Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(17): 173001, 2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35570421

RESUMO

We here report on a quantitative study of enantiomer-specific state transfer, performed in a pulsed, supersonic molecular beam. The chiral molecule 1-indanol is cooled to low rotational temperatures (1-2 K) and a selected rotational level in the electronic and vibrational ground state of the most abundant conformer is depleted via optical pumping on the S_{1}←S_{0} transition. Further downstream, three consecutive microwave pulses with mutually perpendicular polarizations and with a well-defined duration and phase are applied. The population in the originally depleted rotational level is subsequently monitored via laser-induced fluorescence detection. This scheme enables a quantitative comparison of experiment and theory for the transfer efficiency in what is the simplest enantiomer-specific state transfer triangle for any chiral molecule, that is, the one involving the absolute ground state level, |J_{K_{a}K_{c}}⟩=|0_{00}⟩. Moreover, this scheme improves the enantiomer enrichment by over an order of magnitude compared to previous works. Starting with a racemic mixture, a straightforward extension of this scheme allows one to create a molecular beam with an enantiomer-pure rotational level, holding great prospects for future spectroscopic and scattering studies.


Assuntos
Vibração , Estereoisomerismo
2.
Phys Chem Chem Phys ; 23(12): 7048-7056, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33625420

RESUMO

We report on rotationally resolved laser induced fluorescence (LIF) and vibrationally resolved resonance-enhanced multiphoton ionization (REMPI) spectroscopy of the chiral molecule 1-indanol. Spectra of the S1← S0 electronic transition are recorded in a jet-cooled, pulsed molecular beam. Using two time-delayed pulsed lasers, the lifetimes of the S1 state of the two most stable conformers, referred to as eq1 and ax2, have been determined. The S1← S0 origin bands of these conformers as well as the transition to a vibrationally excited level in the S1 state of eq1 are recorded with full rotational resolution (25 MHz observed linewidth) by measuring the LIF intensity following excitation with a tuneable, narrowband cw laser. On selected rotationally resolved electronic transitions, Lamb-dips are measured to confirm the Lorentzian lifetime-contribution to the observed lineshapes. The rotationally resolved S1← S0 origin band of a neon-complex of eq1 is measured via LIF as well. The fit of the rotationally resolved LIF spectra of the origin bands to those of an asymmetric rotor yields a standard deviation of about 6 MHz. The resulting spectroscopic parameters are tabulated and compared to the outcome of ab initio calculations. For both conformers as well as for the Ne-eq1 complex, the geometric structures in the S0 and S1 states are discussed. For all systems, the transition dipole moment is mainly along the a-axis, the contributions along the b- and c-axes being about one order of magnitude smaller.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa