Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Anat ; 245(1): 84-96, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38419134

RESUMO

The vertebral column, a defining trait of all vertebrates, is organized as a concatenated chain of vertebrae, and therefore its support to the body depends on individual vertebral morphology. Consequently, studying the morphology of the vertebral centrum is of anatomical and clinical importance. Grass carp (GC) is a member of the infraclass Teleostei (teleost fish), which accounts for the majority of all vertebrate species; thus, its vertebral anatomical structure can help us understand vertebrate development and vertebral morphology. In this study, we have investigated the morphology and symmetry of the grass carp vertebral centrum using high-resolution micro-CT scans. To this end, three abdominal vertebrae (V9, V10, & V11) from eight grass carp were micro-CT scanned and then segmented using Dragonfly (ORS Inc.). Grass carp vertebral centrum conformed to the basic teleost pattern and demonstrated an amphicoelous shape (biconcave hourglass). The centrum's cranial endplate was smaller, less circular, and shallower compared to the caudal endplate. While the vertebral centrum demonstrated bilateral symmetry along the sagittal plane (left/right), the centrum focus was shifted dorsally and cranially, breaking dorsoventral and craniocaudal symmetry. The sum of these findings implies that the caudal aspect of grass carp vertebral centrum is bigger and more robust. Currently, we have no information whether this is due to nature, for example, differences in gene expression, or nurture, for example, environmental effect. As the vertebral parapophyses and spinous processes are slanted caudally, the direction of muscle action during swimming may create a gradient of stresses from cranial to caudal, resulting in a more robust caudal aspect of the vertebral centrum. Expanding our study to include additional quadrupedal and bipedal (i.e., human) vertebrae, as well as testing if these morphological aspects of the vertebrae are indeed plastic and can be affected by environmental factors (i.e., temperature or other stressors) may help answer this question.


Assuntos
Carpas , Microtomografia por Raio-X , Animais , Carpas/anatomia & histologia , Microtomografia por Raio-X/métodos , Corpo Vertebral/diagnóstico por imagem , Corpo Vertebral/anatomia & histologia , Abdome/anatomia & histologia , Abdome/diagnóstico por imagem
2.
Int J Mol Sci ; 22(4)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672216

RESUMO

Freshwater fishes maintain an internal osmolality of ~300 mOsm, while living in dilute environments ranging from 0 to 50 mOsm. This osmotic challenge is met at least partially, by Na+/H+ exchangers (NHE) of fish gill and kidney. In this study, we cloned, expressed, and pharmacologically characterized fish-specific Nhes of the commercially important species Oncorhynchus mykiss. Trout (t) Nhe3a and Nhe3b isoforms from gill and kidney were expressed and characterized in an NHE-deficient cell line. Western blotting and immunocytochemistry confirmed stable expression of the tagged trout tNhe proteins. To measure NHE activity, a transient acid load was induced in trout tNhe expressing cells and intracellular pH was measured. Both isoforms demonstrated significant activity and recovered from an acute acid load. The effect of the NHE transport inhibitors amiloride, EIPA (5-(N-ethyl-N-isopropyl)-amiloride), phenamil, and DAPI was examined. tNhe3a was inhibited in a dose-dependent manner by amiloride and EIPA and tNhe3a was more sensitive to amiloride than EIPA, unlike mammalian NHE1. tNhe3b was inhibited by high concentrations of amiloride, while even in the presence of high concentrations of EIPA (500 µM), some activity of tNhe3b remained. Phenamil and DAPI were ineffective at inhibiting tNhe activity of either isoform. The current study aids in understanding the pharmacology of fish ion transporters. Both isoforms display inhibitory profiles uniquely different from mammalian NHEs and show resistance to inhibition. Our study allows for more direct interpretation of past, present, and future fish-specific sodium transport studies, with less reliance on mammalian NHE data for interpretation.


Assuntos
Proteínas de Peixes/metabolismo , Oncorhynchus mykiss , Bloqueadores dos Canais de Sódio/farmacologia , Trocador 3 de Sódio-Hidrogênio/metabolismo , Amilorida/análogos & derivados , Amilorida/farmacologia , Animais , Células CHO , Clonagem Molecular , Cricetulus , Proteínas de Peixes/antagonistas & inibidores , Proteínas de Peixes/genética , Expressão Gênica , Brânquias/fisiologia , Indóis/farmacologia , Mamíferos , Especificidade de Órgãos , Trocador 3 de Sódio-Hidrogênio/antagonistas & inibidores , Trocador 3 de Sódio-Hidrogênio/genética , Transfecção
3.
Artigo em Inglês | MEDLINE | ID: mdl-27350321

RESUMO

Developing freshwater fish must compensate for the loss of ions, including sodium (Na(+)), to the environment. In this study, we used a radiotracer flux approach and pharmacological inhibitors to investigate the role of sodium/hydrogen exchange proteins (Nhe) in Na(+) uptake in rainbow trout (Oncorhynchus mykiss) reared from fertilization in soft water (0.1mM Na(+)). For comparison, a second group of embryos/larvae reared in hard water (2.2mM Na(+), higher pH and [Ca(2+)]) were also included in the experiment but were fluxed in soft water, only. Unidirectional rates of Na(+) uptake increased throughout development and were significantly higher in embryos/larvae reared in soft water. However, the mechanisms of Na(+) uptake in both groups of larvae were not significantly different, either in larvae immediately post-hatch or later in development: the broad spectrum Na(+) channel blocker amiloride inhibited 85-90% of uptake and the Nhe-inhibitor EIPA also caused near maximal inhibitions of Na(+) uptake. These data indicated Na(+) uptake was Nhe-mediated in soft water. A role of Nhe3b (but not Nhe2 or Nhe3a) in Na(+) uptake in soft water was also supported through gene expression analyses: expression of nhe3b increased throughout development in whole embryos/larvae in both groups and was significantly higher in those reared in soft water. This pattern of expression correlated well with measurements of Na(+) uptake. Together these data indicate that in part, rainbow trout embryos/larvae reared in low Na(+) soft water maintained Na(+) homeostasis by an EIPA sensitive component of Na(+) uptake, and support a primary role for Nhe3b.


Assuntos
Proteínas de Peixes/metabolismo , Oncorhynchus mykiss/crescimento & desenvolvimento , Oncorhynchus mykiss/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Sódio/metabolismo , Animais , Proteínas de Peixes/genética , Regulação da Expressão Gênica no Desenvolvimento , Transporte de Íons , Larva/metabolismo , Oncorhynchus mykiss/genética , Trocadores de Sódio-Hidrogênio/genética
4.
Am J Physiol Regul Integr Comp Physiol ; 308(9): R769-78, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25715835

RESUMO

Hagfishes, the most ancient of the extant craniates, demonstrate a high tolerance for a number of unfavorable environmental conditions, including elevated ammonia. Proposed mechanisms of ammonia excretion in aquatic organisms include vesicular NH(4)(+) transport and release by exocytosis in marine crabs, and passive NH(3) diffusion, active NH(4)(+) transport, and paracellular leakage of NH3 or NH(4)(+) across the gills of fishes. Recently, an emerging paradigm suggests that Rhesus glycoproteins play a vital role in ammonia transport in both aquatic invertebrates and vertebrates. This study has identified an Rh glycoprotein ortholog from the gills of Atlantic hagfish. The hagfish Rhcg shares a 56-60% amino acid identity to other vertebrate Rhcg cDNAs. Sequence information was used to produce an anti-hagfish Rhcg (hRhcg) antibody. We have used hRhcg to localize protein expression to epithelial cells of the gill and the skin. In addition, we have quantified hRhcg expression following exposure to elevated plasma ammonia levels. Animals exposed to a 3 mmol/kg NH(4)Cl load resulted in significantly elevated plasma ammonia concentrations compared with controls for up to 4 h postinjection. This correlated with net ammonia excretion rates that were also significantly elevated for up to 4 h postinjection. Rhcg mRNA expression in both the gill and skin was significantly elevated by 15 min and 1 h, respectively, and hRhcg protein expression in gills was significantly elevated at 2, 4, and 8 h postinjection. These results demonstrate a potential role for Rhcg in the excretion of ammonia in the Atlantic hagfish.


Assuntos
Amônia/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Feiticeiras (Peixe)/metabolismo , Glicoproteínas de Membrana/metabolismo , Animais , Proteínas de Transporte de Cátions/genética , Clonagem Molecular , Regulação da Expressão Gênica/fisiologia , Brânquias/metabolismo , Glicoproteínas de Membrana/genética , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Água/química
5.
Am J Physiol Cell Physiol ; 307(3): C255-65, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24898589

RESUMO

A role for acid-sensing ion channels (ASICs) to serve as epithelial channels for Na(+) uptake by the gill of freshwater rainbow trout was investigated. We found that the ASIC inhibitors 4',6-diamidino-2-phenylindole and diminazene decreased Na(+) uptake in adult rainbow trout in a dose-dependent manner, with IC50 values of 0.12 and 0.96 µM, respectively. Furthermore, we cloned the trout ASIC1 and ASIC4 homologs and demonstrated that they are expressed differentially in the tissues of the rainbow trout, including gills and isolated mitochondrion-rich cells. Immunohistochemical analysis using custom-made anti-zASIC4.2 antibody and the Na(+)-K(+)-ATPase (α5-subunit) antibody demonstrated that the trout ASIC localizes to Na(+)/K(+)-ATPase-rich cells in the gill. Moreover, three-dimensional rendering of confocal micrographs demonstrated that ASIC is found in the apical region of mitochondrion-rich cells. We present a revised model whereby ASIC4 is proposed as one mechanism for Na(+) uptake from dilute freshwater in the gill of rainbow trout.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Brânquias/metabolismo , Oncorhynchus mykiss/metabolismo , Sódio/metabolismo , Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Canais Iônicos Sensíveis a Ácido/biossíntese , Canais Iônicos Sensíveis a Ácido/farmacocinética , Amilorida/análogos & derivados , Amilorida/farmacologia , Sequência de Aminoácidos , Animais , Anticorpos/imunologia , Transporte Biológico Ativo , Clonagem Molecular , Diminazena/farmacologia , Indóis/farmacologia , Alinhamento de Sequência , ATPase Trocadora de Sódio-Potássio/imunologia , Tripanossomicidas/farmacologia
6.
Interface Focus ; 11(2): 20200026, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33633829

RESUMO

Soluble adenylyl cyclase (sAC) is a HC O 3 - -stimulated enzyme that produces the ubiquitous signalling molecule cAMP, and deemed an evolutionarily conserved acid-base sensor. However, its presence is not yet confirmed in bony fishes, the most abundant and diverse of vertebrates. Here, we identified sAC genes in various cartilaginous, ray-finned and lobe-finned fish species. Next, we focused on rainbow trout sAC (rtsAC) and identified 20 potential alternative spliced mRNAs coding for protein isoforms ranging in size from 28 to 186 kDa. Biochemical and kinetic analyses on purified recombinant rtsAC protein determined stimulation by HC O 3 - at physiologically relevant levels for fish internal fluids (EC50 ∼ 7 mM). rtsAC activity was sensitive to KH7, LRE1, and DIDS (established inhibitors of sAC from other organisms), and insensitive to forskolin and 2,5-dideoxyadenosine (modulators of transmembrane adenylyl cyclases). Western blot and immunocytochemistry revealed high rtsAC expression in gill ion-transporting cells, hepatocytes, red blood cells, myocytes and cardiomyocytes. Analyses in the cell line RTgill-W1 suggested that some of the longer rtsAC isoforms may be preferentially localized in the nucleus, the Golgi apparatus and podosomes. These results indicate that sAC is poised to mediate multiple acid-base homeostatic responses in bony fishes, and provide cues about potential novel functions in mammals.

7.
Conserv Physiol ; 5(1): cox040, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28680637

RESUMO

Freshwater environments are at risk of increasing salinity due to multiple anthropogenic forces including current oil and gas extraction practices that result in large volumes of hypersaline water. Unintentional releases of hypersaline water into freshwater environments act as an osmoregulatory stressor to many aquatic organisms including native salmonids like the Arctic grayling (Thymallus arcticus). Compared to more euryhaline salmonids, Arctic grayling have a reduced salinity tolerance and develop an elevated interlamellar cell mass (ILCM) in response to salinity exposure (17 ppt). In this study, we described the gill morphology and cell types characterizing the ICLM. Further, we investigated whether Arctic grayling could recover in freshwater following a short-term (<48 h) salinity exposure. Arctic grayling were exposed to 17 ppt saline water for 12, 24 and 48 h. Following the 24 and 48 h salinity exposure, Arctic grayling were returned to freshwater for 24 h to assess their ability to recover from, and reverse, the osmotic disturbances. Physiological serum [Na+], [Cl-] and total osmolality were significantly elevated and progressively increased at 12, 24 and 48 h salinity exposures. The 24 h post-exposure recovery period resulted in Arctic grayling serum ion concentrations and total osmolality returning to near normal levels. Similar recovery patterns were observed in the salinity-induced ILCM, which developed as early as 12 h of exposure to 17 ppt, and then reverted to control levels following 24 h in freshwater. Gill histology indicates an increased number of apically located mucous cells in the interlamellar space following salinity exposure of Arctic grayling. The scanning electron microscopy and transmission electron microscopy data show the presence of granule containing eosinophil-like cells infiltrating the ILCM suggesting a salinity-induced immune response by the Arctic grayling.

8.
Conserv Physiol ; 4(1): cow010, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27382473

RESUMO

Arctic grayling (Thymallus arcticus) are salmonids that have a strict freshwater existence in post-glacial North America. Oil and gas development is associated with production of high volumes of hypersaline water. With planned industrial expansion into northern areas of Canada and the USA that directly overlap grayling habitat, the threat of accidental saline water release poses a significant risk. Despite this, we understand little about the responses of grayling to hypersaline waters. We compared the physiological responses and survivability of Arctic grayling and rainbow trout (Oncorhynchus mykiss) to tolerate an acute transfer to higher saline waters. Arctic grayling and rainbow trout were placed directly into 17 ppt salinity and sampled at 24 and 96 h along with control animals in freshwater at 24 h. Serum sodium, chloride and osmolality levels increased significantly in grayling at both 24 and 96 h time points, whereas trout were able to compensate for the osmoregulatory disturbance by 96 h. Sodium-potassium ATPase mRNA expression responses to salinity were also compared, demonstrating the inability of the grayling to up-regulate the seawater isoform nkaα1b. Our results demonstrated a substantially lower salinity tolerance in grayling. We also found a significant salinity-induced morphological gill remodelling by Arctic grayling, as demonstrated by the rapid growth of an interlamellar cell mass by 24 h that persisted at 96 h. We visualized and quantified the appearance of the interlamellar cell mass as a response to high salinity, although the functional significance remains to be understood fully. Compared with rainbow trout, which are used as an environmental regulatory species, Arctic grayling are unable to compensate for the osmotic stressors that would result from a highly saline produced water spill. Given these new data, collaboration between fisheries and the oil and gas industry will be vital in the long-term conservation strategies with regard to the Arctic grayling in their native habitat.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa