RESUMO
The nucleus of the solitary tract (NTS) is the primary site of the cardiovascular afferent information about arterial blood pressure and volume. The NTS projects to areas in the central nervous system involved in cardiovascular regulation and hydroelectrolyte balance, such as the anteroventral third ventricle region and the lateral parabrachial nucleus. The aim of the present study was to investigate the effects of electrolytic lesion of the commissural NTS on water and 0.3 M NaCl intake and the cardiovascular responses to subcutaneous injection of isoproterenol. Male Holtzman rats weighing 280 to 320 g were submitted to sham lesion or electrolytic lesion of the commissural NTS (N = 6-15/group). The sham-lesioned rats had the electrode placed along the same coordinates, except that no current was passed. Water intake induced by subcutaneous isoproterenol (30 microg/kg body weight) significantly increased in chronic (15 days) commissural NTS-lesioned rats (to 2.4 +/- 0.2 vs sham: 1.9 +/- 0.2 mL 100 g body weight-1 60 min-1). Isoproterenol did not induce any sodium intake in sham or in commissural NTS-lesioned rats. The isoproterenol-induced hypotension (sham: -27 +/- 4 vs commissural NTS-lesioned rats: -22 +/- 4 mmHg/20 min) and tachycardia (sham: 168 +/- 10 vs commissural NTS: 144 +/- 24 bpm/20 min) were not different between groups. The present results suggest that the commissural NTS is part of an inhibitory neural pathway involved in the control of water intake induced by subcutaneous isoproterenol, and that the overdrinking observed in lesioned rats is not the result of a cardiovascular imbalance in these animals.
Assuntos
Pressão Sanguínea/efeitos dos fármacos , Ingestão de Líquidos/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Isoproterenol/farmacologia , Sódio na Dieta , Núcleo Solitário/lesões , Animais , Injeções Subcutâneas , Masculino , Ratos , Ratos Sprague-Dawley , Núcleo Solitário/efeitos dos fármacosRESUMO
In the present study, we investigated the effects of lesions of A2 neurons of the commissural nucleus of the solitary tract (cNTS) alone or combined with the blockade of angiotensinergic mechanisms on the recovery of arterial pressure (AP) to hemorrhage in conscious rats. Male Holtzman rats (280-320g) received an injection of anti-dopamine-beta-hydroxylase-saporin (12.6ng/60nl; cNTS/A2-lesion, n=28) or immunoglobulin G (IgG)-saporin (12.6ng/60nl, sham, n=24) into the cNTS and 15-21days later had a stainless steel cannula implanted in the lateral ventricle. After 6days, rats were submitted to hemorrhage (four blood withdrawals, 2ml/300g of body weight every 10min). Both cNTS/A2-lesioned and sham rats had similar hypotension to hemorrhage (-62±7 and -73±7mmHg, respectively), however cNTS/A2-lesioned rats rapidly recovered from hypotension (-5±3mmHg at 30min), whereas sham rats did not completely recover until the end of the recording (-20±3mmHg at 60min). Losartan (angiotensin type 1 receptor antagonist) injected intracerebroventricularly (100µg/1µl) or intravenously (i.v.) (10mg/kg of body weight) impaired the recovery of AP in cNTS/A2-lesioned rats (-24±6 and -35±7mmHg at 30min, respectively). In sham rats, only i.v. losartan affected the recovery of AP (-39±6mmHg at 60min). The results suggest that lesion of the A2 neurons in the cNTS facilitates the activation of the angiotensinergic pressor mechanisms in response to hemorrhage.
Assuntos
Neurônios Adrenérgicos/metabolismo , Angiotensina II/metabolismo , Hemorragia/metabolismo , Núcleo Solitário/patologia , Neurônios Adrenérgicos/patologia , Animais , Hemorragia/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Núcleo Solitário/metabolismoRESUMO
The nucleus of the solitary tract (NTS) is the primary site of the cardiovascular afferent information about arterial blood pressure and volume. The NTS projects to areas in the central nervous system involved in cardiovascular regulation and hydroelectrolyte balance, such as the anteroventral third ventricle region and the lateral parabrachial nucleus. The aim of the present study was to investigate the effects of electrolytic lesion of the commissural NTS on water and 0.3 M NaCl intake and the cardiovascular responses to subcutaneous injection of isoproterenol. Male Holtzman rats weighing 280 to 320 g were submitted to sham lesion or electrolytic lesion of the commissural NTS (N = 6-15/group). The sham-lesioned rats had the electrode placed along the same coordinates, except that no current was passed. Water intake induced by subcutaneous isoproterenol (30 µg/kg body weight) significantly increased in chronic (15 days) commissural NTS-lesioned rats (to 2.4 ± 0.2 vs sham: 1.9 ± 0.2 mL 100 g body weight-1 60 min-1). Isoproterenol did not induce any sodium intake in sham or in commissural NTS-lesioned rats. The isoproterenol-induced hypotension (sham: -27 ± 4 vs commissural NTS-lesioned rats: -22 ± 4 mmHg/20 min) and tachycardia (sham: 168 ± 10 vs commissural NTS: 144 ± 24 bpm/20 min) were not different between groups. The present results suggest that the commissural NTS is part of an inhibitory neural pathway involved in the control of water intake induced by subcutaneous isoproterenol, and that the overdrinking observed in lesioned rats is not the result of a cardiovascular imbalance in these animals.