Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; 63(9): 1170-1186, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34357823

RESUMO

Sorghum grain is a staple food for about 500 million people in 30 countries in Africa and Asia. Despite this contribution to global food production, most of the world's sorghum grain, and nearly all in Western countries, is used as animal feed. A combination of the increasingly important ability of sorghum crops to resist heat and drought, the limited history of the use of sorghum in Western foods, and the excellent functional properties of sorghum grain in healthy diets, suggests a greater focus on the development of new sorghum-based foods. An understanding of the structural and functional properties of sorghum grain to develop processes for production of new sorghum-based foods is required. In this review, we discuss the potential of sorghum in new food products, including sorghum grain composition, the functional properties of sorghum in foods, processing of sorghum-based products, the digestibility of sorghum protein and starch compared to other grains, and the health benefits of sorghum. In the potential for sorghum as a major ingredient in new foods, we suggest that the gluten-free status of sorghum is of relatively minor importance compared to the functionality of the slowly digested starch and the health benefits of the phenolic compounds present.


Assuntos
Sorghum , Animais , Sorghum/química , Grão Comestível/química , Amido/química , Ração Animal/análise , África
2.
Molecules ; 26(7)2021 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-33916639

RESUMO

Valorization of vegetable oil waste residues is gaining importance due to their high protein and polyphenol contents. Protease inhibitors (PIs), proteins from these abundantly available waste residues, have recently gained importance in treating chronic diseases. This research aimed to use canola meal of genetically diverse Brassica napus genotypes, BLN-3347 and Rivette, to identify PIs with diverse functionalities in therapeutic and pharmacological applications. The canola meal PI purification steps involved: native PAGE and trypsin inhibition activity, followed by ammonium sulfate fractionation, anion exchange, gel filtration, and reverse-phase chromatography. The purified PI preparations were characterized using SDS-PAGE, isoelectric focusing (IEF), and N terminal sequencing. SDS-PAGE analysis of PI preparations under native reducing and nonreducing conditions revealed three polymorphic PIs in each genotype. The corresponding IEF of the genotype BLN-3347, exhibited three acidic isoforms with isoelectric points (pI) of 4.6, 4.0, and 3.9, while Rivette possessed three isoforms, exhibiting two basic forms of pI 8.65 and 9.9, and one acidic of pI 6.55. Purified PI preparations from both the genotypes displayed dipeptidyl peptidase-IV (DPP-IV) and angiotensin-converting enzyme (ACE) inhibition activities; the BLN-3347 PI preparation exhibited a strong inhibitory effect with lower IC50 values (DPP-IV 37.42 µg/mL; ACE 129 µg/mL) than that from Rivette (DPP-IV 67.97 µg/mL; ACE 376.2 µg/mL). In addition to potential human therapy, these highly polymorphic PIs, which can inhibit damaging serine proteases secreted by canola plant pathogens, have the potential to be used by canola plant breeders to seek qualitative trait locus (QTLs) linked to genes conferring resistance to canola diseases.


Assuntos
Anti-Hipertensivos/farmacologia , Brassica napus/química , Dipeptidil Peptidase 4/química , Inibidores Enzimáticos/farmacologia , Hipoglicemiantes/farmacologia , Peptidil Dipeptidase A/química , Sequência de Aminoácidos , Anti-Hipertensivos/química , Anti-Hipertensivos/isolamento & purificação , Brassica napus/genética , Brassica napus/metabolismo , Dipeptidil Peptidase 4/metabolismo , Ensaios Enzimáticos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Genótipo , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/isolamento & purificação , Focalização Isoelétrica , Cinética , Extração Líquido-Líquido/métodos , Peptidil Dipeptidase A/metabolismo , Extratos Vegetais/química
3.
Int J Mol Sci ; 21(9)2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32392844

RESUMO

Glucose-induced oxidative stress is associated with the overproduction of reactive oxygen species (ROS), which may dysregulate the expression of genes controlling insulin secretion leading to ß-cell dysfunction, a hallmark of type 2 diabetes mellitus (T2DM). This study investigated the impact of coloured rice phenolic extracts (CRPEs) on the expression of key genes associated with ß-cell function in pancreatic ß-cells (INS-1E). These genes included glucose transporter 2 (Glut2), silent mating type information regulation 2 homolog 1 (Sirt1), mitochondrial transcription factor A (Tfam), pancreatic/duodenal homeobox protein 1 (Pdx-1) and insulin 1 (Ins1). INS-1E cells were cultured in high glucose (25 mM) to induce glucotoxic stress conditions (HGSC) and in normal glucose conditions (NGC-11.1 mM) to represent normal ß-cell function. Cells were treated with CRPEs derived from two coloured rice cultivars, Purple and Yunlu29-red varieties at concentrations ranged from 50 to 250 µg/mL. CRPEs upregulated the expression of Glut2, Sirt1 and Pdx-1 significantly at 250 µg/mL under HGSC. CRPEs from both cultivars also upregulated Glut2, Sirt1, Tfam, Pdx-1 and Ins1 markedly at 250 µg/mL under NGC with Yunlu29 having the greatest effect. These data suggest that CRPEs may reduce ß-cell dysfunction in T2DM by upregulating the expression of genes involved in insulin secretion pathways.


Assuntos
Diabetes Mellitus Tipo 2/genética , Marcadores Genéticos/efeitos dos fármacos , Células Secretoras de Insulina/citologia , Oryza/química , Fenóis/farmacologia , Animais , Linhagem Celular , Diabetes Mellitus Tipo 2/tratamento farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/efeitos adversos , Transportador de Glucose Tipo 2/genética , Proteínas de Homeodomínio/genética , Insulina/genética , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Modelos Biológicos , Fenóis/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ratos , Sirtuína 1/genética , Transativadores/genética , Regulação para Cima
4.
Plant Cell Physiol ; 60(5): 945-960, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30608545

RESUMO

Cocos nucifera (coconut), a member of the Arecaceae family, is an economically important woody palm that is widely grown in tropical and subtropical regions. The coconut palm is well known for its ability to accumulate large amounts of oil, approximately 63% of the seed weight. Coconut oil varies significantly from other vegetable oils as it contains a high proportion of medium-chain fatty acids (MCFA; 85%). The unique composition of coconut oil raises interest in understanding how the coconut palm produces oil of a high saturated MCFA content, and if such an oil profile could be replicated via biotechnology interventions. Although some gene discovery work has been performed there is still a significant gap in the knowledge associated with coconut's oil production pathways. In this study, a de novo transcriptome was assembled for developing coconut endosperm to identify genes involved in the synthesis of lipids, particularly triacylglycerol. Of particular interest were thioesterases, acyltransferases and oleosins because of their involvement in the processes of releasing fatty acids for assembly, esterification of fatty acids into glycerolipids and protecting oils from degradation, respectively. It is hypothesized that some of these genes may exhibit a strong substrate preference for MCFA and hence may assist the future development of vegetable oils with an enriched MCFA composition. In this study, we identified and confirmed functionality of five candidate genes from the gene families of interest. This study will benefit future work in areas of increasing vegetable oil production and the tailoring of oil fatty acid compositions.


Assuntos
Endosperma/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Transcriptoma/genética , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/fisiologia , Proteínas de Plantas/genética , Nicotiana/genética , Triglicerídeos/metabolismo
5.
Int J Mol Sci ; 21(1)2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31878290

RESUMO

Platelets and platelet microparticles (PMPs) play a key role in the pathophysiology of vascular disorders such as coronary artery disease and stroke. In atherosclerosis, for example, the disruption of the plaque exposes endogenous agonists such as collagen, which activates platelets. Platelet hyper-activation and the high levels of PMPs generated in such situations pose a thrombotic risk that can lead to strokes or myocardial infarctions. Interestingly, dietary polyphenols are gaining much attention due to their potential to mimic the antiplatelet activity of treatment drugs such as aspirin and clopidogrel that target the glycoprotein VI (GPVI)-collagen and cyclooxygenease-1 (COX-1)-thromboxane platelet activation pathways respectively. Platelet function tests such as aggregometry and flow cytometry used to monitor the efficacy of antiplatelet drugs can also be used to assess the antiplatelet potential of dietary polyphenols. Despite the low bioavailability of polyphenols, several in vitro and dietary intervention studies have reported antiplatelet effects of polyphenols. This review presents a summary of platelet function in terms of aggregation, secretion, activation marker expression, and PMP release. Furthermore, the review will critically evaluate studies demonstrating the impact of polyphenols on aggregation and PMP release.


Assuntos
Plaquetas/metabolismo , Polifenóis/metabolismo , Aterosclerose/metabolismo , Ciclo-Oxigenase 1/metabolismo , Citometria de Fluxo , Humanos , Testes de Função Plaquetária
6.
Int J Mol Sci ; 20(19)2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31547608

RESUMO

Oxidative stress, inflammation and endothelial dysfunction are associated with the development of cardiovascular and metabolic diseases. Phenolic extracts derived from rice bran (RB) are recognised to have antioxidant and anti-inflammatory potential. However, the underlying mechanisms remain unknown. Therefore, this study aimed to evaluate the ability of RB-derived phenolic extracts to modulate genes associated with antioxidant and anti-inflammatory pathways in human umbilical vein endothelial cells (HUVECs) under induced oxidative stress conditions. HUVECs under oxidative stress were treated with varying concentrations of RB phenolic extracts (25-250 µg/mL). Using quantitative real-time polymerase chain reaction, the expression of candidate genes that regulate antioxidant and anti-inflammatory pathways were determined. This included nuclear factor erythroid 2-related factor 2 (Nrf2), nicotinamide adenine dinucleotide phosphate: quinone oxidoreductase 1 (NQO1), heme oxygenase 1 (HO1), nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4), intercellular adhesion molecule 1 (ICAM1), endothelial nitric oxide synthase (eNOS), ectonucleoside triphosphate diphosphohydrolase 1 (CD39) and ecto-5'-nucleotidase (CD73). Phenolic extracts derived from RB down-regulated the expression of four genes, ICAM1, CD39, CD73 and NOX4 and up-regulated the expression of another four genes, Nrf2, NQO1, HO1 and eNOS, indicating an antioxidant/ anti-inflammatory effect for RB against endothelial dysfunction.


Assuntos
Anti-Inflamatórios/metabolismo , Antioxidantes/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Oryza/química , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Extratos Vegetais/química
7.
Int J Mol Sci ; 21(1)2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31861265

RESUMO

The extraction of phenolic compounds from canola meal produces functional health products and renders the canola meal a more digestible animal feed. The extracted phenolics may have novel bioactivity worth investigation. In this study, several solvents were evaluated for their ability to extract phenolic compounds from canola meal: water (WE) and various 80% organic solvent/water mixtures of methanol (ME), acetone (AE), ethanol (EE), butanol (BE), chloroform (CE) and hexane (HE). The in vitro antioxidant and anti-obesity properties of various extracts were investigated. Anti-obesity properties were studied using adipogenic differentiation inhibition of a murine mesenchymal stem cell line (C3H10T1/2) and a pancreatic lipase inhibition assay. AE, ME, and BE showed significant (p < 0.05) adipogenesis and pancreatic lipase inhibitory activities and may have more pharmacological properties. AE down-regulated the gene expression of the major adipogenic transcription factor, peroxisome proliferator-activated receptor gamma (PPARγ), correlating to phenolic content in a dose-dependent manner. The chemical characterization of AE revealed the presence of sinapic acid, ferulic acid, and kaempferol derivatives as main bioactive phenols.


Assuntos
Adipogenia/efeitos dos fármacos , Antioxidantes/farmacologia , Brassica napus/química , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Animais , Antioxidantes/química , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Regulação da Expressão Gênica/efeitos dos fármacos , Espaço Intracelular/metabolismo , Lipase/antagonistas & inibidores , Lipase/química , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , PPAR gama/genética , Fenóis/química , Extratos Vegetais/química , Solventes , Espectrometria de Massas em Tandem
8.
Nutr Cancer ; 70(6): 913-927, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30273076

RESUMO

It has been identified that diet is one of the major contributing factors associated with the development of cancer and other chronic pathologies. In the recent years, supplementing regular diet with food and/or its components that contain chemopreventive properties has been considered an effective approach in reducing the incidence of cancer and other lifestyle associated diseases. This systematic review provides an exhaustive summary of the chemopreventive properties exhibited by everyday dietary ingredients such as rice, barley, oats, and sorghum. The studies both in vitro and in vivo reviewed have highlighted the potential role of their polyphenolic content as chemopreventive agents. Polyphenolic compounds including anthocyanins, tricin, protocatechualdehyde, avenanthramide, and 3-deoxyanthocyanins found in rice, barley, oats, and sorghum, respectively, were identified as compounds with potent bioactivity. Studies demonstrated that cereal polyphenols are likely to have chemopreventive activities, particularly those found in pigmented varieties. In conclusion, findings suggest that the consumption of pigmented cereals could potentially have an important role as a natural complementary cancer preventive therapeutic. However, further studies to develop a complete understanding of the mechanisms by which phenolic compounds inhibit cancerous cell proliferation are warranted.


Assuntos
Grão Comestível/química , Neoplasias/prevenção & controle , Polifenóis/farmacologia , Antocianinas/farmacologia , Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Quimioprevenção , Flavonoides/farmacologia , Humanos , Metástase Neoplásica/prevenção & controle , Polifenóis/análise , Polifenóis/metabolismo , Polifenóis/uso terapêutico , Taninos/farmacologia
9.
Plant Biotechnol J ; 15(11): 1397-1408, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28301719

RESUMO

Medium-chain fatty acids (MCFA, C6-14 fatty acids) are an ideal feedstock for biodiesel and broader oleochemicals. In recent decades, several studies have used transgenic engineering to produce MCFA in seeds oils, although these modifications result in unbalance membrane lipid profiles that impair oil yields and agronomic performance. Given the ability to engineer nonseed organs to produce oils, we have previously demonstrated that MCFA profiles can be produced in leaves, but this also results in unbalanced membrane lipid profiles and undesirable chlorosis and cell death. Here we demonstrate that the introduction of a diacylglycerol acyltransferase from oil palm, EgDGAT1, was necessary to channel nascent MCFA directly into leaf oils and therefore bypassing MCFA residing in membrane lipids. This pathway resulted in increased flux towards MCFA rich leaf oils, reduced MCFA in leaf membrane lipids and, crucially, the alleviation of chlorosis. Deep sequencing of African oil palm (Elaeis guineensis) and coconut palm (Cocos nucifera) generated candidate genes of interest, which were then tested for their ability to improve oil accumulation. Thioesterases were explored for the production of lauric acid (C12:0) and myristic (C14:0). The thioesterases from Umbellularia californica and Cinnamomum camphora produced a total of 52% C12:0 and 40% C14:0, respectively, in transient leaf assays. This study demonstrated that the introduction of a complete acyl-CoA-dependent pathway for the synthesis of MFCA-rich oils avoided disturbing membrane homoeostasis and cell death phenotypes. This study outlines a transgenic strategy for the engineering of biomass crops with high levels of MCFA rich leaf oils.


Assuntos
Arecaceae/genética , Arecaceae/metabolismo , Diacilglicerol O-Aciltransferase/genética , Ácidos Graxos/metabolismo , Folhas de Planta/metabolismo , Óleos de Plantas/metabolismo , Arabidopsis/genética , Arecaceae/enzimologia , Biomassa , Morte Celular , Cinnamomum camphora/genética , Cocos/genética , Diacilglicerol O-Aciltransferase/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Láuricos/metabolismo , Metabolismo dos Lipídeos , Lipídeos de Membrana/metabolismo , Plantas Geneticamente Modificadas , Nicotiana/genética , Nicotiana/metabolismo , Transcriptoma , Triglicerídeos
10.
Plant Dis ; 100(3): 607-616, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30688599

RESUMO

Pseudomonas syringae pv. syringae causes extensive yield losses in wine-grape production in some Australian cool-climate vineyards. Putative P. syringae pv. syringae isolates from infected grapevines within a range of vineyards were genotyped using RNA polymerase ß-subunit (rpoB) and multilocus sequence typing (MLST) using primers for glyceraldehyde-3-phosphate dehydrogenase (gapA), citrate synthase (gltA), DNA gyrase B (gyrB), and σ factor 70 (rpoD). The isolates were also evaluated for pathogenicity by inoculation of detached grapevine leaves. The isolates were grouped by MLST data into two well-supported clades, each containing a mixture of pathogenic and nonpathogenic grapevine isolates, indicating that P. syringae pv. syringae in Australian vineyards is genetically diverse. Each clade also contained P. syringae pv. syringae from nongrape hosts pathogenic to grapevine, demonstrating a lack of host specificity and possible potential for cross-infection of grape and other horticultural crops. Furthermore, the isolation of pathogenic P. syringae pv. syringae isolates from grapevine sucker shoots suggests that sucker shoots may allow overwintering of the pathogen. The vineyard quarantine status of P. syringae pv. syringae may need to be reconsidered, due to its easy dispersal through pruning equipment.

11.
Plant Foods Hum Nutr ; 69(1): 85-91, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24414090

RESUMO

Faba bean phenolic compounds encompassed phenolic acids, flavonols, proanthocyanidins and anthocyanins. Roasting faba beans for 120 min decreased the total phenolic, flavonoid and proanthocyanidin contents by 42, 42 and 30%, respectively. Roasting beans for 120 min decreased the 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity, total equivalent antioxidant capacity and ferric reducing antioxidant power by 48, 15 and 8%, respectively. High performance liquid chromatography-post column derivatisation revealed the generation of new phenolic compounds as a result of roasting. Antioxidant mechanism of bean less-polar phenolic compounds was largely based on free radical scavenging activity. The bean phenolic compounds with reducing capability were heat stable. Roasted faba bean extracts (70% acetone, v/v) were fractionated into relatively polar and non-polar fractions; the latter contributed the majority of the antioxidant capacity. The extracts from beans with different seed coat colours differed in their phenolic compositions, which suggest different levels of potential benefits to health. Although roasting initially lowers the bean antioxidant capacity, prolonged roasting at 150 °C for 60 min and longer causes generation of new phenolic compounds and an increased antioxidant capacity. The findings encourage a wider ultilisation of faba beans for human foods particularly in baked/roasted products.


Assuntos
Antioxidantes/farmacologia , Flavonoides/farmacologia , Temperatura Alta , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Sementes/química , Vicia faba/química , Antioxidantes/análise , Austrália , Compostos de Bifenilo/metabolismo , Dieta , Flavonoides/análise , Manipulação de Alimentos , Humanos , Fenóis/análise , Picratos/metabolismo , Extratos Vegetais/química , Proantocianidinas/análise , Proantocianidinas/farmacologia
12.
Br J Nutr ; 108 Suppl 1: S123-34, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22916808

RESUMO

The functional properties, including antioxidant and chemopreventative capacities as well as the inhibitory effects on angiotensin-converting enzyme (ACE), α-glucosidase and pancreatic lipase, of three Australian-grown faba bean genotypes (Nura, Rossa and TF(Ic*As)*483/13) were investigated using an array of in vitro assays. Chromatograms of on-line post column derivatisation assay coupled with HPLC revealed the existence of active phenolics (hump) in the coloured genotypes, which was lacking in the white-coloured breeding line, TF(Ic*As)*483/13. Roasting reduced the phenolic content, and diminished antioxidant activity by 10-40 % as measured by the reagent-based assays (diphenylpicrylhydrazyl, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) and oxygen radical absorbance capacity) in all genotypes. Cell culture-based antioxidant activity assay (cellular antioxidant activity) showed an increase of activity in the coloured genotypes after roasting. Faba bean extracts demonstrated cellular protection ability against H2O2-induced DNA damage (assessed using RAW264.7 cells), and inhibited the proliferation of all human cancer cell lines (BL13, AGS, Hep G2 and HT-29) evaluated. However, the effect of faba bean extracts on the non-transformed human cells (CCD-18Co) was negligible. Flow cytometric analyses showed that faba bean extracts successfully induced apoptosis of HL-60 (acute promyelocytic leukaemia) cells. The faba bean extracts also exhibited ACE, α-glucosidase and pancreatic lipase inhibitory activities. Overall, extracts from Nura (buff-coloured) and Rossa (red-coloured) were comparable, while TF(Ic*As)*483/13 (white-coloured) contained the lowest phenolic content and exhibited the least antioxidant and enzyme inhibition activities. These results are important to promote the utilisation of faba beans in human diets for various health benefits.


Assuntos
Quimioprevenção , Inibidores Enzimáticos , Promoção da Saúde , Extratos Vegetais/farmacologia , Sementes , Vicia faba , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Anticarcinógenos/farmacologia , Antioxidantes/análise , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Austrália , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Dieta , Inibidores Enzimáticos/farmacologia , Flavonoides/análise , Genótipo , Inibidores de Glicosídeo Hidrolases , Temperatura Alta , Humanos , Lipase/antagonistas & inibidores , Camundongos , Fenóis/análise , Sementes/química , Sementes/genética , Vicia faba/química , Vicia faba/genética
13.
Commun Biol ; 4(1): 945, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34362999

RESUMO

Two challenges that the global wheat industry is facing are a lowering nitrogen-use efficiency (NUE) and an increase in the reporting of wheat-protein related health issues. Sulphur deficiencies in soil has also been reported as a global issue. The current study used large-scale field and glasshouse experiments to investigate the sulphur fertilization impacts on sulphur deficient soil. Here we show that sulphur addition increased NUE by more than 20% through regulating glutamine synthetase. Alleviating the soil sulphur deficiency highly significantly reduced the amount of gliadin proteins indicating that soil sulphur levels may be related to the biosynthesis of proteins involved in wheat-induced human pathologies. The sulphur-dependent wheat gluten biosynthesis network was studied using transcriptome analysis and amino acid metabolomic pathway studies. The study concluded that sulphur deficiency in modern farming systems is not only having a profound negative impact on productivity but is also impacting on population health.


Assuntos
Agricultura/métodos , Fertilizantes/análise , Gliadina/metabolismo , Nitrogênio/metabolismo , Solo/química , Enxofre/administração & dosagem , Triticum/efeitos dos fármacos , Avaliação de Programas e Projetos de Saúde , Triticum/crescimento & desenvolvimento
14.
BMC Med Genet ; 11: 142, 2010 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-20932317

RESUMO

Smith-Magenis syndrome (SMS) is a complex syndrome involving intellectual disabilities, sleep disturbance, behavioural problems, and a variety of craniofacial, skeletal, and visceral anomalies. While the majority of SMS cases harbor an ~3.5 Mb common deletion on 17p11.2 that encompasses the retinoic acid induced-1 (RAI1) gene, some patients carry small intragenic deletions or point mutations in RAI1. We present data on two cases of Smith-Magenis syndrome with mutation of RAI1. Both cases are phenotypically consistent with SMS and RAI1 mutation but also have other anomalies not previously reported in SMS, including spontaneous pneumothoraces. These cases also illustrate variability in the SMS phenotype not previously shown for RAI1 mutation cases, including hearing loss, absence of self-abusive behaviours, and mild global delays. Sequencing of RAI1 revealed mutation of the same heptameric C-tract (CCCCCCC) in exon 3 in both cases (c.3103delC one case and and c.3103insC in the other), resulting in frameshift mutations. Of the seven reported frameshift mutations occurring in poly C-tracts in RAI1, four cases (~57%) occur at this heptameric C-tract. Collectively, these results indicate that this heptameric C-tract is a preferential hotspot for single nucleotide insertion/deletions (SNindels) and therefore, should be considered a primary target for analysis in patients suspected for mutations in RAI1. We expect that as more patients are sequenced for mutations in RAI1, the incidence of frameshift mutations in this hotspot will become more evident.


Assuntos
Anormalidades Múltiplas/genética , Mutação da Fase de Leitura , Fatores de Transcrição/genética , Adolescente , Cromossomos Humanos Par 17 , Éxons , Feminino , Perda Auditiva/etiologia , Perda Auditiva/genética , Humanos , Masculino , Fenótipo , Comportamento Autodestrutivo/etiologia , Comportamento Autodestrutivo/genética , Análise de Sequência de DNA , Transativadores
15.
Nutrients ; 12(6)2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599958

RESUMO

Oxidative stress is known to modulate insulin secretion and initiate gene alterations resulting in impairment of ß-cell function and type 2 diabetes mellitus (T2DM). Rice bran (RB) phenolic extracts contain bioactive properties that may target metabolic pathways associated with the pathogenesis of T2DM. This study aimed to examine the effect of stabilized RB phenolic extracts on the expression of genes associated with ß-cell function such as glucose transporter 2 (Glut2), pancreatic and duodenal homeobox 1 (Pdx1), sirtuin 1 (Sirt1), mitochondrial transcription factor A (Tfam), and insulin 1 (Ins1) in addition to evaluating its impact on glucose-stimulated insulin secretion. It was observed that treatment with different concentrations of RB phenolic extracts (25-250 µg/mL) significantly increased the expression of Glut2, Pdx1, Sirt1, Tfam, and Ins1 genes and glucose-stimulated insulin secretion under both normal and high glucose conditions. RB phenolic extracts favourably modulated the expression of genes involved in ß-cell dysfunction and insulin secretion via several mechanisms such as synergistic action of polyphenols targeting signalling molecules, decreasing free radical damage by its antioxidant activity, and stimulation of effectors or survival factors of insulin secretion.


Assuntos
Fibras na Dieta , Secreção de Insulina/efeitos dos fármacos , Oryza , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Ratos
16.
Foods ; 9(6)2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599964

RESUMO

Oxidative stress and inflammation are known to be linked to the development of chronic inflammatory conditions, such as type 2 diabetes and cardiovascular disease. Dietary polyphenols have been demonstrated to contain potent bioactivity against specific inflammatory pathways. Rice bran (RB), a by-product generated during the rice milling process, is normally used in animal feed or discarded due to its rancidity. However, RB is known to be abundant in bioactive polyphenols including phenolic acids. This study investigates the antioxidant and anti-inflammatory effects of RB phenolic extracts (25, 50, 100, and 250 µg/mL) on RAW264.7 mouse macrophage cells stimulated with hydrogen peroxide and lipopolysaccharide. Biomarkers of oxidative stress and inflammation such as malondialdehyde (MDA), intracellular reactive oxygen species, nitric oxide and pro-inflammatory cytokines such as interleukin-6 (IL-6), monocyte chemoattractant protein 1 (MCP-1), interleukin-10 (IL-10), tumor necrosis factor-α (TNF-α), interleukin-12, p70 (IL-12p70), and interferon-γ (IFN-γ) were measured in vitro. Treatment with RB extracts significantly decreased the production of MDA, intracellular reactive oxygen species, nitric oxide and pro-inflammatory cytokines (IL-6, IL-12p70, and IFN-γ) when compared to the control. It is proposed that RB phenolic extracts, via their metal chelating properties and free radical scavenging activity, target pathways of oxidative stress and inflammation resulting in the alleviation of vascular inflammatory mediators.

17.
Nutrients ; 12(6)2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32545505

RESUMO

Platelet hyper-activation and platelet microparticles (PMPs) play a key role in the pathogenesis of cardiovascular diseases. Dietary polyphenols are believed to mimic antiplatelet agents by blunting platelet activation receptors via its antioxidant phenomenon. However, there is limited information on the anti-platelet activity of grain-derived polyphenols. The aim of the study is to evaluate the effects of sorghum extract (Shawaya short black 1 variety), an extract previously characterised for its high antioxidant activity and reduction of oxidative stress-related endothelial dysfunction, on platelet aggregation, platelet activation and PMP release. Whole blood samples collected from 18 healthy volunteers were treated with varying non-cytotoxic concentrations of polyphenol-rich black sorghum extract (BSE). Platelet aggregation study utilised 5 µg/mL collagen to target the GPVI pathway of thrombus formation whereas adenine phosphate (ADP) was used to stimulate the P2Y1/P2Y12 pathway of platelet activation assessed by flow cytometry. Procaspase-activating compound 1 (PAC-1) and P-selectin/CD62P were used to evaluate platelet activation- related conformational changes and degranulation respectively. PMPs were isolated from unstimulated platelets and quantified by size distribution and binding to CD42b. BSE treatment significantly reduced both collagen-induced platelet aggregation and circulatory PMP release at 40 µg/mL (p < 0.001) when compared to control. However, there was no significant impact of BSE on ADP-induced activation-dependent conformational change and degranulation of platelets. Results of this study suggest that phenolic rich BSE may confer cardio-protection by modulating specific signalling pathways involved in platelet activation and PMP release.


Assuntos
Micropartículas Derivadas de Células/efeitos dos fármacos , Extratos Vegetais/farmacologia , Ativação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Polifenóis/farmacologia , Sorghum/química , Antioxidantes/farmacologia , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Citometria de Fluxo , Humanos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/química , Inibidores da Agregação Plaquetária/química , Inibidores da Agregação Plaquetária/farmacologia , Testes de Função Plaquetária
18.
Nutrients ; 11(11)2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31718066

RESUMO

Cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM) are two chronic diseases that have claimed more lives globally than any other disease. Dietary supplementation of functional foods containing bioactive compounds is recognised to result in improvements in free-radical-mediated oxidative stress. Emerging evidence indicates that bioactive compounds derived from rice bran (RB) have therapeutic potential against cellular oxidative stress. This review aims to describe the mechanistic pathways behind CVD and T2DM development and the therapeutic potential of polyphenols derived from RB against these chronic diseases.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Fibras na Dieta , Oryza , Animais , Doenças Cardiovasculares/dietoterapia , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/prevenção & controle , Diabetes Mellitus Tipo 2/dietoterapia , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/prevenção & controle , Alimento Funcional , Humanos , Polifenóis , Ratos , Fatores de Risco
19.
Food Funct ; 10(12): 8230-8239, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31729520

RESUMO

The pathogenesis of lifestyle diseases has been significantly correlated to high levels of oxidative stress and pro-inflammation. The antioxidant and anti-inflammatory properties of polyphenols in coloured rice varieties could have potential to neutralize oxidative stress and modulate inflammatory responses. A cross-over design, randomised, dietary intervention human clinical trial was conducted on a pre-screened healthy population (n = 24) investigating the antioxidant and anti-inflammatory potential of pigmented rice (purple, red and brown) varieties. Post baseline blood samples collection volunteers consumed a serve of cooked pigmented rice. Blood samples were collected at 30-minutes, 1, 2 and 4-hours post rice consumption. A one-week wash-out period between each supplementation bout (rice variety) was conducted. Blood and biochemical parameters were analysed on baseline blood samples. Antioxidant activity, malondialdehyde (MDA) and a pro-inflammatory cytokine panel were analysed on the blood samples collected. Post purple rice consumption, antioxidant activity increased (p < 0.0001) by 70.5% and maintained elevated for all time points. The red rice variety Yunlu29, significantly (p < 0.005) reduced MDA levels by 9.2% at the 30-minute time point. Purple rice demonstrated a significant (p < 0.05) decrease by 4.0% at the 30-minute time point only. Purple rice significantly decreased TNF-α levels at the 1-hour (p < 0.05) and 4-hour (p < 0.005) time points by 21.9% and 25.4% respectively. IL-6 concentrations were significantly reduced at 1 and 2-hour post Purple (p < 0.05; 11.7%) and Yunlu29 (red) (p < 0.01; 14.1%) consumption respectively. The brown rice variety did not affect any parameters tested. The outcomes of this study, highlight that polyphenols found in pigmented rice may play a key role in targeting specific oxidative stress and inflammatory therapeutic pathways. Pigmented rice varieties may serve as a potential functional food in reducing risk factors associated with lifestyle diseases.


Assuntos
Anti-Inflamatórios/metabolismo , Antioxidantes/metabolismo , Oryza/metabolismo , Extratos Vegetais/metabolismo , Adulto , Culinária , Citocinas/sangue , Feminino , Alimento Funcional/análise , Humanos , Interleucina-6/sangue , Masculino , Malondialdeído/sangue , Oryza/química , Estresse Oxidativo , Adulto Jovem
20.
Food Funct ; 10(12): 8016-8025, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31750484

RESUMO

The development of lifestyle diseases in the obese has been attributed to higher levels of inflammation and free radical mediated oxidative stress. The antioxidant and anti-inflammatory properties of polyphenols in pigmented rice varieties could have potential to neutralize oxidative stress and modulate inflammatory responses in the obese. A cross-over dietary intervention human clinical trial was conducted with three pigmented rice varieties chosen from previous chemical and in vitro antioxidant and anti-inflammatory screening. Obese (n = 22, BMI > 30) sedentary participants consumed one cup of pigmented rice (Reiziq (brown), Purple (purple) and Yunlu29 (red)). Blood samples were collected prior consumption (baseline) and at set time points of 30 minutes, 1 hour, 2 hours and 4 hours post rice consumption. The collected blood samples were analysed for antioxidant and inflammatory biomarkers. Total antioxidant activity increased (p < 0.001) at the 1 hour time point by 40.3% post purple rice consumption. The red rice variety, Yunlu29 increased antioxidant activity at the 30 minute (p < 0.001) and 1 hour (p < 0.01) time point by 29.5% and 21.2% respectively. Lipid peroxidation biomarker, malondialdehyde (MDA), decreased (p < 0.05) at the 30 minute time point by 6.8% post purple rice consumption. At the 4 hour time point MDA levels was significantly reduced (p < 0.001) by the red rice variety Yunlu29, by 9.6%. Pro-inflammatory cytokine, interleukin-10 (IL-10), was significantly (p < 0.0001) reduced by 3.1% 30 minutes post purple rice consumption. In contrast, Yunlu29 (red) reduced interleukin-6 levels by 13.6% and 11.0% at the 30 minute and 1 hour time points respectively. Both the purple (p < 0.01) and red (p < 0.001) varieties significantly reduced interleukin-12p70 concentrations at 30 minutes by 8.7% and 10.3% respectively. Reiziq (brown) did not affect any of the biomarkers analysed in this study. The outcomes of this study highlight that polyphenols found in pigmented rice may play a key role in targeting specific therapeutic pathways in obesity-related oxidative stress and inflammation.


Assuntos
Anti-Inflamatórios/metabolismo , Antioxidantes/metabolismo , Obesidade/dietoterapia , Oryza/metabolismo , Adulto , Anti-Inflamatórios/análise , Antioxidantes/análise , Estudos de Coortes , Feminino , Humanos , Interleucina-10/sangue , Interleucina-12/sangue , Interleucina-6/sangue , Masculino , Malondialdeído , Pessoa de Meia-Idade , Obesidade/sangue , Obesidade/metabolismo , Oryza/química , Estresse Oxidativo , Polifenóis/análise , Polifenóis/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa