Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Clin Immunol ; 199: 47-51, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30543922

RESUMO

Several inflammatory, proteolytic, angiogenic and bone-associated factors play a role in the development of autoimmune, accelerated atherosclerosis in rheumatic diseases. Some of these may serve as biomarkers of vascular pathology and may be useful in the follow-up of vascular damage and outcome. Multi-biomarker profiles rather than a single markers would likely be optimal in this respect.


Assuntos
Aterosclerose/imunologia , Doenças Autoimunes/imunologia , Neovascularização Patológica , Aterosclerose/etiologia , Aterosclerose/genética , Aterosclerose/terapia , Autoanticorpos/sangue , Doenças Autoimunes/etiologia , Doenças Autoimunes/genética , Doenças Autoimunes/terapia , Biomarcadores , Meio Ambiente , Humanos
2.
Isr Med Assoc J ; 21(5): 345-352, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31140228

RESUMO

BACKGROUND: Angiogenesis is the outgrowth of new blood vessels from existing ones and is an early occurrence in inflamed joint tissue. It is governed by a tightly controlled balance of pro- and anti-angiogenic stimuli, which promote or inhibit generation and proliferation of new endothelial cells, vascular morphogenesis, and vessel remodeling. At the beginning, capillary formation is crucial in maintaining the supply of various nutrients as well as oxygen to the inflamed tissue. Local and systemic expression of angiogenic factors may indicate a constant remodeling of synovial vasculature. Redox signaling is closely related to angiogenesis and can alter angiogenic responses of synovial cells. In this review we discuss key issues about the endothelial pathology in inflammatory arthritis followed by a review of angiogenic processes and main angiogenic mediators. We discuss the hypoxia-vascular endothelial growth factor (VEGF)-Ang/Tie2 system and its related therapeutic implications in detail with further review of various mediator protein targets and intracellular regulatory pathway targets with their current and potential future role in preclinical or clinical setting whilst ameliorating inflammation.


Assuntos
Artrite Reumatoide , Neovascularização Patológica , Membrana Sinovial , Proteínas Angiogênicas/metabolismo , Anti-Inflamatórios/farmacologia , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Artrite Reumatoide/fisiopatologia , Humanos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/imunologia , Membrana Sinovial/irrigação sanguínea , Membrana Sinovial/imunologia , Remodelação Vascular/efeitos dos fármacos , Remodelação Vascular/imunologia
3.
Exp Dermatol ; 23(2): 113-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24330353

RESUMO

Notch receptor-ligand interactions are critical for cell proliferation, differentiation and survival; however, the role of Notch signalling in psoriasis remains to be elucidated. Serum amyloid A (A-SAA) is an acute-phase protein with cytokine-like properties, regulates cell survival pathways and is implicated in many inflammatory conditions. To examine the role of Notch-1 signalling in the pathogenesis of psoriasis, Notch-1, DLL-4, Jagged-1, Hrt-1/Hrt-2, A-SAA, Factor VIII and vascular endothelial growth factor (VEGF) mRNA and/or protein expression in psoriasis skin biopsies, serum and dHMVEC were assessed by immunohistology, dual-immunofluorescence, real-time PCR, ELISA and Western blotting. A-SAA-induced angiogenesis and invasion in the presence of Notch-1 siRNA was assessed by matrigel tube formation assays and Transwell invasion assay. Increased Notch-1, its ligand DLL-4 and Hrt-1 expression were demonstrated in lesional skin compared with non-lesional skin, with greatest expression observed in the dermal vasculature (P < 0.05). Dual-immunofluorescent staining demonstrated co-localization of Notch-1 to endothelial cell marker Factor VIII. A significant increase in A-SAA levels was demonstrated in psoriasis serum compared with healthy control serum (P < 0.05), and A-SAA expression was higher in lesional skin compared with non-lesional. In dHMVEC, A-SAA significantly induced Jagged-1, Hrt-1 and VEGF mRNA expression (P < 0.05) and activated Notch-1 IC indicative of transcriptional regulation. In contrast, A-SAA significantly inhibited DLL-4 mRNA expression (P < 0.05). Finally A-SAA-induced angiogenesis and invasion were inhibited by Notch-1 siRNA (P < 0.05). Notch receptor-ligand interactions mediate vascular dysfunction in psoriasis and may represent a potential therapeutic target.


Assuntos
Células Endoteliais/patologia , Neovascularização Patológica/patologia , Psoríase/patologia , Receptor Notch1/fisiologia , Adulto , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Ligação ao Cálcio/biossíntese , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ciclo Celular/biossíntese , Proteínas de Ciclo Celular/genética , Células Cultivadas , Fator VIII/análise , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteína Jagged-1 , Masculino , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Microvasos/patologia , Pessoa de Meia-Idade , Psoríase/metabolismo , Interferência de RNA , RNA Mensageiro/biossíntese , RNA Interferente Pequeno/farmacologia , Receptor Notch1/antagonistas & inibidores , Receptor Notch1/genética , Proteínas Serrate-Jagged , Proteína Amiloide A Sérica/fisiologia , Transdução de Sinais , Adulto Jovem
4.
Stem Cell Res ; 73: 103251, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37979431

RESUMO

Psoriasis (Ps) is a chronic, inflammatory skin disease characterized by thickened, red and scaly plaques. Systemic inflammation associated with psoriasis results in an increased risk of death due to the development of psoriasis-associated comorbidities such as cardiovascular disease (CVD) and metabolic syndrome. Although the cardiometabolic features in psoriasis are clinically well described, the underlying molecular mechanisms linking these comorbidities remain poorly understood. Generation of induced pluripotent stem cells (hiPSCs) from peripheral blood mononuclear cells (PBMCs) and skin fibroblasts (SFs) of psoriatic patients provides a novel approach to investigate the pathway by which cutaneous inflammation promotes CV complications in this disorder.


Assuntos
Células-Tronco Pluripotentes Induzidas , Psoríase , Humanos , Leucócitos Mononucleares , Comorbidade , Psoríase/complicações , Psoríase/epidemiologia , Inflamação
5.
Ann Rheum Dis ; 71(4): 582-8, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22121133

RESUMO

BACKGROUND: To examine the association between mitochondrial mutagenesis and the proinflammatory microenvironment in patients with inflammatory arthritis. METHODS: Fifty patients with inflammatory arthritis underwent arthroscopy and synovial tissue biopsies, synovial fluid and clinical assessment were obtained. Fifteen patients pre/post-TNFi therapy were also recruited. Normal synovial biopsies were obtained from 10 subjects undergoing interventional arthroscopy. Macroscopic synovitis/vascularity was measured by visual analogue scale. Cell-specific markers CD3 (T cells) and CD68 (macrophages) were quantified by immunohistology. TNFα, IL-6, IFNγ and IL-1ß were measured in synovial fluids by MSD multiplex assays. Synovial tissue mitochondrial mutagenesis was quantified using a mitochondrial random mutation capture assay (RMCA). The direct effect of TNFα on oxidative stress and mitochondrial function was assessed in primary cultures of rheumatoid arthritis synovial fibroblast cells (RASFCs). Mitochondrial mutagenesis, reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and mitochondrial mass (MM) were quantified using the RMCA and specific cell fluorescent probes. RESULTS: A significant increase in mtDNA mutation frequency was demonstrated in inflamed synovial tissue compared with control (p<0.05), an effect that was independent of age. mtDNA mutations positively correlated with macroscopic synovitis (r=0.52, p<0.016), vascularity (r=0.54, p<0.01) and with synovial fluid cytokine levels of TNFα (r=0.74, p<0.024) and IFNγ (r=0.72, p<0.039). mtDNA mutation frequency post-TNFi therapy was significantly lower in patients with a DAS<3.2 (p<0.05) and associated with clinical and microscopic measures of disease (p<0.05). In vitro TNFα significantly induced mtDNA mutations, ROS, MM and MMP in RASFCs (all p<0.05). CONCLUSION: High mitochondrial mutations are strongly associated with synovial inflammation showing a direct link between mitochondrial mutations and key proinflammatory pathways.


Assuntos
Artrite Reumatoide/genética , DNA Mitocondrial/genética , Mutagênese , Adulto , Antirreumáticos/farmacologia , Antirreumáticos/uso terapêutico , Artrite Psoriásica/genética , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , Artroscopia , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Biópsia , Células Cultivadas , DNA Mitocondrial/efeitos dos fármacos , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Mutação , Membrana Sinovial/patologia , Sinovite/genética , Sinovite/patologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/farmacologia
6.
Arthritis Rheum ; 63(4): 923-32, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21225682

RESUMO

OBJECTIVE: To examine the effect of tumor necrosis factor (TNF) blocking therapy on hypoxia in vivo, macroscopic and microscopic inflammation, and magnetic resonance imaging (MRI) results in patients with inflammatory arthritis. METHODS: Patients with inflammatory arthritis (n = 20) underwent full clinical assessment, arthroscopy, synovial biopsy, and MRI before and after initiation of biologic therapy. Macroscopic synovitis/vascularity was assessed with a visual analog scale, and tissue PO(2) (tPO(2) ) was measured at arthroscopy using a Licox probe. Cell-specific markers (CD4, CD8, CD68, CD20, and CD19) and blood vessel maturity were quantified by immunohistologic analysis and dual-immunofluorescence factor VIII/α-smooth muscle actin staining, respectively. Contiguous gadoteric acid-enhanced MRI of the target knee was used to assess synovial enhancement. RESULTS: Biologic therapy responders showed a significant increase of tPO(2) in vivo (P < 0.05). This response was associated with significant reductions in 28-joint Disease Activity Score using the C-reactive protein level (DAS28-CRP) (P = 0.012), macroscopic synovitis (P = 0.017), macroscopic vascularity (P = 0.05), CD4+ T cells (P < 0.041), and CD68+ macrophages (P < 0.011). Blood vessel numbers were also reduced in responders; however, this did not reach statistical significance. Strong inverse correlations were demonstrated between changes in tPo(2) levels and changes in DAS28-CRP (r = -0.53, P < 0.001), CD4 (r = -0.44, P < 0.026), CD68 (r = -0.46, P < 0.003), and macroscopic vascularity (r = -0.314, P = 0.049) after therapy. Furthermore, changes in inflammation as measured by MRI showed a strong inverse correlation with tPO(2) levels (r = -0.688, P < 0.002) and positive correlations with CRP levels (r = 0.707, P = 0.001), macroscopic synovitis (r = 0.457, P = 0.056), macroscopic vascularity (r = 0.528, P= 0.017), CD4 (r = 0.553, P < 0.032), and CD68 (r = 0.670, P < 0.002) after therapy. CONCLUSION: This is the first study to show that successful biologic therapy significantly improves in vivo synovial hypoxia. Changes are strongly associated with changes in macroscopic and microscopic measures of joint inflammation and MRI improvement. These data further strengthen the concept that hypoxia is an important event driving synovial inflammation.


Assuntos
Antirreumáticos/uso terapêutico , Artrite/tratamento farmacológico , Terapia Biológica , Hipóxia/tratamento farmacológico , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Artrite/metabolismo , Artrite/fisiopatologia , Biópsia , Proteína C-Reativa/metabolismo , Linfócitos T CD4-Positivos/patologia , Estudos de Coortes , Humanos , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Macrófagos/metabolismo , Macrófagos/patologia , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Neovascularização Patológica/fisiopatologia , Índice de Gravidade de Doença , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia
7.
Arthritis Rheum ; 63(8): 2172-82, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21484771

RESUMO

OBJECTIVE: To assess the levels and spectrum of mitochondrial DNA (mtDNA) point mutations in synovial tissue from patients with inflammatory arthritis in relation to in vivo hypoxia and oxidative stress levels. METHODS: Random Mutation Capture assay was used to quantitatively evaluate alterations of the synovial mitochondrial genome. In vivo tissue oxygen levels (tPO(2)) were measured at arthroscopy using a Licox probe. Synovial expression of lipid peroxidation (4-hydroxynonenal [4-HNE]) and mitochondrial cytochrome c oxidase subunit II (CytcO II) deficiency were assessed by immunohistochemistry. In vitro levels of mtDNA point mutations, reactive oxygen species (ROS), mitochondrial membrane potential, and markers of oxidative DNA damage (8-oxo-7,8-dihydro-2'-deoxyguanine [8-oxodG]) and lipid peroxidation (4-HNE) were determined in human synoviocytes under normoxia and hypoxia (1%) in the presence or absence of superoxide dismutase (SOD) or N-acetylcysteine (NAC) or a hydroxylase inhibitor (dimethyloxalylglycine [DMOG]). Patients were categorized according to their in vivo tPO(2) level (<20 mm Hg or >20 mm Hg), and mtDNA point mutations, immunochemistry features, and stress markers were compared between groups. RESULTS: The median tPO(2) level in synovial tissue indicated significant hypoxia (25.47 mm Hg). Higher frequency of mtDNA mutations was associated with reduced in vivo oxygen tension (P = 0.05) and with higher synovial 4-HNE cytoplasmic expression (P = 0.04). Synovial expression of CytcO II correlated with in vivo tPO(2) levels (P = 0.03), and levels were lower in patients with tPO(2) <20 mm Hg (P < 0.05). In vitro levels of mtDNA mutations, ROS, mitochondrial membrane potential, 8-oxo-dG, and 4-HNE were higher in synoviocytes exposed to 1% hypoxia (P < 0.05); all of these increased levels were rescued by SOD and DMOG and, with the exception of ROS, by NAC. CONCLUSION: These findings demonstrate that hypoxia-induced mitochondrial dysfunction drives mitochondrial genome mutagenesis, and antioxidants significantly rescue these events.


Assuntos
Artrite Psoriásica/metabolismo , Artrite Reumatoide/metabolismo , Hipóxia/genética , Mitocôndrias/metabolismo , Mutagênese , Artrite Psoriásica/genética , Artrite Reumatoide/genética , Células Cultivadas , Humanos , Hipóxia/metabolismo , Inflamação/genética , Inflamação/metabolismo , Mitocôndrias/genética , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo , Líquido Sinovial/metabolismo , Membrana Sinovial/metabolismo
8.
Stem Cell Res ; 64: 102886, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35973333

RESUMO

Rheumatoid arthritis (RA) is a chronic inflammatory disease that primarily affects joints but should be considered as a syndrome that also includes extra-articular manifestations and comorbidities. Human-derived induced pluripotent stem cells (hiPSCs) and their differentiated derivatives may be of special interest in the investigation of complex pathophysiology of RA. In this study, we demonstrate and compare the generation of hiPSC from peripheral blood mononuclear cells (PBMC) and fibroblast-like synoviocytes (FLS) from RA patients. Application of three-dimensional cardiac microtissues constructed from RA specific iPSC-derivatives may be a useful approach to investigate RA comorbidities and cardiac protection or toxicity of anti-rheumatic drugs.


Assuntos
Antirreumáticos , Artrite Reumatoide , Células-Tronco Pluripotentes Induzidas , Sinoviócitos , Humanos , Leucócitos Mononucleares , Fibroblastos , Células Cultivadas
9.
Arthritis Rheum ; 62(3): 711-21, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20187131

RESUMO

OBJECTIVE: To assess blood vessel stability in inflammatory synovial tissue (ST) and to examine neural cell adhesion molecule (NCAM), oxidative DNA damage, and hypoxia in vivo. METHODS: Macroscopic vascularity and ST oxygen levels were determined in vivo in patients with inflammatory arthritis who were undergoing arthroscopy. Vessel maturity/stability was quantified in matched ST samples by dual immunofluorescence staining for factor VIII (FVIII)/alpha-smooth muscle actin (alpha-SMA). NCAM and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) were examined by immunohistochemistry. Angiogenesis was assessed in vitro, using human dermal endothelial cells (HDECs) in a Matrigel tube formation assay. RESULTS: A significant number of immature vessels (showing no pericyte recruitment) was observed in tissue from patients with inflammatory arthritis (P < 0.001), in contrast to osteoarthritic and normal tissue, which showed complete recruitment of pericytes. Low in vivo PO(2) levels in the inflamed joint (median [range] 22.8 [3.2-54.1] mm Hg) were inversely related to increased macroscopic vascularity (P < 0.04) and increased microscopic expression of FVIII and alpha-SMA (P < 0.04 and P < 0.03, respectively). A significant proportion of vessels showed focal expression of NCAM and strong nuclear 8-oxodG expression, implicating a loss of EC-pericyte contact and increased DNA damage, levels of which were inversely associated with low in vivo PO(2) (P = 0.04 for each comparison). Circulating cells were completely negative for 8-oxodG. Exposure of HDEC to 3% O(2) (reflecting mean ST in vivo measurements) significantly increased EC tube formation (P < 0.05). CONCLUSION: Our findings indicate the presence of unstable vessels in inflamed joints associated with hypoxia, incomplete EC-pericyte interactions, and increased DNA damage. These changes may further contribute to persistent hypoxia in the inflamed joint to further drive this unstable microenvironment.


Assuntos
Artrite/fisiopatologia , Vasos Sanguíneos/fisiopatologia , Membrana Sinovial/irrigação sanguínea , Adulto , Idoso , Idoso de 80 Anos ou mais , Artrite/patologia , Hipóxia Celular/fisiologia , Dano ao DNA/fisiologia , Humanos , Imuno-Histoquímica , Inflamação , Pessoa de Meia-Idade , Neovascularização Patológica , Moléculas de Adesão de Célula Nervosa/análise , Oxigênio/análise
10.
Ann Rheum Dis ; 69(6): 1172-8, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19706618

RESUMO

OBJECTIVES: To assess levels of oxidative DNA damage (8-oxo-7,8-dihydro-2'-deoxyguanine; 8-oxo-dG) and lipid peroxidation (4-hydroxy-2-nonenal; 4-HNE) in serum, synovial fluid and tissue of patients with inflammatory arthritis in relation to in vivo hypoxia levels, disease activity and angiogenic markers. METHODS: Oxygen levels in synovial tissue were assessed using an oxygen/temperature probe. Nuclear and cytoplasmic 8-oxo-dG and 4-HNE levels were assessed in synovial tissue from 23 patients by immunohistochemistry. 8-Oxo-dG and 4-HNE levels in serum and synovial fluid were determined using 8-oxo-dG and hexanoyl-Lys (HEL) adduct ELISAs, respectively. Serum vascular endothelial growth factor (VEGF) and angiopoietin 2 (Ang2) levels were also measured by ELISA. RESULTS: The median oxygen tension in synovial tissue was profoundly hypoxic at 19.35 mm Hg (2.5%). Nuclear 8-oxo-dG levels were significantly higher than nuclear 4-HNE levels in the lining and sublining layers (all p<0.001). In contrast, cytoplasmic 4-HNE levels were higher than cytoplasmic 8-oxo-dG levels in both cell layers (all p<0.001). Reduced in vivo oxygen tension correlated with high lipid peroxidation in synovial fluid (p=0.027; r=0.54) and tissue (p=0.004; r=0.58). Serum VEGF levels were positively correlated with cytoplasmic 4-HNE expression (p=0.05; r=0.43) and intensity (p=0.006; r=0.59) in the lining layer. Serum Ang2 levels were positively correlated with nuclear 4-HNE expression and intensity in both cell layers (all p < or = 0.05). DAS28-C-reactive protein was correlated with nuclear 4-HNE expression in the sublining layer (p=0.02; r=0.48) and DAS28-erythrocyte sedimentation rate was correlated with nuclear 4-HNE expression in both cell layers (p < or = 0.03). CONCLUSIONS: Lipid peroxidation is associated with low oxygen tension in vivo, disease activity and angiogenic marker expression in inflammatory arthritis.


Assuntos
Artrite/metabolismo , Estresse Oxidativo/fisiologia , Membrana Sinovial/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Indutores da Angiogênese/metabolismo , Artrite/sangue , Artrite/genética , Artroscopia , Biomarcadores/metabolismo , Sedimentação Sanguínea , Hipóxia Celular/fisiologia , Dano ao DNA , Feminino , Humanos , Peroxidação de Lipídeos/fisiologia , Masculino , Pessoa de Meia-Idade , Oxigênio/sangue , Líquido Sinovial/metabolismo
11.
Mol Ther Methods Clin Dev ; 17: 1190-1201, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32518806

RESUMO

Systemically delivered adeno-associated viral vector serotype 9 (AAV9) effectively transduces murine heart, but provides transgene expression also in liver and skeletal muscles. Improvement of the selectivity of transgene expression can be achieved through incorporation of target sites (TSs) for miRNA-122 and miRNA-206 into the 3' untranslated region (3' UTR) of the expression cassette. Here, we aimed to generate such miRNA-122- and miRNA-206-regulated AAV9 vector for a therapeutic, heart-specific overexpression of heme oxygenase-1 (HO-1). We successfully validated the vector functionality in murine cell lines corresponding to tissues targeted by AAV9. Next, we evaluated biodistribution of transgene expression following systemic vector delivery to HO-1-deficient mice of mixed C57BL/6J × FVB genetic background. Although AAV genomes were present in the hearts of these animals, HO-1 protein expression was either absent or significantly impaired. We found that miRNA-122, earlier described as liver specific, was present also in the hearts of C57BL/6J × FVB mice. Various levels of miRNA-122 expression were observed in the hearts of other mouse strains, in heart tissues of patients with cardiomyopathy, and in human induced pluripotent stem cell-derived cardiomyocytes in which we also confirmed such posttranscriptional regulation of transgene expression. Our data clearly indicate that therapeutic utilization of miRNA-based regulation strategy needs to consider inter-individual variability.

12.
Arthritis Rheumatol ; 72(6): 896-902, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31840936

RESUMO

OBJECTIVE: To investigate a role for insulin-resistant pathways in inflammation and therapeutic targeting for disease modification in rheumatoid arthritis (RA). METHODS: RA disease activity and cardiovascular risk factors, including insulin resistance and body mass index (BMI), were assessed in an Irish RA cohort. Glucose transporter 1 (GLUT-1) and GLUT-4 activity in RA and osteoarthritis (OA) synovial tissue was examined using immunohistochemistry. Spontaneous release of proinflammatory mediators from ex vivo RA synovial explants and primary synovial fibroblast (SF) cell culture supernatants was quantified by enzyme-linked immunosorbent assay. Phosphorylated AMP-activated protein kinase (p-AMPK) and GLUT-1 protein expression was analyzed by Western blotting. Cellular glycolytic and oxidative phosphorylation was assessed using extracellular flux analysis. RESULTS: Insulin resistance was independently associated with both BMI (unstandardized coefficient B 0.113 [95% confidence interval (95% CI) 0.059-0.167]; P < 0.001) (n = 61) and swollen joint count in 28 joints (SJC28) (B 0.114 [95% CI 0.032-0.197]; P = 0.008) (n = 61). Increased GLUT-1 expression in RA synovium (n = 26) versus OA synovium (n = 16) was demonstrated (P = 0.0003), with increased expression in the lining, sublining, and vascular regions. In contrast, decreased GLUT-4 expression in the RA lining layer (n = 21) versus the OA lining layer (n = 8) was observed (P = 0.0358). Decreased GLUT-1 protein expression was observed in parallel with increased p-AMPK protein expression in SFs in the presence of metformin (n = 4). Metformin increased glycolytic activity and decreased oxidative phosphorylation in RASFs (n = 7) (P < 0.05 for both). Metformin or aminoimidazole carboxamide ribonucleotide presence decreased spontaneous production of interleukin-6 (IL-6), IL-8, and monocyte chemotactic protein 1 in RA synovial explants and SFs (n = 5-7). CONCLUSION: Insulin resistance is significantly associated with BMI and synovitis in RA, suggesting distinct interplay between glucose availability and inflammation in RA. Furthermore, the effect of metformin on proinflammatory mechanisms suggests a role for AMPK-modifying compounds in the treatment of RA.


Assuntos
Artrite Reumatoide/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Resistência à Insulina/genética , Sinovite/metabolismo , Idoso , Artrite Reumatoide/etiologia , Western Blotting , Índice de Massa Corporal , Células Cultivadas , Feminino , Fibroblastos , Humanos , Imuno-Histoquímica , Inflamação , Mediadores da Inflamação/metabolismo , Irlanda , Masculino , Pessoa de Meia-Idade , Osteoartrite/metabolismo , Fosforilação , Líquido Sinovial/metabolismo , Membrana Sinovial/metabolismo , Sinovite/complicações
13.
J Clin Med ; 8(9)2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31466390

RESUMO

The idea of right heart catheterization (RHC) grew in the milieu of modern thinking about the cardiovascular system, influenced by the experiments of William Harvey, which were inspired by the treatises of Greek philosophers like Aristotle and Gallen, who made significant contributions to the subject. RHC was first discovered in the eighteenth century by William Hale and was subsequently systematically improved by outstanding experiments in the field of physiology, led by Cournand and Dickinson Richards, which finally resulted in the implementation of pulmonary artery catheters (PAC) into clinical practice by Jeremy Swan and William Ganz in the early 1970s. Despite its premature euphoric reception, some further analysis seemed not to share the early enthusiasm as far as the safety and effectiveness issues were concerned. Nonetheless, RHC kept its significant role in the diagnosis, prognostic evaluation, and decision-making of pulmonary hypertension and heart failure patients. Its role in the treatment of end-stage heart failure seems not to be fully understood, although it is promising. PAC-guided optimization of the treatment of patients with ventricular assist devices and its beneficial introduction into clinical practice remains a challenge for the near future.

14.
EBioMedicine ; 47: 402-413, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31466915

RESUMO

BACKGROUND: Although neoangiogenesis is a hallmark of chronic inflammatory diseases such as inflammatory arthritis and many cancers, therapeutic agents targeting the vasculature remain elusive. Here we identified miR-125a as an important regulator of angiogenesis. METHODS: MiRNA levels were quantified in Psoriatic Arthritis (PsA) synovial-tissue by RT-PCR and compared to macroscopic synovial vascularity. HMVEC were transfected with anti-miR-125a and angiogenic mechanisms quantified using tube formation assays, transwell invasion chambers, wound repair, RT-PCR and western blot. Real-time analysis of EC metabolism was assessed using the XF-24 Extracellular-Flux Analyzer. Synovial expression of metabolic markers was assessed by immunohistochemistry and immunofluorescent staining. MiR-125a CRISPR/Cas9-based knock-out zebrafish were generated and vascular development assessed. Finally, glycolytic blockade using 3PO, which inhibits Phosphofructokinase-fructose-2,6-bisphophatase 3 (PFKFB3), was assessed in miR-125a-/- ECs and zebrafish embryos. FINDINGS: MiR-125a is significantly decreased in PsA synovium and inversely associated with macroscopic vascularity. In-vivo, CRISPR/cas9 miR-125a-/- zebrafish displayed a hyper-branching phenotype. In-vitro, miR-125a inhibition promoted EC tube formation, branching, migration and invasion, effects paralleled by a shift in their metabolic profile towards glycolysis. This metabolic shift was also observed in the PsA synovial vasculature where increased expression of glucose transporter 1 (GLUT1), PFKFB3 and Pyruvate kinase muscle isozyme M2 (PKM2) were demonstrated. Finally, blockade of PFKFB3 significantly inhibited anti-miR-125a-induced angiogenic mechanisms in-vitro, paralleled by normalisation of vascular development of CRISPR/cas9 miR-125a-/- zebrafish embryos. INTEPRETATION: Our results provide evidence that miR-125a deficiency enhances angiogenic processes through metabolic reprogramming of endothelial cells. FUND: Irish Research Council, Arthritis Ireland, EU Seventh Framework Programme (612218/3D-NET).


Assuntos
Regulação da Expressão Gênica , MicroRNAs/genética , Neovascularização Patológica/genética , Animais , Biópsia , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Células Endoteliais , Inativação Gênica , Glicólise , Humanos , Osteoartrite/genética , Osteoartrite/patologia , Interferência de RNA , Peixe-Zebra
15.
Free Radic Biol Med ; 125: 15-24, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29601945

RESUMO

Inflammatory Arthritis is characterized by synovial proliferation, neovascularization and leukocyte extravasation leading to joint destruction and functional disability. Efficiency of oxygen supply to the synovium is poor due to the highly dysregulated synovial microvasculature. This along with the increased energy demands of activated infiltrating immune cells and inflamed resident cells leads to an hypoxic microenvironment and mitochondrial dysfunction. This favors an increase of reactive oxygen species, leading to oxidative damage which further promotes inflammation. In this adverse microenvironment synovial cells adapt to generate energy and switch their cell metabolism from a resting regulatory state to a highly metabolically active state which allows them to produce essential building blocks to support their proliferation. This metabolic shift results in the accumulation of metabolic intermediates which act as signaling molecules that further dictate the inflammatory response. Understanding the complex interplay between hypoxia-induced signaling pathways, oxidative stress and mitochondrial function will provide better insight into the underlying mechanisms of disease pathogenesis.


Assuntos
Hipóxia/fisiopatologia , Inflamação/fisiopatologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Animais , Humanos , Oxirredução , Transdução de Sinais
16.
RMD Open ; 4(1): e000616, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29531789

RESUMO

OBJECTIVES: Ultrasonography (US) is a fast, available and low-cost imaging tool used for detecting knee synovitis. Our aims were to assess the relationship between US and histology findings in appraising levels of inflammation and vascularity in the knee joint in subjects with inflammatory arthropathies; to determine whether differences exist in the appraisal between varying knee compartments and to compare US performances compared with gold standard histology for knee synovitis detection. METHODS: Subjects with actively inflamed knee joint having crystal arthropathies, rheumatoid arthritis, psoriatic arthritis or ostoearthritis were prospectively recruited from rheumatology clinics after giving their written consent between May and October 2015. Study was approved by the institutional ethics committee. The knee was divided into three compartments (medial, lateral, superior). Patients had a knee US followed by a knee arthroscopy with biopsies retrieval from each compartment. Biopsies were blindly scored for lining layer hyperplasia, inflammation, vascularity, CD68 and factor VIII staining. Correlation was determined using the Spearman's correlation test. RESULTS: 26 patients with active arthritis in a knee joint and recent onset of disease were prospectively included. Strong correlations were observed between US synovitis grade and histological inflammation score (r=0.63; P=0.002), US Doppler grade and histological score for vascularity (r=0.68; P<0.001); US measured synovial thickness and lining layer hyperplasia (r=0.61; P=0.002). Moderate correlation was found between US synovitis grade and CD68 score (r=0.49; P=0.02). CONCLUSION: US findings correlate with histological inflammation and vascularity scores in actively inflamed knee joints. US accurately describes knee synovitis.

17.
Front Med (Lausanne) ; 5: 185, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30123796

RESUMO

Introduction: Identifying and quantifying inflammatory disease activity in rheumatoid arthritis remains a challenge. Many studies have suggested that a large proportion of patients may have active inflammation, but normal inflammatory markers. Although various disease activity scores have been validated, most rely to a large degree on biomarkers such as CRP and ESR. In this study, we examine the utility and limitations of these biomarkers, as well as the DAS28-CRP in appraising disease activity in RA. Methods: Two hundred and twenty three consecutive rheumatoid arthritis reporting knee arthralgia underwent synovial sampling of the affected knee via needle arthroscopy. The synovium was examined by microscopy with H+E staining as well as immunohistochemistry, and related to the ESR, CRP and DAS28-CRP on blood samples taken immediately before arthroscopy. Results: Although a statistically significant positive correlation was observed between CRP and the level of inflammation in the biopsy retrieved (n = 197, rho = 0.43, CI 0.30-0.54, p < 0.0001), there was histological evidence of inflammation in the synovium in 49.4% of the patients who had a normal CRP. A positive correlation was also observed between ESR and the level of inflammation in the biopsy retrieved (n = 188, rho = 0.29, CI 0.15-0.42 p < 0.0001). A statistically significant but weak positive correlation was observed between the DAS28-CRP and synovial inflammation (n = 189, rho = 0.23, CI 0.09-0.37, p = 0.0011). Only the CD19 infiltrate in the synovium correlated with serum CRP (n = 70, rho = 0.32, CI 0.08-0.52, p = 0.0068). Conclusion: CRP has a moderately strong relationship with disease activity, but there are significant pitfalls in the use of this biomarker in RA, and therefore a need interpret CRP results judiciously. The results of this study underline the heterogeneity of RA, and the need to develop improved panels of biomarkers, to better stratify RA, and to identify the cohort for whom inflammatory activity cannot be measured accurately with CRP.

18.
Arthritis Rheumatol ; 70(12): 1959-1970, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29790294

RESUMO

OBJECTIVE: To examine the effects of tofacitinib on metabolic activity, mitochondrial function, and proinflammatory mechanisms in rheumatoid arthritis (RA). METHODS: Ex vivo RA synovial explants and primary RA synovial fibroblasts (RASFs) were cultured with 1 µM tofacitinib. RASF bioenergetics were assessed using an XF24 analyzer, and key metabolic genes were assessed by reverse transcription-polymerase chain reaction (RT-PCR) analysis. Mitochondrial function was assessed using specific cell fluorescent probes and by mitochondrial gene arrays. Mitochondrial mutagenesis was quantified using a mitochondrial random mutation capture assay, and lipid peroxidation was quantified by enzyme-linked immunosorbent assay (ELISA). The effect of tofacitinib on spontaneous release of proinflammatory mediators from RA whole tissue synovial explants was quantified by ELISAs/MSD multiplex assays, and metabolic markers were quantified by RT-PCR. Finally, RASF invasion, matrix degradation, and synovial outgrowths were assessed by transwell invasion/Matrigel outgrowth assays and ELISA. RESULTS: Tofacitinib significantly decreased mitochondrial membrane potential, mitochondrial mass, and reactive oxygen species production by RASFs and differentially regulated key mitochondrial genes. Tofacitinib significantly increased oxidative phosphorylation, ATP production, and the maximal respiratory capacity and the respiratory reserve in RASFs, an effect paralleled by a decrease in glycolysis and the genes for the key glycolytic enzymes hexokinase 2 (HK2), glycogen synthase kinase 3α (GSK-3α), lactate dehydrogenase A, and hypoxia-inducible factor 1α. Tofacitinib inhibited the effect of oncostatin M (OSM) on interleukin-6 (IL-6) and monocyte chemotactic protein 1 and reversed the effects of OSM on RASF cellular metabolism. Using RA whole tissue synovial explants, we found that tofacitinib inhibited the key metabolic genes for glucose transporter 1, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3, 3'-phosphoinositide-dependent protein kinase 1, HK2, and GSK-3α, the proinflammatory mediators IL-6, IL-8, IL-1ß, intercellular adhesion molecule 1, vascular endothelial growth factor, and TIE-2, and RASF outgrowth from synovial explants, RASF invasion, and matrix metalloproteinase 1 activity. CONCLUSION: This study demonstrates that JAK/STAT signaling mediates the complex interplay between inflammation and cellular metabolism in RA pathogenesis.


Assuntos
Artrite Reumatoide/metabolismo , Mediadores da Inflamação/metabolismo , Mitocôndrias/metabolismo , Transdução de Sinais/fisiologia , Membrana Sinovial/metabolismo , Artrite Reumatoide/tratamento farmacológico , Células Cultivadas , Metabolismo Energético , Fibroblastos/metabolismo , Humanos , Janus Quinases/fisiologia , Oncostatina M/metabolismo , Fosforilação/efeitos dos fármacos , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Fatores de Transcrição STAT/fisiologia
19.
Arthritis Res Ther ; 20(1): 95, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29843785

RESUMO

BACKGROUND: In this study, we examined the effect of oxidative stress on cellular energy metabolism and pro-angiogenic/pro-inflammatory mechanisms of primary rheumatoid arthritis synovial fibroblast cells (RASFC) and human umbilical vein endothelial cells (HUVEC). METHODS: Primary RASFC and HUVEC were cultured with the oxidative stress inducer 4-hydroxy-2-nonenal (4-HNE), and extracellular acidification rate, oxygen consumption rate, mitochondrial function and pro-angiogenic/pro-inflammatory mechanisms were assessed using the Seahorse analyser, complex I-V activity assays, random mutation mitochondrial capture assays, enzyme-linked immunosorbent assays and functional assays, including angiogenic tube formation, migration and invasion. Expression of angiogenic growth factors in synovial tissue (ST) was assessed by IHC in patients with rheumatoid arthritis (RA) undergoing arthroscopy before and after administration of tumour necrosis factor inhibitors (TNFi). RESULTS: In RASFC and HUVEC, 4-HNE-induced oxidative stress reprogrammed energy metabolism by inhibiting mitochondrial basal, maximal and adenosine triphosphate-linked respiration and reserve capacity, coupled with the reduced enzymatic activity of oxidative phosphorylation complexes III and IV. In contrast, 4-HNE elevated basal glycolysis, glycolytic capacity and glycolytic reserve, paralleled by an increase in mitochondrial DNA mutations and reactive oxygen species. 4-HNE activated pro-angiogenic responses of RASFC, which subsequently altered HUVEC invasion and migration, angiogenic tube formation and the release of pro-angiogenic mediators. In vivo markers of angiogenesis (vascular endothelial growth factor, angiopoietin 2 [Ang2], tyrosine kinase receptor [Tie2]) were significantly associated with oxidative damage and oxygen metabolism in the inflamed synovium. Significant reduction in ST vascularity and Ang2/Tie2 expression was demonstrated in patients with RA before and after administration of TNFi. CONCLUSIONS: Oxidative stress promotes metabolism in favour of glycolysis, an effect that may contribute to acceleration of inflammatory mechanisms and subsequent dysfunctional angiogenesis in RA.


Assuntos
Artrite Reumatoide/metabolismo , Metabolismo Energético/fisiologia , Fibroblastos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Patológica/metabolismo , Estresse Oxidativo/fisiologia , Artrite Reumatoide/patologia , Fibroblastos/patologia , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Neovascularização Patológica/patologia , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia
20.
JCI Insight ; 3(23)2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30518680

RESUMO

CD141+ DC are implicated in antiviral and antitumor immunity. However, mechanistic studies in autoimmune disease are limited. This is the first study to our knowledge examining CD141+ DC in autoimmune disease, specifically inflammatory arthritis (IA). We identified significant enrichment of CD141+ DC in the inflamed synovial joint, which were transcriptionally distinct from IA and healthy control (HC) blood CD141+ DC and significantly more activated, and they exhibited increased responsiveness to TLR3. Synovial CD141+ DC represent a bone fide CD141+ DC population that is distinct from CD1c+ DC. Synovial CD141+ DC induced higher levels of CD4+ and CD8+ T cell activation compared with their peripheral blood counterparts, as made evident by expression of IFN-γ, TNF-α, and granulocyte-macrophage CSF (GMCSF). Autologous synovial CD141+ DC cocultures also induce higher levels of these cytokines, further highlighting their contribution to synovial inflammation. Synovial CD141+ DC-T cell interactions had the ability to further activate synovial fibroblasts, inducing adhesive and invasive pathogenic mechanisms. Furthermore, we identify a mechanism in which synovial CD141+ DC are activated, via ligation of the hypoxia-inducible immune-amplification receptor TREM-1, which increased synovial CD141+ DC activation, migratory capacity, and proinflammatory cytokines. Thus, synovial CD141+ DC display unique mechanistic and transcriptomic signatures, which are distinguishable from blood CD141+ DC and can contribute to synovial joint inflammation.


Assuntos
Antígenos de Superfície/imunologia , Antígenos de Superfície/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Artropatias/imunologia , Adulto , Antígenos CD1 , Antígenos de Superfície/sangue , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Citocinas/metabolismo , Feminino , Glicoproteínas , Humanos , Inflamação , Interferon gama/metabolismo , Ativação Linfocitária , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Receptores Imunológicos , Membrana Sinovial , Trombomodulina , Receptor 3 Toll-Like/metabolismo , Transcriptoma , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa