Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Air Med J ; 41(1): 88-95, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35248351

RESUMO

In March 2020, coronavirus disease 2019 (COVID-19) caused an overwhelming pandemic. To relieve overloaded intensive care units in the most affected regions, the French Ministry of Defence triggered collective air medical evacuations (medevacs) on board an Airbus A330 Multi Role Tanker Transport of the French Air Force. Such a collective air medevac is a big challenge regarding biosafety; until now, only evacuations of a single symptomatic patient with an emergent communicable disease, such as Ebola virus disease, have been conducted. However, the COVID-19 pandemic required collective medevacs for critically ill patients and involved a virus that little is known about still. Thus, we performed a complete risk analysis using a process map and FMECA (Failure Modes, Effects and Criticality Analysis) to assess the risk and implement mitigation measures for health workers, flight crew, and the environment. We report the biosafety management experienced during 6 flights with a total of 36 critically ill COVID-19-positive patients transferred with no casualties while preserving both staffs and aircraft.


Assuntos
Resgate Aéreo , COVID-19 , Contenção de Riscos Biológicos , Estado Terminal/terapia , Humanos , Pandemias , Medição de Risco , SARS-CoV-2
2.
BMC Infect Dis ; 21(1): 457, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011278

RESUMO

BACKGROUND: This study presents the methods and results of the investigation into a SARS-CoV-2 outbreak in a professional community. Due to the limited testing capacity available in France at the time, we elaborated a testing strategy according to pre-test probability. METHODS: The investigation design combined active case finding and contact tracing around each confirmed case with testing of at-risk contact persons who had any evocative symptoms (n = 88). One month later, we performed serology testing to test and screen symptomatic and asymptomatic cases again (n = 79). RESULTS: Twenty-four patients were confirmed (14 with RT-PCR and 10 with serology). The attack rate was 29% (24/83). Median age was 40 (24 to 59), and the sex ratio was 15/12. Only three cases were asymptomatic (= no symptoms at all, 13%, 95% CI, 3-32). Nineteen symptomatic cases (79%, 95% CI, 63-95) presented a respiratory infection, two of which were severe. All the RT-PCR confirmed cases acquired protective antibodies. Median incubation was 4 days (from 1 to 13 days), and the median serial interval was 3 days (0 to 15). We identified pre-symptomatic transmission in 40% of this cluster, but no transmission from asymptomatic to symptomatic cases. CONCLUSION: We report the effective use of targeted testing according to pre-test probability, specifically prioritizing symptomatic COVID-19 diagnosis and contact tracing. The asymptomatic rate raises questions about the real role of asymptomatic infected people in transmission. Conversely, pre-symptomatic contamination occurred frequently in this cluster, highlighting the need to identify, test, and quarantine asymptomatic at-risk contact persons (= contact tracing). The local lockdown imposed helped reduce transmission during the investigation period.


Assuntos
COVID-19/prevenção & controle , Busca de Comunicante , Adulto , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/virologia , Teste para COVID-19 , Surtos de Doenças , França/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , RNA Viral/análise , RNA Viral/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Adulto Jovem
3.
Mol Microbiol ; 112(5): 1471-1482, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31424585

RESUMO

The flea's lumen gut is a poorly documented environment where the agent of flea-borne plague, Yersinia pestis, must replicate to produce a transmissible infection. Here, we report that both the acidic pH and osmolarity of the lumen's contents display simple harmonic oscillations with different periods. Since an acidic pH and osmolarity are two of three known stimuli of the OmpR-EnvZ two-component system in bacteria, we investigated the role and function of this Y. pestis system in fleas. By monitoring the in vivo expression pattern of three OmpR-EnvZ-regulated genes, we concluded that the flea gut environment triggers OmpR-EnvZ. This activation was not, however, correlated with changes in pH and osmolarity but matched the pattern of nutrient depletion (the third known stimulus for OmpR-EnvZ). Lastly, we found that the OmpR-EnvZ and the OmpF porin are needed to produce the biofilm that ultimately obstructs the flea's gut and thus hastens the flea-borne transmission of plague. Taken as a whole, our data suggest that the flea gut is a complex, fluctuating environment in which Y. pestis senses nutrient depletion via OmpR-EnvZ. Once activated, the latter triggers a molecular program (including at least OmpF) that produces the biofilm required for efficient plague transmission.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Peste/transmissão , Sifonápteros/microbiologia , Transativadores/metabolismo , Yersinia pestis/fisiologia , Animais , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Ativação Enzimática/genética , Nutrientes/deficiência , Peste/microbiologia , Porinas/genética , Porinas/metabolismo , Estômago/microbiologia , Estômago/fisiologia , Transativadores/genética , Yersinia pestis/genética , Yersinia pestis/patogenicidade
4.
Appl Environ Microbiol ; 86(18)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32680860

RESUMO

Temperature and relative humidity are major factors determining virus inactivation in the environment. This article reviews inactivation data regarding coronaviruses on surfaces and in liquids from published studies and develops secondary models to predict coronaviruses inactivation as a function of temperature and relative humidity. A total of 102 D values (i.e., the time to obtain a log10 reduction of virus infectivity), including values for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), were collected from 26 published studies. The values obtained from the different coronaviruses and studies were found to be generally consistent. Five different models were fitted to the global data set of D values. The most appropriate model considered temperature and relative humidity. A spreadsheet predicting the inactivation of coronaviruses and the associated uncertainty is presented and can be used to predict virus inactivation for untested temperatures, time points, or any coronavirus strains belonging to Alphacoronavirus and Betacoronavirus genera.IMPORTANCE The prediction of the persistence of SARS-CoV-2 on fomites is essential in investigating the importance of contact transmission. This study collects available information on inactivation kinetics of coronaviruses in both solid and liquid fomites and creates a mathematical model for the impact of temperature and relative humidity on virus persistence. The predictions of the model can support more robust decision-making and could be useful in various public health contexts. A calculator for the natural clearance of SARS-CoV-2 depending on temperature and relative humidity could be a valuable operational tool for public authorities.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/virologia , Modelos Biológicos , Pneumonia Viral/virologia , Inativação de Vírus , COVID-19 , Fômites/virologia , Humanos , Umidade , Pandemias , Saúde Pública , SARS-CoV-2 , Suspensões , Temperatura
5.
Antimicrob Agents Chemother ; 57(3): 1513-7, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23263008

RESUMO

Emerging resistance to current antibiotics raises the need for new microbial drug targets. We show that targeting branched-chain amino acid (BCAA) biosynthesis using sulfonylurea herbicides, which inhibit the BCAA biosynthetic enzyme acetohydroxyacid synthase (AHAS), can exert bacteriostatic effects on several pathogenic bacteria, including Burkholderia pseudomallei, Pseudomonas aeruginosa, and Acinetobacter baumannii. Our results suggest that targeting biosynthetic enzymes like AHAS, which are lacking in humans, could represent a promising antimicrobial drug strategy.


Assuntos
Acetolactato Sintase/antagonistas & inibidores , Acinetobacter baumannii/efeitos dos fármacos , Proteínas de Bactérias/antagonistas & inibidores , Burkholderia pseudomallei/efeitos dos fármacos , Herbicidas/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Compostos de Sulfonilureia/farmacologia , Acetolactato Sintase/metabolismo , Acinetobacter baumannii/enzimologia , Acinetobacter baumannii/crescimento & desenvolvimento , Aminoácidos de Cadeia Ramificada/antagonistas & inibidores , Aminoácidos de Cadeia Ramificada/biossíntese , Animais , Proteínas de Bactérias/metabolismo , Burkholderia pseudomallei/enzimologia , Burkholderia pseudomallei/crescimento & desenvolvimento , Feminino , Melioidose/tratamento farmacológico , Melioidose/microbiologia , Melioidose/mortalidade , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/mortalidade , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Análise de Sobrevida
7.
PLoS Negl Trop Dis ; 15(2): e0008913, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33592059

RESUMO

BACKGROUND: Melioidosis is an endemic disease in southeast Asia and northern Australia caused by the saprophytic bacteria Burkholderia pseudomallei, with a high mortality rate. The clinical presentation is multifaceted, with symptoms ranging from acute septicemia to multiple chronic abscesses. Here, we report a chronic case of melioidosis in a patient who lived in Malaysia in the 70s and was suspected of contracting tuberculosis. Approximately 40 years later, in 2014, he was diagnosed with pauci-symptomatic melioidosis during a routine examination. Four strains were isolated from a single sample. They showed divergent morphotypes and divergent antibiotic susceptibility, with some strains showing resistance to trimethoprim-sulfamethoxazole and fluoroquinolones. In 2016, clinical samples were still positive for B. pseudomallei, and only one type of strain, showing atypical resistance to meropenem, was isolated. PRINCIPAL FINDINGS: We performed whole genome sequencing and RT-qPCR analysis on the strains isolated during this study to gain further insights into their differences. We thus identified two types of resistance mechanisms in these clinical strains. The first one was an adaptive and transient mechanism that disappeared during the course of laboratory sub-cultures; the second was a mutation in the efflux pump regulator amrR, associated with the overexpression of the related transporter. CONCLUSION: The development of such mechanisms may have a clinical impact on antibiotic treatment. Indeed, their transient nature could lead to an undiagnosed resistance. Efflux overexpression due to mutation leads to an important multiple resistance, reducing the effectiveness of antibiotics during treatment.


Assuntos
Burkholderia pseudomallei/efeitos dos fármacos , Burkholderia pseudomallei/genética , Farmacorresistência Bacteriana Múltipla/genética , Melioidose/microbiologia , Idoso de 80 Anos ou mais , Antibacterianos , Humanos , Malásia , Masculino , Proteínas de Membrana Transportadoras/genética , Meropeném , Testes de Sensibilidade Microbiana , Reação em Cadeia da Polimerase em Tempo Real , Combinação Trimetoprima e Sulfametoxazol , Sequenciamento Completo do Genoma
8.
Front Microbiol ; 11: 593542, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193267

RESUMO

Francisella tularensis, the causative agent of tularemia, is capable of causing disease in a multitude of mammals and remains a formidable human pathogen due to a high morbidity, low infectious dose, lack of a FDA approved vaccine, and ease of aerosolization. For these reasons, there is concern over the use of F. tularensis as a biological weapon, and, therefore, it has been classified as a Tier 1 select agent. Fluoroquinolones and aminoglycosides often serve as the first line of defense for treatment of tularemia. However, high levels of resistance to these antibiotics has been observed in gram-negative bacteria in recent years, and naturally derived resistant Francisella strains have been described in the literature. The acquisition of antibiotic resistance, either natural or engineered, presents a challenge for the development of medical countermeasures. In this study, we generated a surrogate panel of antibiotic resistant F. novicida and Live Vaccine Strain (LVS) by selection in the presence of antibiotics and characterized their growth, biofilm capacity, and fitness. These experiments were carried out in an effort to (1) assess the fitness of resistant strains; and (2) identify new targets to investigate for the development of vaccines or therapeutics. All strains exhibited a high level of resistance to either ciprofloxacin or streptomycin, a fluoroquinolone and aminoglycoside, respectively. Whole genome sequencing of this panel revealed both on-pathway and off-pathway mutations, with more mutations arising in LVS. For F. novicida, we observed decreased biofilm formation for all ciprofloxacin resistant strains compared to wild-type, while streptomycin resistant isolates were unaffected in biofilm capacity. The fitness of representative antibiotic resistant strains was assessed in vitro in murine macrophage-like cell lines, and also in vivo in a murine model of pneumonic infection. These experiments revealed that mutations obtained by these methods led to nearly all ciprofloxacin resistant Francisella strains tested being completely attenuated while mild attenuation was observed in streptomycin resistant strains. This study is one of the few to examine the link between acquired antibiotic resistance and fitness in Francisella spp., as well as enable the discovery of new targets for medical countermeasure development.

9.
Microorganisms ; 8(7)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32630109

RESUMO

(1) Background: Bacillus anthracis is a spore-forming, Gram-positive bacterium causing anthrax, a zoonosis affecting mainly livestock. When occasionally infecting humans, B. anthracis provokes three different clinical forms: cutaneous, digestive and inhalational anthrax. More recently, an injectional anthrax form has been described in intravenous drug users. (2) Case presentation: We report here the clinical and microbiological features, as well as the strain phylogenetic analysis, of the only injectional anthrax case observed in France so far. A 27-year-old patient presented a massive dermohypodermatitis with an extensive edema of the right arm, and the development of drug-resistant shocks. After three weeks in an intensive care unit, the patient recovered, but the microbiological identification of B. anthracis was achieved after a long delay. (3) Conclusions: Anthrax diagnostic may be difficult clinically and microbiologically. The phylogenetic analysis of the Bacillus anthracis strain PF1 confirmed its relatedness to the injectional anthrax European outbreak group-II.

10.
mSphere ; 4(3)2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31217301

RESUMO

Inhalational anthrax caused by Bacillus anthracis, a spore-forming Gram-positive bacterium, is a highly lethal infection. Antibodies targeting the protective antigen (PA) binding component of the toxins have recently been authorized as an adjunct to antibiotics, although no conclusive evidence demonstrates that anthrax antitoxin therapy has any significant benefit. We discuss here the rational basis of anti-PA development regarding the pathogenesis of the disease. We argue that inductive reasoning may induce therapeutic bias. We identified anthrax animal model analysis as another bias. Further studies are needed to assess the benefit of anti-PA antibodies in the treatment of inhalational anthrax, while a clearer consensus should be established around what evidence should be proven in an anthrax model.


Assuntos
Antraz/imunologia , Antraz/terapia , Anticorpos Antibacterianos/uso terapêutico , Bacillus anthracis/imunologia , Imunoterapia , Infecções Respiratórias/imunologia , Infecções Respiratórias/terapia , Animais , Anticorpos Monoclonais/uso terapêutico , Antígenos de Bactérias/imunologia , Antitoxinas/uso terapêutico , Toxinas Bacterianas/imunologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos
11.
Sci Rep ; 9(1): 2501, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30792499

RESUMO

Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is a very sensitive widespread technique considered as the gold standard to explore transcriptional variations. While a particular methodology has to be followed to provide accurate results many published studies are likely to misinterpret results due to lack of minimal quality requirements. Yersinia pestis is a highly pathogenic bacterium responsible for plague. It has been used to propose a ready-to-use and complete approach to mitigate the risk of technical biases in transcriptomic studies. The selection of suitable reference genes (RGs) among 29 candidates was performed using four different methods (GeNorm, NormFinder, BestKeeper and the Delta-Ct method). An overall comprehensive ranking revealed that 12 following candidate RGs are suitable for accurate normalization: gmk, proC, fabD, rpoD, nadB, rho, thrA, ribD, mutL, rpoB, adk and tmk. Some frequently used genes like 16S RNA had even been found as unsuitable to study Y. pestis. This methodology allowed us to demonstrate, under different temperatures and states of growth, significant transcriptional changes of six efflux pumps genes involved in physiological aspects as antimicrobial resistance or virulence. Previous transcriptomic studies done under comparable conditions had not been able to highlight these transcriptional modifications. These results highlight the importance of validating RGs prior to the normalization of transcriptional expression levels of targeted genes. This accurate methodology can be extended to any gene of interest in Y. pestis. More generally, the same workflow can be applied to identify and validate appropriate RGs in other bacteria to study transcriptional variations.


Assuntos
Proteínas de Bactérias/genética , Perfilação da Expressão Gênica/normas , Yersinia pestis/crescimento & desenvolvimento , Biologia Computacional , Regulação Bacteriana da Expressão Gênica , Padrões de Referência , Temperatura , Fluxo de Trabalho , Yersinia pestis/genética
12.
Front Microbiol ; 10: 1343, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31258523

RESUMO

Francisella tularensis is the causative agent of tularemia and has gained recent interest as it poses a significant biothreat risk. F. novicida is commonly used as a laboratory surrogate for tularemia research due to genetic similarity and susceptibility of mice to infection. Currently, there is no FDA-approved tularemia vaccine, and identifying therapeutic targets remains a critical gap in strategies for combating this pathogen. Here, we investigate the soluble lytic transglycosylase or Slt in F. novicida, which belongs to a class of peptidoglycan-modifying enzymes known to be involved in cell division. We assess the role of Slt in biology and virulence of the organism as well as the vaccine potential of the slt mutant. We show that the F. novicida slt mutant has a significant growth defect in acidic pH conditions. Further microscopic analysis revealed significantly altered cell morphology compared to wild-type, including larger cell size, extensive membrane protrusions, and cell clumping and fusion, which was partially restored by growth in neutral pH or genetic complementation. Viability of the mutant was also significantly decreased during growth in acidic medium, but not at neutral pH. Furthermore, the slt mutant exhibited significant attenuation in a murine model of intranasal infection and virulence could be restored by genetic complementation. Moreover, we could protect mice using the slt mutant as a live vaccine strain against challenge with the parent strain; however, we were not able to protect against challenge with the fully virulent F. tularensis Schu S4 strain. These studies demonstrate a critical role for the Slt enzyme in maintaining proper cell division and morphology in acidic conditions, as well as replication and virulence in vivo. Our results suggest that although the current vaccination strategy with F. novicida slt mutant would not protect against Schu S4 challenges, the Slt enzyme could be an ideal target for future therapeutic development.

13.
Trop Med Infect Dis ; 3(1)2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30274427

RESUMO

Melioidosis, caused by the bacterium Burkholderia pseudomallei, is an infectious disease of humans or animals, and the specific environmental conditions that are present in western Indian Ocean islands are particularly suitable for the establishment/survival of B. pseudomallei. Indeed, an increasing number of new cases have been reported in this region (Madagascar, Mauritius, Réunion (France), and Seychelles, except Comoros and Mayotte (France)), and are described in this review. Our review clearly points out that further studies are needed in order to investigate the real incidence and burden of melioidosis in the western Indian Ocean and especially Madagascar, since it is likely to be higher than currently reported. Thus, research and surveillance priorities were recommended (i) to improve awareness of melioidosis in the population and among clinicians; (ii) to improve diagnostics, in order to provide rapid and effective treatment; (iii) to implement a surveillance and reporting system in the western Indian Ocean; and (iv) to investigate the presence of B. pseudomallei in environmental samples, since we have demonstrated its presence in soil samples originating from the yard of a Madagascan case.

14.
PLoS One ; 12(3): e0174106, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28328947

RESUMO

Francisella tularensis, a gram-negative facultative intracellular bacterial pathogen, is the causative agent of tularemia and able to infect many mammalian species, including humans. Because of its ability to cause a lethal infection, low infectious dose, and aerosolizable nature, F. tularensis subspecies tularensis is considered a potential biowarfare agent. Due to its in vitro efficacy, ciprofloxacin is one of the antibiotics recommended for post-exposure prophylaxis of tularemia. In order to identify therapeutics that will be efficacious against infections caused by drug resistant select-agents and to better understand the threat, we sought to characterize an existing ciprofloxacin resistant (CipR) mutant in the Schu S4 strain of F. tularensis by determining its phenotypic characteristics and sequencing the chromosome to identify additional genetic alterations that may have occurred during the selection process. In addition to the previously described genetic alterations, the sequence of the CipR mutant strain revealed several additional mutations. Of particular interest was a frameshift mutation within kdsD which encodes for an enzyme necessary for the production of 3-Deoxy-D-manno-Octulosonic Acid (KDO), an integral component of the lipopolysaccharide (LPS). A kdsD mutant was constructed in the Schu S4 strain. Although it was not resistant to ciprofloxacin, the kdsD mutant shared many phenotypic characteristics with the CipR mutant, including growth defects under different conditions, sensitivity to hydrophobic agents, altered LPS profiles, and attenuation in multiple models of murine tularemia. This study demonstrates that the KdsD enzyme is essential for Francisella virulence and may be an attractive therapeutic target for developing novel medical countermeasures.


Assuntos
Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Francisella tularensis/genética , Mutação/genética , Açúcares Ácidos/metabolismo , Tularemia/microbiologia , Animais , Ciprofloxacina/farmacologia , Francisella tularensis/efeitos dos fármacos , Francisella tularensis/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Profilaxia Pós-Exposição/métodos , Virulência/genética
17.
PLoS One ; 8(12): e84068, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24386333

RESUMO

BACKGROUND: Efflux systems are involved in multidrug resistance in most Gram-negative non-fermentative bacteria. We have chosen Burkholderia thailandensis to dissect the development of multidrug resistance phenotypes under antibiotic pressure. METHODOLOGY/PRINCIPAL FINDINGS: We used doxycycline selection to obtain several resistant B. thailandensis variants. The minimal inhibitory concentrations of a large panel of structurally unrelated antibiotics were determined ± the efflux pump inhibitor phenylalanine-arginine ß-naphthylamide (PAßN). Membrane proteins were identified by proteomic method and the expressions of major efflux pumps in the doxycycline selected variants were compared to those of the parental strains by a quantitative RT-PCR analysis. Doxycycline selected variants showed a multidrug resistance in two major levels corresponding to the overproduction of two efflux pumps depending on its concentration: AmrAB-OprA and BpeEF-OprC. The study of two mutants, each lacking one of these pumps, indicated that a third pump, BpeAB-OprB, could substitute for the defective pump. Surprisingly, we observed antagonistic effects between PAßN and aminoglycosides or some ß-lactams. PAßN induced the overexpression of AmrAB-OprA and BpeAB-OprB pump genes, generating this unexpected effect. CONCLUSIONS/SIGNIFICANCE: These results may account for the weak activity of PAßN in some Gram-negative species. We clearly demonstrated two antagonistic effects of this molecule on bacterial cells: the blocking of antibiotic efflux and an increase in efflux pump gene expression. Thus, doxycycline is a very efficient RND efflux pump inducer and PAßN may promote the production of some efflux pumps. These results should be taken into account when considering antibiotic treatments and in future studies on efflux pump inhibitors.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Burkholderia/efeitos dos fármacos , Burkholderia/metabolismo , Doxiciclina/farmacologia , Proteínas da Membrana Bacteriana Externa/biossíntese , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Burkholderia/genética , Dipeptídeos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Mutação , Fenótipo , Proteômica
18.
PLoS One ; 6(2): e16892, 2011 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-21347382

RESUMO

Burkholderia is a bacterial genus comprising several pathogenic species, including two species highly pathogenic for humans, B. pseudomallei and B. mallei. B. thailandensis is a weakly pathogenic species closely related to both B. pseudomallei and B. mallei. It is used as a study model. These bacteria are able to exhibit multiple resistance mechanisms towards various families of antibiotics. By sequentially plating B. thailandensis wild type strains on chloramphenicol we obtained several resistant variants. This chloramphenicol-induced resistance was associated with resistance against structurally unrelated antibiotics including quinolones and tetracyclines. We functionally and proteomically demonstrate that this multidrug resistance phenotype, identified in chloramphenicol-resistant variants, is associated with the overexpression of two different efflux pumps. These efflux pumps are able to expel antibiotics from several families, including chloramphenicol, quinolones, tetracyclines, trimethoprim and some ß-lactams, and present a partial susceptibility to efflux pump inhibitors. It is thus possible that Burkholderia species can develop such adaptive resistance mechanisms in response to antibiotic pressure resulting in emergence of multidrug resistant strains. Antibiotics known to easily induce overexpression of these efflux pumps should be used with discernment in the treatment of Burkholderia infections.


Assuntos
Antibacterianos/farmacologia , Burkholderia/efeitos dos fármacos , Cloranfenicol/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/genética , Genes MDR , Proteômica , Burkholderia/citologia , Burkholderia/genética , Burkholderia/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Mutação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa