Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Theor Appl Genet ; 137(3): 64, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430392

RESUMO

KEY MESSAGE: An improved estimator of genomic relatedness using low-depth high-throughput sequencing data for autopolyploids is developed. Its outputs strongly correlate with SNP array-based estimates and are available in the package GUSrelate. High-throughput sequencing (HTS) methods have reduced sequencing costs and resources compared to array-based tools, facilitating the investigation of many non-model polyploid species. One important quantity that can be computed from HTS data is the genetic relatedness between all individuals in a population. However, HTS data are often messy, with multiple sources of errors (i.e. sequencing errors or missing parental alleles) which, if not accounted for, can lead to bias in genomic relatedness estimates. We derive a new estimator for constructing a genomic relationship matrix (GRM) from HTS data for autopolyploid species that accounts for errors associated with low sequencing depths, implemented in the R package GUSrelate. Simulations revealed that GUSrelate performed similarly to existing GRM methods at high depth but reduced bias in self-relatedness estimates when the sequencing depth was low. Using a panel consisting of 351 tetraploid potato genotypes, we found that GUSrelate produced GRMs from genotyping-by-sequencing (GBS) data that were highly correlated with a GRM computed from SNP array data, and less biased than existing methods when benchmarking against the array-based GRM estimates. GUSrelate provides researchers with a tool to reliably construct GRMs from low-depth HTS data.


Assuntos
Técnicas de Genotipagem , Polimorfismo de Nucleotídeo Único , Humanos , Técnicas de Genotipagem/métodos , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Alelos
2.
PLoS Genet ; 17(8): e1009094, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34398873

RESUMO

The systematic identification of genetic events driving cellular transformation and tumor progression in the absence of a highly recurrent oncogenic driver mutation is a challenge in cutaneous oncology. In cutaneous squamous cell carcinoma (cuSCC), the high UV-induced mutational burden poses a hurdle to achieve a complete molecular landscape of this disease. Here, we utilized the Sleeping Beauty transposon mutagenesis system to statistically define drivers of keratinocyte transformation and cuSCC progression in vivo in the absence of UV-IR, and identified both known tumor suppressor genes and novel oncogenic drivers of cuSCC. Functional analysis confirms an oncogenic role for the ZMIZ genes, and tumor suppressive roles for KMT2C, CREBBP and NCOA2, in the initiation or progression of human cuSCC. Taken together, our in vivo screen demonstrates an extremely heterogeneous genetic landscape of cuSCC initiation and progression, which can be harnessed to better understand skin oncogenic etiology and prioritize therapeutic candidates.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/genética , Transformação Celular Neoplásica/genética , Queratinócitos/patologia , Mutagênese Insercional/métodos , Análise de Sequência de DNA/métodos , Neoplasias Cutâneas/genética , Proteína de Ligação a CREB/genética , Carcinoma de Células Escamosas/patologia , Transformação Celular Neoplásica/patologia , Elementos de DNA Transponíveis , Proteínas de Ligação a DNA/genética , Progressão da Doença , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Coativador 2 de Receptor Nuclear/genética , Neoplasias Cutâneas/patologia
3.
Breast Cancer Res Treat ; 189(2): 363-375, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34287743

RESUMO

PURPOSE: Inherited variants in the cancer susceptibility genes, BRCA1 and BRCA2 account for up to 5% of breast cancers. Multiple gene expression studies have analysed gene expression patterns that maybe associated with BRCA12 pathogenic variant status; however, results from these studies lack consensus. These studies have focused on the differences in population means to identified genes associated with BRCA1/2-carriers with little consideration for gene expression variability, which is also under genetic control and is a feature of cellular function. METHODS: We measured differential gene expression variability in three of the largest familial breast cancer datasets and a 2116 breast cancer meta-cohort. Additionally, we used RNA in situ hybridisation to confirm expression variability of EN1 in an independent cohort of more than 500 breast tumours. RESULTS: BRCA1-associated breast tumours exhibited a 22.8% (95% CI 22.3-23.2) increase in transcriptome-wide gene expression variability compared to BRCAx tumours. Additionally, 40 genes were associated with BRCA1-related breast cancers that had ChIP-seq data suggestive of enriched EZH2 binding. Of these, two genes (EN1 and IGF2BP3) were significantly variable in both BRCA1-associated and basal-like breast tumours. RNA in situ analysis of EN1 supported a significant (p = 6.3 × 10-04) increase in expression variability in BRCA1-associated breast tumours. CONCLUSION: Our novel results describe a state of increased gene expression variability in BRCA1-related and basal-like breast tumours. Furthermore, genes with increased variability may be driven by changes in DNA occupancy of epigenetic effectors. The variation in gene expression is replicable and led to the identification of novel associations between genes and disease phenotypes.


Assuntos
Neoplasias da Mama , Genes BRCA1 , Proteína BRCA1/genética , Neoplasias da Mama/genética , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Genes BRCA2 , Predisposição Genética para Doença , Humanos
4.
J Immunol ; 202(6): 1871-1884, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30728210

RESUMO

T cell infiltration of tumors plays an important role in determining colorectal cancer disease progression and has been incorporated into the Immunoscore prognostic tool. In this study, mass cytometry was used to demonstrate a significant increase in the frequency of both conventional CD25+FOXP3+CD127lo regulatory T cells (Tregs) as well as BLIMP-1+ Tregs in the tumor compared with nontumor bowel (NTB) of the same patients. Network cluster analyses using SCAFFoLD, VorteX, and CITRUS revealed that an increase in BLIMP-1+ Tregs was a single distinguishing feature of the tumor tissue compared with NTB. BLIMP-1+ Tregs represented the most significantly enriched T cell population in the tumor compared with NTB. The enrichment of ICOS, CD45RO, PD-1, PDL-1, LAG-3, CTLA-4, and TIM-3 on BLIMP-1+ Tregs suggests that BLIMP-1+ Tregs have a more activated phenotype than conventional Tregs and may play a role in antitumor immune responses.


Assuntos
Separação Celular/métodos , Neoplasias Colorretais/imunologia , Linfócitos do Interstício Tumoral/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Idoso , Feminino , Humanos , Ativação Linfocitária/imunologia , Masculino , Pessoa de Meia-Idade
5.
PLoS Genet ; 14(6): e1007399, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29912901

RESUMO

Wilms tumour is a childhood tumour that arises as a consequence of somatic and rare germline mutations, the characterisation of which has refined our understanding of nephrogenesis and carcinogenesis. Here we report that germline loss of function mutations in TRIM28 predispose children to Wilms tumour. Loss of function of this transcriptional co-repressor, which has a role in nephrogenesis, has not previously been associated with cancer. Inactivation of TRIM28, either germline or somatic, occurred through inactivating mutations, loss of heterozygosity or epigenetic silencing. TRIM28-mutated tumours had a monomorphic epithelial histology that is uncommon for Wilms tumour. Critically, these tumours were negative for TRIM28 immunohistochemical staining whereas the epithelial component in normal tissue and other Wilms tumours stained positively. These data, together with a characteristic gene expression profile, suggest that inactivation of TRIM28 provides the molecular basis for defining a previously described subtype of Wilms tumour, that has early age of onset and excellent prognosis.


Assuntos
Mutação em Linhagem Germinativa , Neoplasias Renais/genética , Mutação com Perda de Função , Recidiva Local de Neoplasia/genética , Proteína 28 com Motivo Tripartido/genética , Tumor de Wilms/genética , Adulto , Biomarcadores Tumorais/genética , Epigênese Genética , Feminino , Perfilação da Expressão Gênica , Humanos , Rim/patologia , Neoplasias Renais/epidemiologia , Neoplasias Renais/patologia , Masculino , Recidiva Local de Neoplasia/epidemiologia , Recidiva Local de Neoplasia/patologia , Prognóstico , Urotélio/patologia , Sequenciamento do Exoma , Tumor de Wilms/epidemiologia , Tumor de Wilms/patologia , Adulto Jovem
6.
Carcinogenesis ; 41(11): 1507-1517, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32955091

RESUMO

Accurate assessment of chemotherapy response provides the means to terminate ineffective treatment, trial alternative drug regimens or schedules and reduce dose to minimize toxicity. Here, we have compared circulating tumor DNA (ctDNA) with carcinoembryonic antigen (CEA) for the cycle by cycle assessment of chemotherapy response in 30 patients with metastatic colorectal cancer. CtDNA (quantified using individualized digital droplet PCR (ddPCR) assays) and CEA levels were determined immediately prior to each chemotherapy cycle over time periods ranging from 42-548 days (average of 10 time points/patient). Twenty-nine/thirty (97%) patients had detectable ctDNA compared with 83% whose tumors were CEA-positive (>5 ng/ml) during the monitoring course. Over the course of treatment, 20 disease progression events were detected by computed tomography; ctDNA predicted significantly more of these events than CEA (16 (80%) versus 6 (30%), respectively; P-value = 0.004). When progression was detected by both ctDNA and CEA, the rise in ctDNA occurred significantly earlier than CEA (P-value = 0.046). Partial responses to chemotherapy were also detected more frequently by ctDNA, although this was not significant (P-value = 0.07). In addition, another 28 colorectal cancer patients who underwent potentially curative surgery and showed no evidence of residual disease were monitored with ctDNA for up to 2 years. Clinical relapse was observed in 6/28 (21%) patients. Four out of 6 of these patients showed a significant increase in ctDNA at or prior to relapse. Overall, ctDNA analyses were able to be performed in a clinically relevant timeline and were a more sensitive and responsive measure of tumor burden than CEA.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/genética , DNA Tumoral Circulante/genética , Neoplasias Colorretais/patologia , DNA de Neoplasias/genética , Biomarcadores Tumorais/análise , DNA Tumoral Circulante/análise , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , DNA de Neoplasias/análise , Seguimentos , Humanos , Prognóstico , Estudos Prospectivos , Carga Tumoral
7.
Nucleic Acids Res ; 46(16): e94, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-29846651

RESUMO

Cancer driver prioritization for functional analysis of potential actionable therapeutic targets is a significant challenge. Meta-analyses of mutated genes across different human cancer types for driver prioritization has reaffirmed the role of major players in cancer, including KRAS, TP53 and EGFR, but has had limited success in prioritizing genes with non-recurrent mutations in specific cancer types. Sleeping Beauty (SB) insertional mutagenesis is a powerful experimental gene discovery framework to define driver genes in mouse models of human cancers. Meta-analyses of SB datasets across multiple tumor types is a potentially informative approach to prioritize drivers, and complements efforts in human cancers. Here, we report the development of SB Driver Analysis, an in-silico method for defining cancer driver genes that positively contribute to tumor initiation and progression from population-level SB insertion data sets. We demonstrate that SB Driver Analysis computationally prioritizes drivers and defines distinct driver classes from end-stage tumors that predict their putative functions during tumorigenesis. SB Driver Analysis greatly enhances our ability to analyze, interpret and prioritize drivers from SB cancer datasets and will continue to substantially increase our understanding of the genetic basis of cancer.


Assuntos
Transformação Celular Neoplásica/genética , Elementos de DNA Transponíveis/genética , Mutagênese Insercional , Neoplasias/genética , Oncogenes/genética , Proteínas Supressoras de Tumor/genética , Algoritmos , Animais , Predisposição Genética para Doença/genética , Humanos , Camundongos , Modelos Genéticos , Neoplasias/patologia
8.
Gastric Cancer ; 22(2): 273-286, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30066183

RESUMO

BACKGROUND: The E-cadherin gene (CDH1) is frequently mutated in diffuse gastric cancer and lobular breast cancer, and germline mutations predispose to the cancer syndrome Hereditary Diffuse Gastric Cancer. We are taking a synthetic lethal approach to identify druggable vulnerabilities in CDH1-mutant cancers. METHODS: Density distributions of cell viability data from a genome-wide RNAi screen of isogenic MCF10A and MCF10A-CDH1-/- cells were used to identify protein classes affected by CDH1 mutation. The synthetic lethal relationship between selected protein classes and E-cadherin was characterised by drug sensitivity assays in both the isogenic breast MCF10A cells and CDH1-isogenic gastric NCI-N87. Endocytosis efficiency was quantified using cholera toxin B uptake. Pathway metagene expression of 415 TCGA gastric tumours was statistically correlated with CDH1 expression. RESULTS: MCF10A-CDH1-/- cells showed significantly altered sensitivity to RNAi inhibition of groups of genes including the PI3K/AKT pathway, GPCRs, ion channels, proteosomal subunit proteins and ubiquitinylation enzymes. Both MCF10A-CDH1-/- and NCI-N87-CDH1-/- cells were more sensitive than wild-type cells to compounds that disrupted plasma membrane composition and trafficking, but showed contrasting sensitivities to inhibitors of actin polymerisation and the chloride channel inhibitor NS3728. The MCF10A-CDH1-/- cell lines showed reduced capacity to endocytose cholera toxin B. Pathway metagene analysis identified 20 Reactome pathways that were potentially synthetic lethal in tumours. Genes involved in GPCR signalling, vesicle transport and the metabolism of PI3K and membrane lipids were strongly represented amongst the candidate synthetic lethal genes. CONCLUSIONS: E-cadherin loss leads to disturbances in receptor signalling and plasma membrane trafficking and organisation, creating druggable vulnerabilities.


Assuntos
Caderinas/deficiência , Membrana Celular/metabolismo , Membrana Celular/patologia , Antígenos CD/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Caderinas/genética , Linhagem Celular Tumoral , Feminino , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Humanos , Transporte Proteico/fisiologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
9.
Proc Natl Acad Sci U S A ; 113(48): E7749-E7758, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27849608

RESUMO

Triple-negative breast cancer (TNBC) has the worst prognosis of any breast cancer subtype. To better understand the genetic forces driving TNBC, we performed a transposon mutagenesis screen in a phosphatase and tensin homolog (Pten) mutant mice and identified 12 candidate trunk drivers and a much larger number of progression genes. Validation studies identified eight TNBC tumor suppressor genes, including the GATA-like transcriptional repressor TRPS1 Down-regulation of TRPS1 in TNBC cells promoted epithelial-to-mesenchymal transition (EMT) by deregulating multiple EMT pathway genes, in addition to increasing the expression of SERPINE1 and SERPINB2 and the subsequent migration, invasion, and metastasis of tumor cells. Transposon mutagenesis has thus provided a better understanding of the genetic forces driving TNBC and discovered genes with potential clinical importance in TNBC.


Assuntos
Adenocarcinoma/genética , Elementos de DNA Transponíveis , Neoplasias Mamárias Experimentais/genética , PTEN Fosfo-Hidrolase/genética , Adenocarcinoma/secundário , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Progressão da Doença , Feminino , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genes Neoplásicos , Genes Supressores de Tumor , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares , Neoplasias Mamárias Experimentais/patologia , Camundongos Transgênicos , Mutagênese , Mutação de Sentido Incorreto , Modelos de Riscos Proporcionais , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Repressoras , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/mortalidade , Neoplasias de Mama Triplo Negativas/patologia
10.
Int J Cancer ; 143(8): 2008-2016, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29752720

RESUMO

Tumor infiltrating T cells are a predictor of patient outcome in patients with colorectal cancer (CRC). However, many T cell populations have been associated with both poor and positive patient prognoses, indicating a need to further understand the role of different T cell subsets in CRC. In this study, the T cell infiltrate from the tumor and nontumor bowel (NTB) was examined in 95 CRC patients using flow cytometry and associations with cancer stage and disease recurrence made. Our findings showed that IFN-γ-producing T cells were associated with positive patient outcomes, and CD69+ T cells were associated with disease recurrence. Inflammatory (IL-17) and regulatory T cells were not associated with disease recurrence. Surprisingly, in a second cohort of 32 patients with long-term clinical follow up data, tumor infiltrating IL-2-producing T cells correlated negatively with disease free survival (DFS) and a higher frequency of IL-2-producing T cells was found in the NTB of patients with poorly differentiated tumors. These results point toward the possibility of a negative impact of IL-2 in tumor immune responses, which may influence future immunotherapy treatments in CRC patients.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Interleucina-2/metabolismo , Lectinas Tipo C/metabolismo , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/patologia , Idoso , Diferenciação Celular/fisiologia , Intervalo Livre de Doença , Feminino , Humanos , Interferon gama/metabolismo , Interleucina-17/metabolismo , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Masculino , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Estadiamento de Neoplasias/métodos , Prognóstico
11.
Biol Reprod ; 99(2): 446-460, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29272338

RESUMO

Sexual behavior in teleost fish is highly plastic. It can be attributed to the relatively few sex differences found in adult brain transcriptomes. Environmental and hormonal factors can influence sex-specific behavior. Androgen treatment stimulates behavioral masculinization. Sex dimorphic gene expression in developing teleost brains and the molecular basis for androgen-induced behavioral masculinization are poorly understood. In this study, juvenile zebrafish (Danio rerio) were treated with 100 ng/L of 17 alpha-methyltestosterone (MT) during sexual development from 20 days post fertilization to 40 days and 60 days post fertilization. We compared brain gene expression patterns in MT-treated zebrafish with control males and females using RNA-Seq to shed light on the dynamic changes in brain gene expression during sexual development and how androgens affect brain gene expression leading to behavior masculinization. We found modest differences in gene expression between juvenile male and female zebrafish brains. Brain aromatase (cyp19a1b), prostaglandin 3a synthase (ptges3a), and prostaglandin reductase 1 (ptgr1) were among the genes with sexually dimorphic expression patterns. MT treatment significantly altered gene expression relative to both male and female brains. Fewer differences were found among MT-treated brains and male brains compared to female brains, particularly at 60 dpf. MT treatment upregulated the expression of hydroxysteroid 11-beta dehydrogenase 2 (hsd11b2), deiodinase, iodothyronine, type II (dio2), and gonadotrophin releasing hormones (GnRH) 2 and 3 (gnrh2 and gnrh3) suggesting local synthesis of 11-ketotestosterone, triiodothyronine, and GnRHs in zebrafish brains which are influenced by androgens. Androgen, estrogen, prostaglandin, thyroid hormone, and GnRH signaling pathways likely interact to modulate teleost sexual behavior.


Assuntos
Encéfalo/metabolismo , Expressão Gênica , Metiltestosterona/farmacologia , Caracteres Sexuais , Diferenciação Sexual/fisiologia , Comportamento Sexual Animal/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Animais , Aromatase/genética , Aromatase/metabolismo , Encéfalo/efeitos dos fármacos , Feminino , Masculino , Prostaglandina-Endoperóxido Sintases/genética , Prostaglandina-Endoperóxido Sintases/metabolismo , Comportamento Sexual Animal/efeitos dos fármacos , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
12.
BMC Cancer ; 18(1): 805, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30092766

RESUMO

BACKGROUND: Altered cellular metabolism is a hallmark of cancer but the association between utilisation of particular metabolic pathways in tumours and patient outcome is poorly understood. We sought to investigate the association between fatty acid metabolism and outcome in breast and other cancers. METHODS: Cox regression analysis and Gene Set Enrichment Analysis (GSEA) of a gene expression dataset from primary breast tumours with well annotated clinical and survival information was used to identify genesets associated with outcome. A geneset representing fatty acid oxidation (FAO) was then examined in other datasets. A doxycycline-inducible breast cancer cell line model overexpressing the rate-limiting enzyme in FAO, carnitine palmitoyl transferase 1A (CPT1A) was generated and analysed to confirm the association between FAO and cancer-associated characteristics in vitro. RESULTS: We identified a gene expression signature composed of 19 genes associated with fatty acid oxidation (FAO) that was significantly associated with patient outcome. We validated this observation in eight independent breast cancer datasets, and also observed the FAO signature to be prognostic in other cancer types. Furthermore, the FAO signature expression was significantly downregulated in tumours, compared to normal tissues from a variety of anatomic origins. In breast cancer, the expression of CPT1A was higher in oestrogen receptor (ER)-positive, compared to ER-negative tumours and cell lines. Importantly, overexpression of CPT1A significantly decreased the proliferation and wound healing migration rates of MDA-MB231 breast cancer cells, compared to basal expression control. CONCLUSIONS: Our findings suggest that FAO is downregulated in multiple tumour types, and activation of this pathway may lower cancer cell proliferation, and is associated with improved outcomes in some cancers.


Assuntos
Neoplasias da Mama/metabolismo , Carnitina O-Palmitoiltransferase/genética , Ácidos Graxos/metabolismo , Proteínas de Neoplasias/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Intervalo Livre de Doença , Receptor alfa de Estrogênio/genética , Ácidos Graxos/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Estimativa de Kaplan-Meier , Metabolismo dos Lipídeos/genética , Masculino , Pessoa de Meia-Idade , Oxirredução , Prognóstico , Transcriptoma/genética
13.
Cell Commun Signal ; 16(1): 88, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30466445

RESUMO

BACKGROUND: Depletion of tryptophan and the accumulation of tryptophan metabolites mediated by the immunosuppressive enzyme indoleamine 2,3-dioxygenase 1 (IDO1), trigger immune cells to undergo apoptosis. However, cancer cells in the same microenvironment appear not to be affected. Mechanisms whereby cancer cells resist accelerated tryptophan degradation are not completely understood. We hypothesize that cancer cells co-opt IMPACT (the product of IMPrinted and AnCienT gene), to withstand periods of tryptophan deficiency. METHODS: A range of bioinformatic techniques including correlation and gene set variation analyses was applied to genomic datasets of cancer (The Cancer Genome Atlas) and normal (Genotype Tissue Expression Project) tissues to investigate IMPACT's role in cancer. Survival of IMPACT-overexpressing GL261 glioma cells and their wild type counterparts cultured in low tryptophan media was assessed using fluorescence microscopy and MTT bio-reduction assay. Expression of the Integrated Stress Response proteins was measured using Western blotting. RESULTS: We found IMPACT to be upregulated and frequently amplified in a broad range of clinical cancers relative to their non-malignant tissue counterparts. In a subset of clinical cancers, high IMPACT expression associated with decreased activity of pathways and genes involved in stress response and with increased activity of translational regulation such as the mTOR pathway. Experimental studies using the GL261 glioma line showed that cells engineered to overexpress IMPACT, gained a survival advantage over wild-type lines when cultured under limiting tryptophan concentrations. No significant difference in the expression of proteins in the Integrated Stress Response pathway was detected in tryptophan-deprived GL261 IMPACT-overexpressors compared to that in wild-type cells. IMPACT-overexpressing GL261 cells but not their wild-type counterparts, showed marked enlargement of their nuclei and cytoplasmic area when stressed by tryptophan deprivation. CONCLUSIONS: The bioinformatics data together with our laboratory studies, support the hypothesis that IMPACT mediates a protective mechanism allowing cancer cells to overcome microenvironmental stresses such as tryptophan deficiency.


Assuntos
Triptofano/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Biologia Computacional , Metilação de DNA , Dosagem de Genes , Regulação Neoplásica da Expressão Gênica , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Camundongos , Estresse Fisiológico/genética
14.
BMC Genomics ; 18(1): 557, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28738802

RESUMO

BACKGROUND: Sex hormones play important roles in teleost ovarian and testicular development. In zebrafish, ovarian differentiation appears to be dictated by an oocyte-derived signal via Cyp19a1a aromatase-mediated estrogen production. Androgens and aromatase inhibitors can induce female-to-male sex reversal, however, the mechanisms underlying gonadal masculinisation are poorly understood. We used histological analyses together with RNA sequencing to characterise zebrafish gonadal transcriptomes and investigate the effects of 17α-methyltestosterone on gonadal differentiation. RESULTS: At a morphological level, 17α-methyltestosterone (MT) masculinised gonads and accelerated spermatogenesis, and these changes were paralleled in masculinisation and de-feminisation of gonadal transcriptomes. MT treatment upregulated expression of genes involved in male sex determination and differentiation (amh, dmrt1, gsdf and wt1a) and those involved in 11-oxygenated androgen production (cyp11c1 and hsd11b2). It also repressed expression of ovarian development and folliculogenesis genes (bmp15, gdf9, figla, zp2.1 and zp3b). Furthermore, MT treatment altered epigenetic modification of histones in zebrafish gonads. Contrary to expectations, higher levels of cyp19a1a or foxl2 expression in control ovaries compared to MT-treated testes and control testes were not statistically significant during early gonad development (40 dpf). CONCLUSION: Our study suggests that both androgen production and aromatase inhibition are important for androgen-induced gonadal masculinisation and natural testicular differentiation in zebrafish.


Assuntos
Metiltestosterona/farmacologia , Ovário/efeitos dos fármacos , Ovário/crescimento & desenvolvimento , Testículo/efeitos dos fármacos , Testículo/crescimento & desenvolvimento , Transcriptoma/efeitos dos fármacos , Peixe-Zebra/genética , Animais , Feminino , Masculino , Ovário/citologia , Ovário/metabolismo , Caracteres Sexuais , Razão de Masculinidade , Espermatogênese/efeitos dos fármacos , Espermatogênese/genética , Testículo/citologia , Testículo/metabolismo , Peixe-Zebra/crescimento & desenvolvimento
15.
BMC Cancer ; 17(1): 228, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28351398

RESUMO

BACKGROUND: Aberrant DNA methylation profiles are a characteristic of all known cancer types, epitomized by the CpG island methylator phenotype (CIMP) in colorectal cancer (CRC). Hypermethylation has been observed at CpG islands throughout the genome, but it is unclear which factors determine whether an individual island becomes methylated in cancer. METHODS: DNA methylation in CRC was analysed using the Illumina HumanMethylation450K array. Differentially methylated loci were identified using Significance Analysis of Microarrays (SAM) and the Wilcoxon Signed Rank (WSR) test. Unsupervised hierarchical clustering was used to identify methylation subtypes in CRC. RESULTS: In this study we characterized the DNA methylation profiles of 94 CRC tissues and their matched normal counterparts. Consistent with previous studies, unsupervized hierarchical clustering of genome-wide methylation data identified three subtypes within the tumour samples, designated CIMP-H, CIMP-L and CIMP-N, that showed high, low and very low methylation levels, respectively. Differential methylation between normal and tumour samples was analysed at the individual CpG level, and at the gene level. The distribution of hypermethylation in CIMP-N tumours showed high inter-tumour variability and appeared to be highly stochastic in nature, whereas CIMP-H tumours exhibited consistent hypermethylation at a subset of genes, in addition to a highly variable background of hypermethylated genes. EYA4, TFPI2 and TLX1 were hypermethylated in more than 90% of all tumours examined. One-hundred thirty-two genes were hypermethylated in 100% of CIMP-H tumours studied and these were highly enriched for functions relating to skeletal system development (Bonferroni adjusted p value =2.88E-15), segment specification (adjusted p value =9.62E-11), embryonic development (adjusted p value =1.52E-04), mesoderm development (adjusted p value =1.14E-20), and ectoderm development (adjusted p value =7.94E-16). CONCLUSIONS: Our genome-wide characterization of DNA methylation in colorectal cancer has identified 132 genes hypermethylated in 100% of CIMP-H samples. Three genes, EYA4, TLX1 and TFPI2 are hypermethylated in >90% of all tumour samples, regardless of CIMP subtype.


Assuntos
Adenocarcinoma Mucinoso/genética , Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Ilhas de CpG , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Genoma Humano , Adenocarcinoma Mucinoso/patologia , Idoso , Neoplasias Colorretais/patologia , Feminino , Humanos , Masculino , Estadiamento de Neoplasias , Fenótipo , Prognóstico
16.
BMC Genomics ; 17: 441, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27277319

RESUMO

BACKGROUND: Copy number variants (CNVs) are a type of polymorphism found to underlie phenotypic variation, both in humans and livestock. Most surveys of CNV in livestock have been conducted in the cattle genome, and often utilise only a single approach for the detection of copy number differences. Here we performed a study of CNV in sheep, using multiple methods to identify and characterise copy number changes. Comprehensive information from small pedigrees (trios) was collected using multiple platforms (array CGH, SNP chip and whole genome sequence data), with these data then analysed via multiple approaches to identify and verify CNVs. RESULTS: In total, 3,488 autosomal CNV regions (CNVRs) were identified in this study, which substantially builds on an initial survey of the sheep genome that identified 135 CNVRs. The average length of the identified CNVRs was 19 kb (range of 1 kb to 3.6 Mb), with shorter CNVRs being more frequent than longer CNVRs. The total length of all CNVRs was 67.6Mbps, which equates to 2.7 % of the sheep autosomes. For individuals this value ranged from 0.24 to 0.55 %, and the majority of CNVRs were identified in single animals. Rather than being uniformly distributed throughout the genome, CNVRs tended to be clustered. Application of three independent approaches for CNVR detection facilitated a comparison of validation rates. CNVs identified on the Roche-NimbleGen 2.1M CGH array generally had low validation rates with lower density arrays, while whole genome sequence data had the highest validation rate (>60 %). CONCLUSIONS: This study represents the first comprehensive survey of the distribution, prevalence and characteristics of CNVR in sheep. Multiple approaches were used to detect CNV regions and it appears that the best method for verifying CNVR on a large scale involves using a combination of detection methodologies. The characteristics of the 3,488 autosomal CNV regions identified in this study are comparable to other CNV regions reported in the literature and provide a valuable and sizeable addition to the small subset of published sheep CNVs.


Assuntos
Variações do Número de Cópias de DNA , Genoma , Genômica , Ovinos/genética , Animais , Cromossomos de Mamíferos , Hibridização Genômica Comparativa , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
17.
BMC Med Genet ; 17(1): 80, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27846814

RESUMO

BACKGROUND: The gene PPARGC1A, in particular the Gly482Ser variant (rs8192678), had been proposed to be subject to natural selection, particularly in recent progenitors of extant Polynesian populations. Reasons include high levels of population differentiation and increased frequencies of the derived type 2 diabetes (T2D) risk 482Ser allele, and association with body mass index (BMI) in a small Tongan population. However, no direct statistical tests for selection have been applied. METHODS: Using a range of Polynesian populations (Tongan, Maori, Samoan) we re-examined evidence for association between Gly482Ser with T2D and BMI as well as gout. Using also Asian, European, and African 1000 Genome Project samples a range of statistical tests for selection (F ST, integrated haplotype score (iHS), cross population extended haplotype homozygosity (XP-EHH), Tajima's D and Fay and Wu's H) were conducted on the PPARGC1A locus. RESULTS: No statistically significant evidence for association between Gly482Ser and any of BMI, T2D or gout was found. Population differentiation (F ST) was smallest between Asian and Pacific populations (New Zealand Maori ≤ 0.35, Samoan ≤ 0.20). When compared to European (New Zealand Maori ≤ 0.40, Samoan ≤ 0.25) or African populations (New Zealand Maori ≤ 0.80, Samoan ≤ 0.66) this differentiation was larger. We did not find any strong evidence for departure from neutral evolution at this locus when applying any of the other statistical tests for selection. However, using the same analytical methods, we found evidence for selection in specific populations at previously identified loci, indicating that lack of selection was the most likely explanation for the lack of evidence of selection in PPARGC1A. CONCLUSION: We conclude that there is no compelling evidence for selection at this locus, and that this gene should not be considered a candidate thrifty gene locus in Pacific populations. High levels of population differentiation at this locus and the reported absence of the derived 482Ser allele in some Melanesian populations, can alternatively be explained by multiple out-of-Africa migrations by ancestral progenitors, and subsequent genetic drift during colonisation of Polynesia. Intermediate 482Ser allele frequencies in extant Western Polynesian populations could therefore be due to recent admixture with Melanesian progenitors.


Assuntos
Diabetes Mellitus Tipo 2/genética , Havaiano Nativo ou Outro Ilhéu do Pacífico/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Índice de Massa Corporal , Diabetes Mellitus Tipo 2/patologia , Feminino , Genótipo , Gota/genética , Gota/patologia , Haplótipos , Humanos , Modelos Lineares , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Razão de Chances , Polimorfismo de Nucleotídeo Único , Samoa , Seleção Genética , Tonga , Adulto Jovem
18.
Mol Ecol ; 25(6): 1224-41, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26756714

RESUMO

Reference is regularly made to the power of new genomic sequencing approaches. Using powerful technology, however, is not the same as having the necessary power to address a research question with statistical robustness. In the rush to adopt new and improved genomic research methods, limitations of technology and experimental design may be initially neglected. Here, we review these issues with regard to RNA sequencing (RNA-seq). RNA-seq adds large-scale transcriptomics to the toolkit of ecological and evolutionary biologists, enabling differential gene expression (DE) studies in nonmodel species without the need for prior genomic resources. High biological variance is typical of field-based gene expression studies and means that larger sample sizes are often needed to achieve the same degree of statistical power as clinical studies based on data from cell lines or inbred animal models. Sequencing costs have plummeted, yet RNA-seq studies still underutilize biological replication. Finite research budgets force a trade-off between sequencing effort and replication in RNA-seq experimental design. However, clear guidelines for negotiating this trade-off, while taking into account study-specific factors affecting power, are currently lacking. Study designs that prioritize sequencing depth over replication fail to capitalize on the power of RNA-seq technology for DE inference. Significant recent research effort has gone into developing statistical frameworks and software tools for power analysis and sample size calculation in the context of RNA-seq DE analysis. We synthesize progress in this area and derive an accessible rule-of-thumb guide for designing powerful RNA-seq experiments relevant in eco-evolutionary and clinical settings alike.


Assuntos
Evolução Biológica , Ecologia , Genética Populacional , Análise de Sequência de RNA/métodos , Variação Genética , Dados de Sequência Molecular , Transcriptoma
19.
BMC Bioinformatics ; 16: 21, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25626999

RESUMO

BACKGROUND: Pausing of DNA polymerase can indicate the presence of a DNA structure that differs from the canonical double-helix. Here we detail a method to investigate how polymerase pausing in the Pacific Biosciences sequencer reads can be related to DNA sequences. The Pacific Biosciences sequencer uses optics to view a polymerase and its interaction with a single DNA molecule in real-time, offering a unique way to detect potential alternative DNA structures. RESULTS: We have developed a new way to examine polymerase kinetics data and relate it to the DNA sequence by using a wavelet transform of read information from the sequencer. We use this method to examine how polymerase kinetics are related to nucleotide base composition. We then examine tandem repeat sequences known for their ability to form different DNA structures: (CGG)n and (CG)n repeats which can, respectively, form G-quadruplex DNA and Z-DNA. We find pausing around the (CGG)n repeat that may indicate the presence of G-quadruplexes in some of the sequencer reads. The (CG)n repeat does not appear to cause polymerase pausing, but its kinetics signature nevertheless suggests the possibility that alternative nucleotide conformations may sometimes be present. CONCLUSION: We discuss the implications of using our method to discover DNA sequences capable of forming alternative structures. The analyses presented here can be reproduced on any Pacific Biosciences kinetics data for any DNA pattern of interest using an R package that we have made publicly available.


Assuntos
DNA Forma Z/química , DNA Polimerase Dirigida por DNA/química , DNA/química , Quadruplex G , Análise de Sequência de DNA/métodos , DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Humanos , Cinética , Modelos Moleculares
20.
BMC Genomics ; 16: 848, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26493398

RESUMO

BACKGROUND: Copy number variation (CNV) is a common feature of eukaryotic genomes, and a growing body of evidence suggests that genes affected by CNV are enriched in processes that are associated with environmental responses. Here we use next generation sequence (NGS) data to detect copy-number variable regions (CNVRs) within the Malus x domestica genome, as well as to examine their distribution and impact. METHODS: CNVRs were detected using NGS data derived from 30 accessions of M. x domestica analyzed using the read-depth method, as implemented in the CNVrd2 software. To improve the reliability of our results, we developed a quality control and analysis procedure that involved checking for organelle DNA, not repeat masking, and the determination of CNVR identity using a permutation testing procedure. RESULTS: Overall, we identified 876 CNVRs, which spanned 3.5 % of the apple genome. To verify that detected CNVRs were not artifacts, we analyzed the B- allele-frequencies (BAF) within a single nucleotide polymorphism (SNP) array dataset derived from a screening of 185 individual apple accessions and found the CNVRs were enriched for SNPs having aberrant BAFs (P < 1e-13, Fisher's Exact test). Putative CNVRs overlapped 845 gene models and were enriched for resistance (R) gene models (P < 1e-22, Fisher's exact test). Of note was a cluster of resistance gene models on chromosome 2 near a region containing multiple major gene loci conferring resistance to apple scab. CONCLUSION: We present the first analysis and catalogue of CNVRs in the M. x domestica genome. The enrichment of the CNVRs with R gene models and their overlap with gene loci of agricultural significance draw attention to a form of unexplored genetic variation in apple. This research will underpin further investigation of the role that CNV plays within the apple genome.


Assuntos
Variações do Número de Cópias de DNA/genética , Genoma , Malus/genética , Genótipo , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa