RESUMO
Neural correlates of consciousness (NCC) have been a topic of study for nearly two decades. In functional imaging studies, several regions have been proposed to constitute possible candidates for NCC, but as of yet, no quantitative summary of the literature on NCC has been done. The question whether single (striate or extrastriate) regions or a network consisting of extrastriate areas that project directly to fronto-parietal regions are necessary and sufficient neural correlates for visual consciousness is still highly debated [e.g., Rees et al., 2002, Nat Rev. Neurosci 3, 261-270; Tong, 2003, Nat Rev. Neurosci 4, 219-229]. The aim of this work was to elucidate this issue and give a synopsis of the present state of the art by conducting systematic and quantitative meta-analyses across functional magnetic resonance imaging (fMRI) studies using several standard paradigms for conscious visual perception. In these paradigms, consciousness is operationalized via perceptual changes, while the visual stimulus remains invariant. An activation likelihood estimation (ALE) meta-analysis was performed, representing the best approach for voxel-wise meta-analyses to date. In addition to computing a meta-analysis across all paradigms, separate meta-analyses on bistable perception and masking paradigms were conducted to assess whether these paradigms show common or different NCC. For the overall meta-analysis, we found significant clusters of activation in inferior and middle occipital gyrus; fusiform gyrus; inferior temporal gyrus; caudate nucleus; insula; inferior, middle, and superior frontal gyri; precuneus; as well as in inferior and superior parietal lobules. These results suggest a subcortical-extrastriate-fronto-parietal network rather than a single region that constitutes the necessary NCC. The results of our exploratory paradigm-specific meta-analyses suggest that this subcortical-extrastriate-fronto-parietal network might be differentially activated as a function of the paradigms used to probe for NCC.
Assuntos
Encéfalo/fisiologia , Estado de Consciência/fisiologia , Percepção Visual/fisiologia , Mapeamento Encefálico , Lobo Frontal/fisiologia , Humanos , Funções Verossimilhança , Imageamento por Ressonância Magnética , Vias Neurais/fisiologia , Lobo Parietal/fisiologia , Mascaramento Perceptivo/fisiologia , Córtex Visual/fisiologiaRESUMO
COVID-19-related stigmatization of affected people or people at risk of infection has been shown to enhance the reluctance of affected individuals to use health services and reduce their mental health. It is thus highly important to gain a thorough understanding of COVID-19-related stigmatization. The present study's first aim was to explore stigmatization profiles of experienced stigmatization (anticipated stigmatization, internalized stigmatization, enacted stigmatization, disclosure concerns) and stigmatization practices in 371 German people at high risk of infection using latent class analyses. The second aim was to investigate the relationship between stigmatization profiles and psychological distress via multiple regression analysis taking into account other possible negative and positive risk factors. Our results showed two stigmatization profiles: "high stigmatization group" and "low stigmatization group". Belonging to the "high stigmatization group" was significantly correlated with higher levels of psychological distress. Other risk factors significantly related to psychological distress were mental health disorders in the past, exposure to COVID-19, fear related to COVID-19, perceived risk of being infected, lower perceived self-efficacy, and lower subjective knowledge about COVID-19.
Assuntos
COVID-19 , Transtornos Mentais , Angústia Psicológica , Humanos , Estereotipagem , Depressão/psicologia , Transtornos Mentais/psicologiaRESUMO
INTRODUCTION: Dementia syndromes can be difficult to diagnose. We aimed at building a classifier for multiple dementia syndromes using magnetic resonance imaging (MRI). METHODS: Atlas-based volumetry was performed on T1-weighted MRI data of 426 patients and 51 controls from the multi-centric German Research Consortium of Frontotemporal Lobar Degeneration including patients with behavioral variant frontotemporal dementia, Alzheimer's disease, the three subtypes of primary progressive aphasia, i.e., semantic, logopenic and nonfluent-agrammatic variant, and the atypical parkinsonian syndromes progressive supranuclear palsy and corticobasal syndrome. Support vector machine classification was used to classify each patient group against controls (binary classification) and all seven diagnostic groups against each other in a multi-syndrome classifier (multiclass classification). RESULTS: The binary classification models reached high prediction accuracies between 71 and 95% with a chance level of 50%. Feature importance reflected disease-specific atrophy patterns. The multi-syndrome model reached accuracies of more than three times higher than chance level but was far from 100%. Multi-syndrome model performance was not homogenous across dementia syndromes, with better performance in syndromes characterized by regionally specific atrophy patterns. Whereas diseases generally could be classified vs controls more correctly with increasing severity and duration, differentiation between diseases was optimal in disease-specific windows of severity and duration. DISCUSSION: Results suggest that automated methods applied to MR imaging data can support physicians in diagnosis of dementia syndromes. It is particularly relevant for orphan diseases beside frequent syndromes such as Alzheimer's disease.
Assuntos
Doença de Alzheimer , Demência Frontotemporal , Degeneração Lobar Frontotemporal , Humanos , Doença de Alzheimer/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Degeneração Lobar Frontotemporal/patologia , Demência Frontotemporal/diagnóstico por imagem , Demência Frontotemporal/patologia , Síndrome , Atrofia/diagnóstico por imagem , Atrofia/patologiaRESUMO
OBJECTIVE: Progressive supranuclear palsy (PSP) is an atypical parkinsonian syndrome characterized by vertical gaze palsy and postural instability. Midbrain atrophy is suggested as a hallmark, but it has not been validated systematically in whole-brain imaging. METHODS: We conducted whole-brain meta-analyses identifying disease-related atrophy in structural MRI. Eighteen studies were identified (Nâ¯=â¯315 PSP, 393 controls) and separated into gray or white matter analyses (15/12). All patients were diagnosed according to the National Institute of Neurological Disorders and Stroke and the Society for PSP (NINDS-SPSP criteria, Litvan et al. (1996a)), which are now considered as PSP-Richardson syndrome (Höglinger et al., 2017). With overlay analyses, we double-validated two meta-analytical algorithms: anatomical likelihood estimation and seed-based D mapping. Additionally, we conducted region-of-interest effect size meta-analyses on radiological biomarkers and subtraction analyses differentiating PSP from Parkinson's disease. RESULTS: Whole brain meta-analyses revealed consistent gray matter atrophy in bilateral thalamus, anterior insulae, midbrain, and left caudate nucleus. White matter alterations were consistently detected in bilateral superior/middle cerebellar pedunculi, cerebral pedunculi, and midbrain atrophy. Region-of-interest meta-analyses demonstrated that midbrain metrics generally perform very well in distinguishing PSP from other parkinsonian syndromes with strong effect sizes. Subtraction analyses identified the midbrain as differentiating between PSP and Parkinson's disease. CONCLUSIONS: Our meta-analyses identify gray matter atrophy of the midbrain and white matter atrophy of the cerebral/cerebellar pedunculi and midbrain as characteristic for PSP. Results support the incorporation of structural MRI data, and particularly these structures, into the revised PSP diagnostic criteria.
Assuntos
Cerebelo/patologia , Córtex Cerebral/patologia , Mesencéfalo/patologia , Paralisia Supranuclear Progressiva/patologia , Idoso , Atrofia/patologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-IdadeRESUMO
Behavioral variant frontotemporal dementia (bvFTD) is characterized by deep alterations in behavior and personality. Although revised diagnostic criteria agree for executive dysfunction as most characteristic, impairments in social cognition are also suggested. The study aimed at identifying those neuropsychological and behavioral parameters best discriminating between bvFTD and healthy controls. Eighty six patients were diagnosed with possible or probable bvFTD according to Rascovsky et al. (2011) and compared with 43 healthy age-matched controls. Neuropsychological performance was assessed with a modified Reading the Mind in the Eyes Test (RMET), Stroop task, Trail Making Test (TMT), Hamasch-Five-Point Test (H5PT), and semantic and phonemic verbal fluency tasks. Behavior was assessed with the Apathy Evaluation Scale, Frontal Systems Behavioral Scale, and Bayer Activities of Daily Living Scale. Each test's discriminatory power was investigated by Receiver Operating Characteristic curves calculating the area under the curve (AUC). bvFTD patients performed significantly worse than healthy controls in all neuropsychological tests. Discriminatory power (AUC) was highest in behavioral questionnaires, high in verbal fluency tasks and the RMET, and lower in executive function tests such as the Stroop task, TMT and H5PT. As fluency tasks depend on several cognitive functions, not only executive functions, results suggest that the RMET discriminated better between bvFTD and control subjects than other executive tests. Social cognition should be incorporated into diagnostic criteria for bvFTD in the future, such as in the International Classification of Diseases (ICD)-11, as already suggested in the Diagnostic and Statistical Manual for Mental Disorders (DSM)-5.
RESUMO
Corticobasal degeneration is a scarce neurodegenerative disease, which can only be confirmed by histopathological examination. Reported to be associated with various clinical syndromes, its classical clinical phenotype is corticobasal syndrome. Due to the rareness of corticobasal syndrome/corticobasal degeneration and low numbers of patients included in single studies, meta-analyses are particularly suited to disentangle features of the clinical syndrome and histopathology. Using PubMed, we identified 11 magnetic resonance imaging studies measuring atrophy in 22 independent cohorts with 200 patients contrasted to 318 healthy controls. The anatomic likelihood estimation method was applied to reveal affected brain regions across studies. Corticobasal syndrome was related to gray matter loss in the basal ganglia/thalamus, frontal, parietal, and temporal lobes. In corticobasal degeneration patients, atrophy in the thalamus, frontal, temporal, and occipital lobes were found. Finally, in a conjunction analysis, the bilateral thalamus, the bilateral posterior frontomedian cortex, posterior midcingulate cortex and premotor area/supplementary motor area, and the left posterior superior and middle frontal gyrus/precentral gyrus were identified as areas associated with both, corticobasal syndrome and corticobasal degeneration. Remarkably, atrophy in the premotor area/supplementary motor area and posterior midcingulate/frontomedian cortex seems to be specific for corticobasal syndrome/corticobasal degeneration, whereas atrophy in the thalamus and the left posterior superior and middle frontal gyrus/precentral gyrus are also associated with other neurodegenerative diseases according to anatomic likelihood estimation method meta-analyses. Our study creates a new conceptual framework to understand, and distinguish between clinical features (corticobasal syndrome) and histopathological findings (corticobasal degeneration) by powerful data-driven meta-analytic approaches. Furthermore, it proposes regional-specific atrophy as an imaging biomarker for diagnosis of corticobasal syndrome/corticobasal degeneration ante-mortem.
RESUMO
PURPOSE: Frontotemporal lobar degeneration (FTLD) is a common cause of early onset dementia. Behavioral variant frontotemporal dementia (bvFTD), its most common subtype, is characterized by deep alterations in behavior and personality. In 2011, new diagnostic criteria were suggested that incorporate imaging criteria into diagnostic algorithms. The study aimed at validating the potential of imaging criteria to individually predict diagnosis with machine learning algorithms. MATERIALS & METHODS: Brain atrophy was measured with structural magnetic resonance imaging (MRI) at 3 Tesla in a multi-centric cohort of 52 bvFTD patients and 52 healthy control subjects from the German FTLD Consortium's Study. Beside group comparisons, diagnosis bvFTD vs. controls was individually predicted in each subject with support vector machine classification in MRI data across the whole brain or in frontotemporal, insular regions, and basal ganglia known to be mainly affected based on recent meta-analyses. Multi-center effects were controlled for with a new method, "leave one center out" conjunction analyses, i.e. repeatedly excluding subjects from each center from the analysis. RESULTS: Group comparisons revealed atrophy in, most consistently, the frontal lobe in bvFTD beside alterations in the insula, basal ganglia and temporal lobe. Most remarkably, support vector machine classification enabled predicting diagnosis in single patients with a high accuracy of up to 84.6%, where accuracy was highest in a region-of-interest approach focusing on frontotemporal, insular regions, and basal ganglia in comparison with the whole brain approach. CONCLUSION: Our study demonstrates that MRI, a widespread imaging technology, can individually identify bvFTD with high accuracy in multi-center imaging data, paving the road to personalized diagnostic approaches in the future.
Assuntos
Encéfalo/diagnóstico por imagem , Demência Frontotemporal/diagnóstico por imagem , Demência Frontotemporal/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Idoso , Atrofia/diagnóstico por imagem , Encéfalo/patologia , Mapeamento Encefálico , Estudos de Coortes , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Máquina de Vetores de SuporteRESUMO
Primary progressive aphasia (PPA) encompasses the three subtypes nonfluent/agrammatic variant PPA, semantic variant PPA, and the logopenic variant PPA, which are characterized by distinct patterns of language difficulties and regional brain atrophy. To validate the potential of structural magnetic resonance imaging data for early individual diagnosis, we used support vector machine classification on grey matter density maps obtained by voxel-based morphometry analysis to discriminate PPA subtypes (44 patients: 16 nonfluent/agrammatic variant PPA, 17 semantic variant PPA, 11 logopenic variant PPA) from 20 healthy controls (matched for sample size, age, and gender) in the cohort of the multi-center study of the German consortium for frontotemporal lobar degeneration. Here, we compared a whole-brain with a meta-analysis-based disease-specific regions-of-interest approach for support vector machine classification. We also used support vector machine classification to discriminate the three PPA subtypes from each other. Whole brain support vector machine classification enabled a very high accuracy between 91 and 97% for identifying specific PPA subtypes vs. healthy controls, and 78/95% for the discrimination between semantic variant vs. nonfluent/agrammatic or logopenic PPA variants. Only for the discrimination between nonfluent/agrammatic and logopenic PPA variants accuracy was low with 55%. Interestingly, the regions that contributed the most to the support vector machine classification of patients corresponded largely to the regions that were atrophic in these patients as revealed by group comparisons. Although the whole brain approach took also into account regions that were not covered in the regions-of-interest approach, both approaches showed similar accuracies due to the disease-specificity of the selected networks. Conclusion, support vector machine classification of multi-center structural magnetic resonance imaging data enables prediction of PPA subtypes with a very high accuracy paving the road for its application in clinical settings.
Assuntos
Afasia Primária Progressiva/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Máquina de Vetores de Suporte , Idoso , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos TestesRESUMO
Primary progressive aphasia (PPA) is characterized by profound destruction of cortical language areas. Anatomical studies suggest an involvement of cholinergic basal forebrain (BF) in PPA syndromes, particularly in the area of the nucleus subputaminalis (NSP). Here we aimed to determine the pattern of atrophy and structural covariance as a proxy of structural connectivity of BF nuclei in PPA variants. We studied 62 prospectively recruited cases with the clinical diagnosis of PPA and 31 healthy older control participants from the cohort study of the German consortium for frontotemporal lobar degeneration (FTLD). We determined cortical and BF atrophy based on high-resolution magnetic resonance imaging (MRI) scans. Patterns of structural covariance of BF with cortical regions were determined using voxel-based partial least square analysis. We found significant atrophy of total BF and BF subregions in PPA patients compared with controls [F(1, 82) = 20.2, p < .001]. Atrophy was most pronounced in the NSP and the posterior BF, and most severe in the semantic variant and the nonfluent variant of PPA. Structural covariance analysis in healthy controls revealed associations of the BF nuclei, particularly the NSP, with left hemispheric predominant prefrontal, lateral temporal, and parietal cortical areas, including Broca's speech area (p < .001, permutation test). In contrast, the PPA patients showed preserved structural covariance of the BF nuclei mostly with right but not with left hemispheric cortical areas (p < .001, permutation test). Our findings agree with the neuroanatomically proposed involvement of the cholinergic BF, particularly the NSP, in PPA syndromes. We found a shift from a structural covariance of the BF with left hemispheric cortical areas in healthy aging towards right hemispheric cortical areas in PPA, possibly reflecting a consequence of the profound and early destruction of cortical language areas in PPA.