delivery in cell culture and animal models. An important aspect of this pipeline is the feedback that constantly occurs between the computational and the experimental parts, which synergizes the refinement of both the algorithmic methodologies and the experimental protocols. The utility of this approach is depicted by the several examples described in this Account (nanocubes, nanorings, and RNA-DNA hybrids). Of particular interest, from the computational viewpoint, is that in most cases, first a three-dimensional representation of the assembly is produced, and only then are algorithms applied to generate the sequences that will assemble into the designated three-dimensional construct. This is opposite to the usual practice of predicting RNA structures from a given sequence, that is, the RNA folding problem. To be considered is the generation of sequences that upon assembly have the proper intra- or interstrand interactions (or both). Of particular interest from the experimental point of view is the determination and characterization of the proper thermodynamic, kinetic, functionality, and delivery protocols. Assembly of RNA NPs from individual single-stranded RNAs can be accomplished by one-pot techniques under the proper thermal and buffer conditions or, potentially more interestingly, by the use of various RNA polymerases that can promote the formation of RNA NPs cotransciptionally from specifically designed DNA templates. Also of importance is the delivery of the RNA NPs to the cells of interest in vitro or in vivo. Nonmodified RNAs rapidly degrade in blood serum and have difficulties crossing biological membranes due to their negative charge. These problems can be overcome by using, for example, polycationic lipid-based carriers. Our work involves the use of bolaamphiphiles, which are amphipathic compounds with positively charged hydrophilic head groups at each end connected by a hydrophobic chain. We have correlated results from molecular dynamics computations with various experiments to understand the characteristics of such delivery agents.


Assuntos
Simulação por Computador , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , RNA/química , Algoritmos , Animais , Técnicas de Química Sintética , DNA/química , Interações Hidrofóbicas e Hidrofílicas , Modelos Químicos , Conformação de Ácido Nucleico , RNA/síntese química , Dobramento de RNA , Interferência de RNA , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Riboswitch , Termodinâmica
12.
Methods ; 67(2): 256-65, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24189588

RESUMO

The fast-developing field of RNA nanotechnology requires the adoption and development of novel and faster computational approaches to modeling and characterization of RNA-based nano-objects. We report the first application of Elastic Network Modeling (ENM), a structure-based dynamics model, to RNA nanotechnology. With the use of an Anisotropic Network Model (ANM), a type of ENM, we characterize the dynamic behavior of non-compact, multi-stranded RNA-based nanocubes that can be used as nano-scale scaffolds carrying different functionalities. Modeling the nanocubes with our tool NanoTiler and exploring the dynamic characteristics of the models with ANM suggested relatively minor but important structural modifications that enhanced the assembly properties and thermodynamic stabilities. In silico and in vitro, we compared nanocubes having different numbers of base pairs per side, showing with both methods that the 10 bp-long helix design leads to more efficient assembly, as predicted computationally. We also explored the impact of different numbers of single-stranded nucleotide stretches at each of the cube corners and showed that cube flexibility simulations help explain the differences in the experimental assembly yields, as well as the measured nanomolecule sizes and melting temperatures. This original work paves the way for detailed computational analysis of the dynamic behavior of artificially designed multi-stranded RNA nanoparticles.


Assuntos
Nanoestruturas/química , RNA/química , Anisotropia , Simulação por Computador , Microscopia Crioeletrônica , Luz , Modelos Químicos , Modelos Moleculares , Nanoestruturas/ultraestrutura , Conformação de Ácido Nucleico , RNA/ultraestrutura , Espalhamento de Radiação
13.
RNA ; 17(9): 1688-96, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21752927

RESUMO

Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) is a facile technique for quantitative analysis of RNA secondary structure. In general, low SHAPE signal values indicate Watson-Crick base-pairing, and high values indicate positions that are single-stranded within the RNA structure. However, the relationship of SHAPE signals to structural properties such as non-Watson-Crick base-pairing or stacking has thus far not been thoroughly investigated. Here, we present results of SHAPE experiments performed on several RNAs with published three-dimensional structures. This strategy allows us to analyze the results in terms of correlations between chemical reactivities and structural properties of the respective nucleotide, such as different types of base-pairing, stacking, and phosphate-backbone interactions. We find that the RNA SHAPE signal is strongly correlated with cis-Watson-Crick/Watson-Crick base-pairing and is to a remarkable degree not dependent on other structural properties with the exception of stacking. We subsequently generated probabilistic models that estimate the likelihood that a residue with a given SHAPE score participates in base-pairing. We show that several models that take SHAPE scores of adjacent residues into account perform better in predicting base-pairing compared with individual SHAPE scores. This underscores the context sensitivity of SHAPE and provides a framework for an improved interpretation of the response of RNA to chemical modification.


Assuntos
Conformação de Ácido Nucleico , RNA/química , RNA/genética , Acilação , Motivos de Aminoácidos , Pareamento de Bases , Primers do DNA , Eletroforese , Modelos Moleculares , Nucleotídeos/genética , Análise de Sequência de RNA , Transcrição Gênica
14.
Methods ; 54(2): 239-50, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21163354

RESUMO

In the emerging field of RNA-based nanotechnology there is a need for automation of the structure design process. Our goal is to develop computer methods for aiding in this process. Towards that end, we created the RNA junction database, which is a repository of RNA junctions, i.e. internal, multi-branch and kissing loops with emanating stem stubs, extracted from the larger RNA structures stored in the PDB database. These junctions can be used as building blocks for nanostructures. Two programs developed in our laboratory, NanoTiler and RNA2D3D, can combine such building blocks with idealized fragments of A-form helices to produce desired 3D nanostructures. Initially, the building blocks are treated as rigid objects and the resulting geometry is tested against the design objectives. Experimental data, however, shows that RNA accommodates its shape to the constraints of larger structural contexts. Therefore we are adding analysis of the flexibility of our building blocks to the full design process. Here we present an example of RNA-based nanostructure design, putting emphasis on the need to characterize the structural flexibility of the building blocks to induce ring closure in the automated exploration. We focus on the use of kissing loops (KL) in nanostructure design, since they have been shown to play an important role in RNA self-assembly. By using an experimentally proven system, the RNA tectosquare, we show that considering the flexibility of the KLs as well as distortions of helical regions may be necessary to achieve a realistic design.


Assuntos
Simulação de Dinâmica Molecular , Nanoestruturas/química , Conformação de Ácido Nucleico , RNA/química , Pareamento de Bases , Sequências Repetidas Invertidas
15.
Nucleic Acids Res ; 38(Web Server issue): W368-72, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20501603

RESUMO

UNLABELLED: Computational RNA secondary structure prediction approaches differ by the way RNA pseudoknot interactions are handled. For reasons of computational efficiency, most approaches only allow a limited class of pseudoknot interactions or are not considering them at all. Here we present a computational method for RNA secondary structure prediction that is not restricted in terms of pseudoknot complexity. The approach is based on simulating a folding process in a coarse-grained manner by choosing helices based on established energy rules. The steric feasibility of the chosen set of helices is checked during the folding process using a highly coarse-grained 3D model of the RNA structures. Using two data sets of 26 and 241 RNA sequences we find that this approach is competitive compared to the existing RNA secondary structure prediction programs pknotsRG, HotKnots and UnaFold. The key advantages of the new method are that there is no algorithmic restriction in terms of pseudoknot complexity and a test is made for steric feasibility. AVAILABILITY: The program is available as web server at the site: http://cylofold.abcc.ncifcrf.gov.


Assuntos
RNA/química , Software , Algoritmos , Internet , Conformação de Ácido Nucleico , Análise de Sequência de RNA
16.
Curr Opin Struct Biol ; 17(2): 157-65, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17383172

RESUMO

The field of RNA structure prediction has experienced significant advances in the past several years, thanks to the availability of new experimental data and improved computational methodologies. These methods determine RNA secondary structures and pseudoknots from sequence alignments, thermodynamics-based dynamic programming algorithms, genetic algorithms and combined approaches. Computational RNA three-dimensional modeling uses this information in conjunction with manual manipulation, constraint satisfaction methods, molecular mechanics and molecular dynamics. The ultimate goal of automatically producing RNA three-dimensional models from given secondary and tertiary structure data, however, is still not fully realized. Recent developments in the computational prediction of RNA structure have helped bridge the gap between RNA secondary structure prediction, including pseudoknots, and three-dimensional modeling of RNA.


Assuntos
Simulação por Computador , Modelos Moleculares , Conformação de Ácido Nucleico , RNA/química , Algoritmos , Sequência de Bases , Dados de Sequência Molecular , RNA/genética , Alinhamento de Sequência , Software , Termodinâmica
17.
Nucleic Acids Res ; 36(Database issue): D392-7, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17947325

RESUMO

We developed a database called RNAJunction that contains structure and sequence information for RNA structural elements such as helical junctions, internal loops, bulges and loop-loop interactions. Our database provides a user-friendly way of searching structural elements by PDB code, structural classification, sequence, keyword or inter-helix angles. In addition, the structural data was subjected to energy minimization. This database is useful for analyzing RNA structures as well as for designing novel RNA structures on a nanoscale. The database can be accessed at: http://rnajunction.abcc.ncifcrf.gov/


Assuntos
Bases de Dados de Ácidos Nucleicos , Nanoestruturas/química , RNA/química , Algoritmos , Internet , Nanotecnologia , Conformação de Ácido Nucleico , Análise de Sequência de RNA , Interface Usuário-Computador
18.
Nanoscale ; 12(4): 2555-2568, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31932830

RESUMO

Using RNA as a material for nanoparticle construction provides control over particle size and shape at the nano-scale. RNA nano-architectures have shown promise as delivery vehicles for RNA interference (RNAi) substrates, allowing multiple functional entities to be combined on a single particle in a programmable fashion. Rather than employing a completely bottom-up approach to scaffold design, here multiple copies of an existing synthetic supramolecular RNA nano-architecture serve as building blocks along with additional motifs for the design of a novel truncated tetrahedral RNA scaffold, demonstrating that rationally designed RNA assemblies can themselves serve as modular pieces in the construction of larger rationally designed structures. The resulting tetrahedral scaffold displays enhanced characteristics for RNAi-substrate delivery in comparison to similar RNA-based scaffolds, as evidenced by its increased functional capacity, increased cellular uptake and ultimately an increased RNAi efficacy of its adorned Dicer substrate siRNAs. The unique truncated tetrahedral shape of the nanoparticle core appears to contribute to this particle's enhanced function, indicating the physical characteristics of RNA scaffolds merit significant consideration when designing platforms for delivery of functional RNAs via RNA nanoparticles.


Assuntos
RNA Helicases DEAD-box/química , Nanoestruturas/química , Interferência de RNA , RNA/química , Ribonuclease III/química , Proteínas de Ciclo Celular/química , Linhagem Celular Tumoral , Microscopia Crioeletrônica , Proteínas de Fluorescência Verde/química , Humanos , Luz , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Tamanho da Partícula , Reação em Cadeia da Polimerase , Conformação Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Proto-Oncogênicas/química , RNA Interferente Pequeno , Espalhamento de Radiação , Software , Termodinâmica , Quinase 1 Polo-Like
19.
Nanomaterials (Basel) ; 9(4)2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30991728

RESUMO

Several varieties of small nucleic acid constructs are able to modulate gene expression via one of a number of different pathways and mechanisms. These constructs can be synthesized, assembled and delivered to cells where they are able to impart regulatory functions, presenting a potential avenue for the development of nucleic acid-based therapeutics. However, distinguishing aberrant cells in need of therapeutic treatment and limiting the activity of deliverable nucleic acid constructs to these specific cells remains a challenge. Here, we designed and characterized a collection of nucleic acids systems able to generate and/or release sequence-specific oligonucleotide constructs in a conditional manner based on the presence or absence of specific RNA trigger molecules. The conditional function of these systems utilizes the implementation of AND and NOT Boolean logic elements, which could ultimately be used to restrict the release of functionally relevant nucleic acid constructs to specific cellular environments defined by the high or low expression of particular RNA biomarkers. Each system is generalizable and designed with future therapeutic development in mind. Every construct assembles through nuclease-resistant RNA/DNA hybrid duplex formation, removing the need for additional 2'-modifications, while none contain any sequence restrictions on what can define the diagnostic trigger sequence or the functional oligonucleotide output.

20.
Methods Mol Biol ; 474: 93-115, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19031063

RESUMO

Recent developments in the field of nanobiology have significantly expanded the possibilities for new modalities in the treatment of many diseases, including cancer. Ribonucleic acid (RNA) represents a relatively new molecular material for the development of these biologically oriented nanodevices. In addition, RNA nanobiology presents a relatively new approach for the development of RNA-based nanoparticles that can be used as crystallization substrates and scaffolds for RNA-based nanoarrays. Presented in this chapter are some methodological shaped-based protocols for the design of such RNA nanostructures. Included are descriptions and background materials describing protocols that use a database of three-dimensional RNA structure motifs; designed RNA secondary structure motifs; and a combination of the two approaches. An example is also given illustrating one of the protocols.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Nanopartículas/química , Nanotecnologia/métodos , Conformação de Ácido Nucleico , RNA/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa