Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Radiology ; 306(2): e220101, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36125375

RESUMO

Background Adrenal masses are common, but radiology reporting and recommendations for management can be variable. Purpose To create a machine learning algorithm to segment adrenal glands on contrast-enhanced CT images and classify glands as normal or mass-containing and to assess algorithm performance. Materials and Methods This retrospective study included two groups of contrast-enhanced abdominal CT examinations (development data set and secondary test set). Adrenal glands in the development data set were manually segmented by radiologists. Images in both the development data set and the secondary test set were manually classified as normal or mass-containing. Deep learning segmentation and classification models were trained on the development data set and evaluated on both data sets. Segmentation performance was evaluated with use of the Dice similarity coefficient (DSC), and classification performance with use of sensitivity and specificity. Results The development data set contained 274 CT examinations (251 patients; median age, 61 years; 133 women), and the secondary test set contained 991 CT examinations (991 patients; median age, 62 years; 578 women). The median model DSC on the development test set was 0.80 (IQR, 0.78-0.89) for normal glands and 0.84 (IQR, 0.79-0.90) for adrenal masses. On the development reader set, the median interreader DSC was 0.89 (IQR, 0.78-0.93) for normal glands and 0.89 (IQR, 0.85-0.97) for adrenal masses. Interreader DSC for radiologist manual segmentation did not differ from automated machine segmentation (P = .35). On the development test set, the model had a classification sensitivity of 83% (95% CI: 55, 95) and specificity of 89% (95% CI: 75, 96). On the secondary test set, the model had a classification sensitivity of 69% (95% CI: 58, 79) and specificity of 91% (95% CI: 90, 92). Conclusion A two-stage machine learning pipeline was able to segment the adrenal glands and differentiate normal adrenal glands from those containing masses. © RSNA, 2022 Online supplemental material is available for this article.


Assuntos
Aprendizado de Máquina , Tomografia Computadorizada por Raios X , Humanos , Feminino , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X/métodos , Estudos Retrospectivos , Algoritmos , Glândulas Suprarrenais
2.
Radiology ; 305(3): 555-563, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35916673

RESUMO

As the role of artificial intelligence (AI) in clinical practice evolves, governance structures oversee the implementation, maintenance, and monitoring of clinical AI algorithms to enhance quality, manage resources, and ensure patient safety. In this article, a framework is established for the infrastructure required for clinical AI implementation and presents a road map for governance. The road map answers four key questions: Who decides which tools to implement? What factors should be considered when assessing an application for implementation? How should applications be implemented in clinical practice? Finally, how should tools be monitored and maintained after clinical implementation? Among the many challenges for the implementation of AI in clinical practice, devising flexible governance structures that can quickly adapt to a changing environment will be essential to ensure quality patient care and practice improvement objectives.


Assuntos
Inteligência Artificial , Radiologia , Humanos , Radiografia , Algoritmos , Qualidade da Assistência à Saúde
3.
Semin Neurol ; 42(1): 39-47, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35576929

RESUMO

Artificial intelligence is already innovating in the provision of neurologic care. This review explores key artificial intelligence concepts; their application to neurologic diagnosis, prognosis, and treatment; and challenges that await their broader adoption. The development of new diagnostic biomarkers, individualization of prognostic information, and improved access to treatment are among the plethora of possibilities. These advances, however, reflect only the tip of the iceberg for the ways in which artificial intelligence may transform neurologic care in the future.


Assuntos
Inteligência Artificial , Neurologia , Humanos , Prognóstico
4.
J Digit Imaging ; 34(2): 320-329, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33634416

RESUMO

To perform a multicenter assessment of the CT Pneumonia Analysis prototype for predicting disease severity and patient outcome in COVID-19 pneumonia both without and with integration of clinical information. Our IRB-approved observational study included consecutive 241 adult patients (> 18 years; 105 females; 136 males) with RT-PCR-positive COVID-19 pneumonia who underwent non-contrast chest CT at one of the two tertiary care hospitals (site A: Massachusetts General Hospital, USA; site B: Firoozgar Hospital Iran). We recorded patient age, gender, comorbid conditions, laboratory values, intensive care unit (ICU) admission, mechanical ventilation, and final outcome (recovery or death). Two thoracic radiologists reviewed all chest CTs to record type, extent of pulmonary opacities based on the percentage of lobe involved, and severity of respiratory motion artifacts. Thin-section CT images were processed with the prototype (Siemens Healthineers) to obtain quantitative features including lung volumes, volume and percentage of all-type and high-attenuation opacities (≥ -200 HU), and mean HU and standard deviation of opacities within a given lung region. These values are estimated for the total combined lung volume, and separately for each lung and each lung lobe. Multivariable analyses of variance (MANOVA) and multiple logistic regression were performed for data analyses. About 26% of chest CTs (62/241) had moderate to severe motion artifacts. There were no significant differences in the AUCs of quantitative features for predicting disease severity with and without motion artifacts (AUC 0.94-0.97) as well as for predicting patient outcome (AUC 0.7-0.77) (p > 0.5). Combination of the volume of all-attenuation opacities and the percentage of high-attenuation opacities (AUC 0.76-0.82, 95% confidence interval (CI) 0.73-0.82) had higher AUC for predicting ICU admission than the subjective severity scores (AUC 0.69-0.77, 95% CI 0.69-0.81). Despite a high frequency of motion artifacts, quantitative features of pulmonary opacities from chest CT can help differentiate patients with favorable and adverse outcomes.


Assuntos
COVID-19 , Adulto , Feminino , Humanos , Pulmão/diagnóstico por imagem , Masculino , Prognóstico , Estudos Retrospectivos , SARS-CoV-2 , Índice de Gravidade de Doença , Tomografia Computadorizada por Raios X
5.
J Digit Imaging ; 33(3): 747-762, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31950302

RESUMO

The growing interest in machine learning (ML) in healthcare is driven by the promise of improved patient care. However, how many ML algorithms are currently being used in clinical practice? While the technology is present, as demonstrated in a variety of commercial products, clinical integration is hampered by a lack of infrastructure, processes, and tools. In particular, automating the selection of relevant series for a particular algorithm remains challenging. In this work, we propose a methodology to automate the identification of brain MRI sequences so that we can automatically route the relevant inputs for further image-related algorithms. The method relies on metadata required by the Digital Imaging and Communications in Medicine (DICOM) standard, resulting in generalizability and high efficiency (less than 0.4 ms/series). To support our claims, we test our approach on two large brain MRI datasets (40,000 studies in total) from two different institutions on two different continents. We demonstrate high levels of accuracy (ranging from 97.4 to 99.96%) and generalizability across the institutions. Given the complexity and variability of brain MRI protocols, we are confident that similar techniques could be applied to other forms of radiological imaging.


Assuntos
Metadados , Radiologia , Encéfalo/diagnóstico por imagem , Estudos de Viabilidade , Humanos , Imageamento por Ressonância Magnética
6.
AJR Am J Roentgenol ; 211(1): 52-66, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29629796

RESUMO

OBJECTIVE: The purpose of this article is to discuss the advances in CT acquisition and image postprocessing as they apply to imaging the pancreas and to conceptualize the role of radiogenomics and machine learning in pancreatic imaging. CONCLUSION: CT is the preferred imaging modality for assessment of pancreatic diseases. Recent advances in CT (dual-energy CT, CT perfusion, CT volumetry, and radiogenomics) and emerging computational algorithms (machine learning) have the potential to further increase the value of CT in pancreatic imaging.


Assuntos
Pancreatopatias/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Humanos , Aprendizado de Máquina
8.
Clin Imaging ; 112: 110207, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38838448

RESUMO

PURPOSE: We created an infrastructure for no code machine learning (NML) platform for non-programming physicians to create NML model. We tested the platform by creating an NML model for classifying radiographs for the presence and absence of clavicle fractures. METHODS: Our IRB-approved retrospective study included 4135 clavicle radiographs from 2039 patients (mean age 52 ± 20 years, F:M 1022:1017) from 13 hospitals. Each patient had two-view clavicle radiographs with axial and anterior-posterior projections. The positive radiographs had either displaced or non-displaced clavicle fractures. We configured the NML platform to automatically retrieve the eligible exams using the series' unique identification from the hospital virtual network archive via web access to DICOM Objects. The platform trained a model until the validation loss plateaus. Once the testing was complete, the platform provided the receiver operating characteristics curve and confusion matrix for estimating sensitivity, specificity, and accuracy. RESULTS: The NML platform successfully retrieved 3917 radiographs (3917/4135, 94.7 %) and parsed them for creating a ML classifier with 2151 radiographs in the training, 100 radiographs for validation, and 1666 radiographs in testing datasets (772 radiographs with clavicle fracture, 894 without clavicle fracture). The network identified clavicle fracture with 90 % sensitivity, 87 % specificity, and 88 % accuracy with AUC of 0.95 (confidence interval 0.94-0.96). CONCLUSION: A NML platform can help physicians create and test machine learning models from multicenter imaging datasets such as the one in our study for classifying radiographs based on the presence of clavicle fracture.


Assuntos
Clavícula , Fraturas Ósseas , Aprendizado de Máquina , Humanos , Clavícula/lesões , Clavícula/diagnóstico por imagem , Fraturas Ósseas/diagnóstico por imagem , Fraturas Ósseas/classificação , Feminino , Pessoa de Meia-Idade , Masculino , Estudos Retrospectivos , Sensibilidade e Especificidade , Adulto , Radiografia/métodos
9.
Clin Imaging ; 112: 110210, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38850710

RESUMO

BACKGROUND: Clinical adoption of AI applications requires stakeholders see value in their use. AI-enabled opportunistic-CT-screening (OS) capitalizes on incidentally-detected findings within CTs for potential health benefit. This study evaluates primary care providers' (PCP) perspectives on OS. METHODS: A survey was distributed to US Internal and Family Medicine residencies. Assessed were familiarity with AI and OS, perspectives on potential value/costs, communication of results, and technology implementation. RESULTS: 62 % of respondents (n = 71) were in Family Medicine, 64.8 % practiced in community hospitals. Although 74.6 % of respondents had heard of AI/machine learning, 95.8 % had little-to-no familiarity with OS. The majority reported little-to-no trust in AI. Reported concerns included AI accuracy (74.6 %) and unknown liability (73.2 %). 78.9 % of respondents reported that OS applications would require radiologist oversight. 53.5 % preferred OS results be included in a separate "screening" section within the Radiology report, accompanied by condition risks and management recommendations. The majority of respondents reported results would likely affect clinical management for all queried applications, and that atherosclerotic cardiovascular disease risk, abdominal aortic aneurysm, and liver fibrosis should be included within every CT report regardless of reason for examination. 70.5 % felt that PCP practices are unlikely to pay for OS. Added costs to the patient (91.5 %), the healthcare provider (77.5 %), and unknown liability (74.6 %) were the most frequently reported concerns. CONCLUSION: PCP preferences and concerns around AI-enabled OS offer insights into clinical value and costs. As AI applications grow, feedback from end-users should be considered in the development of such technology to optimize implementation and adoption. Increasing stakeholder familiarity with AI may be a critical prerequisite first step before stakeholders consider implementation.


Assuntos
Tomografia Computadorizada por Raios X , Humanos , Atenção Primária à Saúde , Inquéritos e Questionários , Atitude do Pessoal de Saúde , Programas de Rastreamento , Estados Unidos , Masculino , Feminino , Inteligência Artificial , Achados Incidentais
10.
J Am Coll Radiol ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960083

RESUMO

PURPOSE: We compared the performance of generative AI (G-AI, ATARI) and natural language processing (NLP) tools for identifying laterality errors in radiology reports and images. METHODS: We used an NLP-based (mPower) tool to identify radiology reports flagged for laterality errors in its QA Dashboard. The NLP model detects and highlights laterality mismatches in radiology reports. From an initial pool of 1124 radiology reports flagged by the NLP for laterality errors, we selected and evaluated 898 reports that encompassed radiography, CT, MRI, and ultrasound modalities to ensure comprehensive coverage. A radiologist reviewed each radiology report to assess if the flagged laterality errors were present (reporting error - true positive) or absent (NLP error - false positive). Next, we applied ATARI to 237 radiology reports and images with consecutive NLP true positive (118 reports) and false positive (119 reports) laterality errors. We estimated accuracy of NLP and G-AI tools to identify overall and modality-wise laterality errors. RESULTS: Among the 898 NLP-flagged laterality errors, 64% (574/898) had NLP errors and 36% (324/898) were reporting errors. The text query ATARI feature correctly identified the absence of laterality mismatch (NLP false positives) with a 97.4% accuracy (115/118 reports; 95% CI = 96.5% - 98.3%). Combined Vision and text query resulted in 98.3% accuracy (116/118 reports/images; 95% CI = 97.6% - 99.0%) query alone had a 98.3% accuracy (116/118 images; 95% CI = 97.6% - 99.0%). CONCLUSION: The generative AI-empowered ATARI prototype outperformed the assessed NLP tool for determining true and false laterality errors in radiology reports while enabling an image-based laterality determination. Underlying errors in ATARI text query in complex radiology reports emphasize the need for further improvement in the technology.

11.
Diagnostics (Basel) ; 14(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39125511

RESUMO

The opportunistic use of radiological examinations for disease detection can potentially enable timely management. We assessed if an index created by an AI software to quantify chest radiography (CXR) findings associated with heart failure (HF) could distinguish between patients who would develop HF or not within a year of the examination. Our multicenter retrospective study included patients who underwent CXR without an HF diagnosis. We included 1117 patients (age 67.6 ± 13 years; m:f 487:630) that underwent CXR. A total of 413 patients had the CXR image taken within one year of their HF diagnosis. The rest (n = 704) were patients without an HF diagnosis after the examination date. All CXR images were processed with the model (qXR-HF, Qure.AI) to obtain information on cardiac silhouette, pleural effusion, and the index. We calculated the accuracy, sensitivity, specificity, and area under the curve (AUC) of the index to distinguish patients who developed HF within a year of the CXR and those who did not. We report an AUC of 0.798 (95%CI 0.77-0.82), accuracy of 0.73, sensitivity of 0.81, and specificity of 0.68 for the overall AI performance. AI AUCs by lead time to diagnosis (<3 months: 0.85; 4-6 months: 0.82; 7-9 months: 0.75; 10-12 months: 0.71), accuracy (0.68-0.72), and specificity (0.68) remained stable. Our results support the ongoing investigation efforts for opportunistic screening in radiology.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38806239

RESUMO

BACKGROUND AND PURPOSE: Mass effect and vasogenic edema are critical findings on CT of the head. This study compared the accuracy of an artificial intelligence model (Annalise Enterprise CTB) with consensus neuroradiologists' interpretations in detecting mass effect and vasogenic edema. MATERIALS AND METHODS: A retrospective stand-alone performance assessment was conducted on data sets of noncontrast CT head cases acquired between 2016 and 2022 for each finding. The cases were obtained from patients 18 years of age or older from 5 hospitals in the United States. The positive cases were selected consecutively on the basis of the original clinical reports using natural language processing and manual confirmation. The negative cases were selected by taking the next negative case acquired from the same CT scanner after positive cases. Each case was interpreted independently by up-to-three neuroradiologists to establish consensus interpretations. Each case was then interpreted by the artificial intelligence model for the presence of the relevant finding. The neuroradiologists were provided with the entire CT study. The artificial intelligence model separately received thin (≤1.5 mm) and/or thick (>1.5 and ≤5 mm) axial series. RESULTS: The 2 cohorts included 818 cases for mass effect and 310 cases for vasogenic edema. The artificial intelligence model identified mass effect with a sensitivity of 96.6% (95% CI, 94.9%-98.2%) and a specificity of 89.8% (95% CI, 84.7%-94.2%) for the thin series, and 95.3% (95% CI, 93.5%-96.8%) and 93.1% (95% CI, 89.1%-96.6%) for the thick series. It identified vasogenic edema with a sensitivity of 90.2% (95% CI, 82.0%-96.7%) and a specificity of 93.5% (95% CI, 88.9%-97.2%) for the thin series, and 90.0% (95% CI, 84.0%-96.0%) and 95.5% (95% CI, 92.5%-98.0%) for the thick series. The corresponding areas under the curve were at least 0.980. CONCLUSIONS: The assessed artificial intelligence model accurately identified mass effect and vasogenic edema in this CT data set. It could assist the clinical workflow by prioritizing interpretation of cases with abnormal findings, possibly benefiting patients through earlier identification and subsequent treatment.

13.
Can J Neurol Sci ; 40(3): 284-91, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23603162

RESUMO

This systematic review described the criteria and main evaluations methods procedures used to classify neuropsychiatric systemic lupus erythematosus (NPSLE) patients. Also, within the evaluations methods, this review aimed to identify the main contributions of neuropsychological measurements in neuroimaging studies. A search was conducted in PubMed, EMBASE and SCOPUS databases with the terms related to neuropsychiatric syndromes, systemic lupus erythematosus, and neuroimaging techniques. Sixty-six abstracts were found; only 20 were completely analyzed and included. Results indicated that the 1999 American College of Rheumatology (ACR) criteria is the most used to classify NPSLE samples together with laboratorial, cognitive, neurological and psychiatric assessment procedures. However, the recommended ACR assessment procedures to classify NPSLE patients are being used incompletely, especially the neuropsychological batteries. Neuropsychological instruments and neuroimaging techniques have been used mostly to characterize NPSLE samples, instead of contributing to their classifications. The most described syndromes in neuroimaging studies have been seizure/cerebrovascular disease followed by cognitive dysfunctions as well as headache disorder.


Assuntos
Vasculite Associada ao Lúpus do Sistema Nervoso Central/classificação , Vasculite Associada ao Lúpus do Sistema Nervoso Central/diagnóstico , Neuroimagem , Eletroencefalografia , Humanos , Armazenamento e Recuperação da Informação/estatística & dados numéricos
14.
Clin Imaging ; 95: 47-51, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36610270

RESUMO

PURPOSE: To assess feasibility of automated segmentation and measurement of tracheal collapsibility for detecting tracheomalacia on inspiratory and expiratory chest CT images. METHODS: Our study included 123 patients (age 67 ± 11 years; female: male 69:54) who underwent clinically indicated chest CT examinations in both inspiration and expiration phases. A thoracic radiologist measured anteroposterior length of trachea in inspiration and expiration phase image at the level of maximum collapsibility or aortic arch (in absence of luminal change). Separately, another investigator separately processed the inspiratory and expiratory DICOM CT images with Airway Segmentation component of a commercial COPD software (IntelliSpace Portal, Philips Healthcare). Upon segmentation, the software automatically estimated average lumen diameter (in mm) and lumen area (sq.mm) both along the entire length of trachea and at the level of aortic arch. Data were analyzed with independent t-tests and area under the receiver operating characteristic curve (AUC). RESULTS: Of the 123 patients, 48 patients had tracheomalacia and 75 patients did not. Ratios of inspiration to expiration phases average lumen area and lumen diameter from the length of trachea had the highest AUC of 0.93 (95% CI = 0.88-0.97) for differentiating presence and absence of tracheomalacia. A decrease of ≥25% in average lumen diameter had sensitivity of 82% and specificity of 87% for detecting tracheomalacia. A decrease of ≥40% in the average lumen area had sensitivity and specificity of 86% for detecting tracheomalacia. CONCLUSION: Automatic segmentation and measurement of tracheal dimension over the entire tracheal length is more accurate than a single-level measurement for detecting tracheomalacia.


Assuntos
Traqueomalácia , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Traqueomalácia/diagnóstico por imagem , Traqueia/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Sensibilidade e Especificidade , Curva ROC
15.
Jpn J Radiol ; 41(2): 194-200, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36331701

RESUMO

PURPOSE: Knowledge of kidney stone composition can help in patient management; urine composition analysis and dual-energy CT are frequently used to assess stone type. We assessed if threshold-based stone segmentation and radiomics can determine the composition of kidney stones from single-energy, non-contrast abdomen-pelvis CT. METHODS: With IRB approval, we identified 218 consecutive patients (mean age 64 ± 13 years; male:female 138:80) with the presence of kidney stones on non-contrast, abdomen-pelvis CT and surgical or biochemical proof of their stone composition. CT examinations were performed on one of the seven multidetector-row scanners from four vendors (GE, Philips, Siemens, Toshiba). Deidentified CT images were processed with a radiomics prototype (Frontier, Siemens Healthineers) to segment the entire kidney volumes with an AI-based organ segmentation tool. We applied a threshold of 130 HU to isolate stones in the segmented kidneys and to estimate radiomics over the segmented stone volume. A coinvestigator verified kidney stone segmentation and adjusted the volume of interest to include the entire stone volume when necessary. We applied multiple logistic regression tests with precision recall plots to obtain area under the curve (AUC) using a built-in R statistical program. RESULTS: The threshold-based stone segmentation successfully isolated kidney stones (uric acid: n = 102 patients, calcium oxalate/phosphate: n = 116 patients) in all patients. Radiomics differentiated between calcium and uric acid stones with an AUC of 0.78 (p < 0.01, 95% CI 0.73-0.83), 0.79 sensitivity, and 0.90 specificity regardless of CT vendors (GE CT: AUC = 0.82, p < 0.01, 95% CI 0.740-0896; Siemens CT: AUC = 0.77, 95% CI 0.700-0.846, p < 0.01). CONCLUSION: Automated threshold-based stone segmentation and radiomics can differentiate between calcium oxalate/phosphate and urate stones from non-contrast, single-energy abdomen CT.


Assuntos
Oxalato de Cálcio , Cálculos Renais , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Oxalato de Cálcio/análise , Ácido Úrico/análise , Cálculos Renais/diagnóstico por imagem , Cálculos Renais/química , Tomografia Computadorizada por Raios X/métodos , Oxalatos , Fosfatos
16.
J Am Coll Radiol ; 20(3): 352-360, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36922109

RESUMO

The multitude of artificial intelligence (AI)-based solutions, vendors, and platforms poses a challenging proposition to an already complex clinical radiology practice. Apart from assessing and ensuring acceptable local performance and workflow fit to improve imaging services, AI tools require multiple stakeholders, including clinical, technical, and financial, who collaborate to move potential deployable applications to full clinical deployment in a structured and efficient manner. Postdeployment monitoring and surveillance of such tools require an infrastructure that ensures proper and safe use. Herein, the authors describe their experience and framework for implementing and supporting the use of AI applications in radiology workflow.


Assuntos
Inteligência Artificial , Radiologia , Radiologia/métodos , Diagnóstico por Imagem , Fluxo de Trabalho , Comércio
17.
Diagnostics (Basel) ; 13(4)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36832266

RESUMO

Purpose: Motion-impaired CT images can result in limited or suboptimal diagnostic interpretation (with missed or miscalled lesions) and patient recall. We trained and tested an artificial intelligence (AI) model for identifying substantial motion artifacts on CT pulmonary angiography (CTPA) that have a negative impact on diagnostic interpretation. Methods: With IRB approval and HIPAA compliance, we queried our multicenter radiology report database (mPower, Nuance) for CTPA reports between July 2015 and March 2022 for the following terms: "motion artifacts", "respiratory motion", "technically inadequate", and "suboptimal" or "limited exam". All CTPA reports were from two quaternary (Site A, n = 335; B, n = 259) and a community (C, n = 199) healthcare sites. A thoracic radiologist reviewed CT images of all positive hits for motion artifacts (present or absent) and their severity (no diagnostic effect or major diagnostic impairment). Coronal multiplanar images from 793 CTPA exams were de-identified and exported offline into an AI model building prototype (Cognex Vision Pro, Cognex Corporation) to train an AI model to perform two-class classification ("motion" or "no motion") with data from the three sites (70% training dataset, n = 554; 30% validation dataset, n = 239). Separately, data from Site A and Site C were used for training and validating; testing was performed on the Site B CTPA exams. A five-fold repeated cross-validation was performed to evaluate the model performance with accuracy and receiver operating characteristics analysis (ROC). Results: Among the CTPA images from 793 patients (mean age 63 ± 17 years; 391 males, 402 females), 372 had no motion artifacts, and 421 had substantial motion artifacts. The statistics for the average performance of the AI model after five-fold repeated cross-validation for the two-class classification included 94% sensitivity, 91% specificity, 93% accuracy, and 0.93 area under the ROC curve (AUC: 95% CI 0.89-0.97). Conclusion: The AI model used in this study can successfully identify CTPA exams with diagnostic interpretation limiting motion artifacts in multicenter training and test datasets. Clinical relevance: The AI model used in the study can help alert technologists about the presence of substantial motion artifacts on CTPA, where a repeat image acquisition can help salvage diagnostic information.

18.
Acad Radiol ; 30(12): 2921-2930, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37019698

RESUMO

RATIONALE AND OBJECTIVES: Suboptimal chest radiographs (CXR) can limit interpretation of critical findings. Radiologist-trained AI models were evaluated for differentiating suboptimal(sCXR) and optimal(oCXR) chest radiographs. MATERIALS AND METHODS: Our IRB-approved study included 3278 CXRs from adult patients (mean age 55 ± 20 years) identified from a retrospective search of CXR in radiology reports from 5 sites. A chest radiologist reviewed all CXRs for the cause of suboptimality. The de-identified CXRs were uploaded into an AI server application for training and testing 5 AI models. The training set consisted of 2202 CXRs (n = 807 oCXR; n = 1395 sCXR) while 1076 CXRs (n = 729 sCXR; n = 347 oCXR) were used for testing. Data were analyzed with the Area under the curve (AUC) for the model's ability to classify oCXR and sCXR correctly. RESULTS: For the two-class classification into sCXR or oCXR from all sites, for CXR with missing anatomy, AI had sensitivity, specificity, accuracy, and AUC of 78%, 95%, 91%, 0.87(95% CI 0.82-0.92), respectively. AI identified obscured thoracic anatomy with 91% sensitivity, 97% specificity, 95% accuracy, and 0.94 AUC (95% CI 0.90-0.97). Inadequate exposure with 90% sensitivity, 93% specificity, 92% accuracy, and AUC of 0.91 (95% CI 0.88-0.95). The presence of low lung volume was identified with 96% sensitivity, 92% specificity, 93% accuracy, and 0.94 AUC (95% CI 0.92-0.96). The sensitivity, specificity, accuracy, and AUC of AI in identifying patient rotation were 92%, 96%, 95%, and 0.94 (95% CI 0.91-0.98), respectively. CONCLUSION: The radiologist-trained AI models can accurately classify optimal and suboptimal CXRs. Such AI models at the front end of radiographic equipment can enable radiographers to repeat sCXRs when necessary.


Assuntos
Pulmão , Radiografia Torácica , Adulto , Humanos , Pessoa de Meia-Idade , Idoso , Pulmão/diagnóstico por imagem , Estudos Retrospectivos , Radiografia , Radiologistas
19.
Sci Rep ; 13(1): 189, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604467

RESUMO

Non-contrast head CT (NCCT) is extremely insensitive for early (< 3-6 h) acute infarct identification. We developed a deep learning model that detects and delineates suspected early acute infarcts on NCCT, using diffusion MRI as ground truth (3566 NCCT/MRI training patient pairs). The model substantially outperformed 3 expert neuroradiologists on a test set of 150 CT scans of patients who were potential candidates for thrombectomy (60 stroke-negative, 90 stroke-positive middle cerebral artery territory only infarcts), with sensitivity 96% (specificity 72%) for the model versus 61-66% (specificity 90-92%) for the experts; model infarct volume estimates also strongly correlated with those of diffusion MRI (r2 > 0.98). When this 150 CT test set was expanded to include a total of 364 CT scans with a more heterogeneous distribution of infarct locations (94 stroke-negative, 270 stroke-positive mixed territory infarcts), model sensitivity was 97%, specificity 99%, for detection of infarcts larger than the 70 mL volume threshold used for patient selection in several major randomized controlled trials of thrombectomy treatment.


Assuntos
Aprendizado Profundo , Acidente Vascular Cerebral , Humanos , Tomografia Computadorizada por Raios X , Acidente Vascular Cerebral/diagnóstico por imagem , Imageamento por Ressonância Magnética , Infarto da Artéria Cerebral Média
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa