Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 96(5): e0109021, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-34232735

RESUMO

Human adenovirus type 4 (HAdV-E4) is the only type (and serotype) classified at present within species Human mastadenovirus E that has been isolated from a human host. Recent phylogenetic analysis of whole-genome sequences of strains representing the spectrum of intratypic genetic diversity described to date identified two major evolutionary lineages designated phylogroups (PGs) I and II and validated the early clustering of HAdV-E4 genomic variants into two major groups by low-resolution restriction fragment length polymorphism analysis. In this study, we expanded our original analysis of intra- and inter-PG genetic variability and used a panel of viruses representative of the spectrum of genetic diversity described for HAdV-E4 to examine the magnitude of inter- and intra-PG phenotypic diversity using an array of cell-based assays and a cotton rat model of HAdV respiratory infection. Our proteotyping of HAdV-E strains using concatenated protein sequences in selected coding regions including E1A, E1B-19K and -55K, DNA polymerase, L4-100K, various E3 proteins, and E4-34K confirmed that the two clades encode distinct variants/proteotypes at most of these loci. Our in vitro and in vivo studies demonstrated that PG I and PG II differ in their growth, spread, and cell-killing phenotypes in cell culture and in their pulmonary pathogenic phenotypes. Surprisingly, the differences in replicative fitness documented in vitro between PGs did not correlate with the differences in virulence observed in the cotton rat model. This body of work is the first reporting phenotypic correlates of naturally occurring intratypic genetic variability for HAdV-E4. IMPORTANCE Human adenovirus type 4 (HAdV-E4) is a prevalent causative agent of acute respiratory illness of variable severity and of conjunctivitis and comprises two major phylogroups that carry distinct coding variations in proteins involved in viral replication and modulation of host responses to infection. Our data show that phylogroup (PG) I and PG II are intrinsically different regarding their ability to grow and spread in culture and to cause pulmonary disease in cotton rats. This is the first report of phenotypic divergence among naturally occurring known genetic variants of an HAdV type of medical importance. This research reveals readily detectable phenotypic differences between strains representing phylogroups I and II, and it introduces a unique experimental system for the elucidation of the genetic basis of adenovirus fitness and virulence and thus for increasing our understanding of the implications of intratypic genetic diversity in the presentation and course of HAdV-E4-associated disease.


Assuntos
Infecções por Adenovirus Humanos , Adenovírus Humanos , Virulência , Replicação Viral , Infecções por Adenovirus Humanos/virologia , Adenovírus Humanos/classificação , Adenovírus Humanos/genética , Adenovírus Humanos/patogenicidade , Variação Genética , Genoma Viral/genética , Humanos , Fenótipo , Filogenia , Virulência/genética , Replicação Viral/genética
2.
PLoS Pathog ; 17(12): e1009856, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34941963

RESUMO

Maternal anti-respiratory syncytial virus (RSV) antibodies acquired by the fetus through the placenta protect neonates from RSV disease through the first weeks of life. In the cotton rat model of RSV infections, we previously reported that immunization of dams during pregnancy with virus-like particles assembled with mutation stabilized pre-fusion F protein as well as the wild type G protein resulted in robust protection of their offspring from RSV challenge. Here we describe the durability of those protective responses in dams, the durability of protection in offspring, and the transfer of that protection to offspring of two consecutive pregnancies without a second boost immunization. We report that four weeks after birth, offspring of the first pregnancy were significantly protected from RSV replication in both lungs and nasal tissues after RSV challenge, but protection was reduced in pups at 6 weeks after birth. However, the overall protection of offspring of the second pregnancy was considerably reduced, even at four weeks of age. This drop in protection occurred even though the levels of total anti-pre-F IgG and neutralizing antibody titers in dams remained at similar, high levels before and after the second pregnancy. The results are consistent with an evolution of antibody properties in dams to populations less efficiently transferred to offspring or the less efficient transfer of antibodies in elderly dams.


Assuntos
Anticorpos Antivirais/imunologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Feminino , Humanos , Imunização , Pulmão/imunologia , Pulmão/virologia , Nariz/imunologia , Nariz/virologia , Gravidez , Infecções por Vírus Respiratório Sincicial/virologia , Sigmodontinae
3.
J Virol ; 94(1)2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31597775

RESUMO

Demyelinating central nervous system (CNS) disorders like multiple sclerosis (MS) and acute disseminated encephalomyelitis (ADEM) have been difficult to study and treat due to the lack of understanding of their etiology. Numerous cases point to the link between herpes simplex virus (HSV) infection and multifocal CNS demyelination in humans; however, convincing evidence from animal models has been missing. In this work, we found that HSV-1 infection of the cotton rat Sigmodon hispidus via a common route (lip abrasion) can cause multifocal CNS demyelination and inflammation. Remyelination occurred shortly after demyelination in HSV-1-infected cotton rats but could be incomplete, resulting in "scars," further supporting an association between HSV-1 infection and multifocal demyelinating disorders. Virus was detected sequentially in the lip, trigeminal ganglia, and brain of infected animals. Brain pathology developed primarily on the ipsilateral side of the brain stem, in the cerebellum, and contralateral side of the forebrain/midbrain, suggesting that the changes may ascend along the trigeminal lemniscus pathway. Neurologic defects occasionally detected in infected animals (e.g., defective whisker touch and blink responses and compromised balance) could be representative of the brain stem/cerebellum dysfunction. Immunization of cotton rats with a split HSV-1 vaccine protected animals against viral replication and brain pathology, suggesting that vaccination against HSV-1 may protect against demyelinating disorders.IMPORTANCE Our work demonstrates for the first time a direct association between infection with herpes simplex virus 1, a ubiquitous human pathogen generally associated with facial cold sores, and multifocal brain demyelination in an otherwise normal host, the cotton rat Sigmodon hispidus For a long time, demyelinating diseases were considered to be autoimmune in nature and were studied by indirect methods, such as immunizing animals with myelin components or feeding them toxic substances that induce demyelination. Treatment against demyelinating diseases has been elusive, partially because of their unknown etiology. This work provides the first experimental evidence for the role of HSV-1 as the etiologic agent of multifocal brain demyelination in a normal host and suggests that vaccination against HSV-1 can help to combat demyelinating disorders.


Assuntos
Doenças Desmielinizantes/prevenção & controle , Encefalite/prevenção & controle , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Herpes Simples/prevenção & controle , Herpesvirus Humano 1/efeitos dos fármacos , Animais , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/imunologia , Tronco Encefálico/patologia , Tronco Encefálico/virologia , Cerebelo/efeitos dos fármacos , Cerebelo/imunologia , Cerebelo/patologia , Cerebelo/virologia , Doenças Desmielinizantes/imunologia , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/virologia , Modelos Animais de Doenças , Encefalite/imunologia , Encefalite/patologia , Encefalite/virologia , Feminino , Herpes Simples/imunologia , Herpes Simples/patologia , Herpes Simples/virologia , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 1/patogenicidade , Humanos , Masculino , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/imunologia , Prosencéfalo/patologia , Prosencéfalo/virologia , Sigmodontinae , Gânglio Trigeminal/efeitos dos fármacos , Gânglio Trigeminal/imunologia , Gânglio Trigeminal/patologia , Gânglio Trigeminal/virologia , Vacinação , Carga Viral/efeitos dos fármacos
4.
J Virol ; 93(23)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31511382

RESUMO

Maternal vaccination may be the most effective and safest approach to the protection of infants from respiratory syncytial virus (RSV) infection, a severe acute lower respiratory tract disease in infants and young children worldwide. We previously compared five different virus-like particle (VLP)-associated, mutation-stabilized prefusion F (pre-F) proteins, including the prototype DS-Cav1 F VLPs. We showed that alternative versions of prefusion F proteins have different conformations and induce different populations of anti-F protein antibodies. Two of these alternative pre-F VLPs, the UC-2 F and UC-3 F VLPs, stimulated in mice higher titers of neutralizing antibodies than DS-Cav1 F VLPs (M. L. Cullen, R. M. Schmidt, M. G. Torres, A. A. Capoferri, et al., Vaccines 7:21-41, 2019, https://doi.org/10.3390/vaccines7010021). Here we describe a comparison of these two pre-F VLPs with DS-Cav1 F VLPs as maternal vaccines in cotton rats and report that UC-3 F VLPs significantly increased the neutralizing antibody (NAb) titers in pregnant dams compared to DS-Cav1 F VLPs. The neutralizing antibody titers in the sera of the offspring of the dams immunized with UC-3 F VLPs were significantly higher than those in the sera of the offspring of dams immunized with DS-Cav1 VLPs. This increase in serum NAb titers translated to a 6- to 40-fold lower virus titer in the lungs of the RSV-challenged offspring of dams immunized with UC-3 F VLPs than in the lungs of the RSV-challenged offspring of dams immunized with DS-Cav1 F VLPs. Importantly, the offspring of UC-3 F VLP-immunized dams showed significant protection from lung pathology and from induction of inflammatory lung cytokine mRNA expression after RSV challenge. Immunization with UC-3 F VLPs also induced durable levels of high-titer neutralizing antibodies in dams.IMPORTANCE Respiratory syncytial virus (RSV) is a significant human pathogen severely impacting neonates and young children, but no vaccine exists to protect this vulnerable population. Furthermore, direct vaccination of neonates is likely ineffective due to the immaturity of their immune system, and neonate immunization is potentially unsafe. Maternal vaccination may be the best and safest approach to the protection of neonates through the passive transfer of maternal neutralizing antibodies in utero to the fetus after maternal immunization. Here we report that immunization of pregnant cotton rats, a surrogate model for human maternal immunization, with novel RSV virus-like particle (VLP) vaccine candidates containing stabilized prefusion RSV F proteins provides significant levels of protection of the offspring of immunized dams from RSV challenge. We also found that antibodies induced by VLPs containing different versions of the prefusion F protein varied by 40-fold in the extent of protection provided to the offspring of vaccinated dams upon RSV challenge.


Assuntos
Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Proteínas Virais de Fusão/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Linhagem Celular , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Glicoproteínas/imunologia , Humanos , Imunização , Pulmão/imunologia , Pulmão/patologia , RNA Mensageiro/metabolismo , Vírus Sincicial Respiratório Humano/genética , Sigmodontinae , Vacinação , Proteínas Virais de Fusão/genética
5.
J Virol ; 92(6)2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29263264

RESUMO

Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants, and an effective vaccine is not yet available. We previously generated an RSV live-attenuated vaccine (LAV) candidate, DB1, which was attenuated by a low-fusion subgroup B F protein (BAF) and codon-deoptimized nonstructural protein genes. DB1 was immunogenic and protective in cotton rats but lacked thermostability and stability of the prefusion conformation of F compared to strains with the line19F gene. We hypothesized that substitution of unique residues from the thermostable A2-line19F strain could thermostabilize DB1 and boost its immunogenicity. We therefore substituted 4 unique line19F residues into the BAF protein of DB1 by site-directed mutagenesis and rescued the recombinant virus, DB1-QUAD. Compared to DB1, DB1-QUAD had improved thermostability at 4°C and higher levels of prefusion F as measured by enzyme-linked immunosorbent assays (ELISAs). DB1-QUAD was attenuated in normal human bronchial epithelial cells, in BALB/c mice, and in cotton rats but grew to wild-type titers in Vero cells. In mice, DB1-QUAD was highly immunogenic and generated significantly higher neutralizing antibody titers to a panel of RSV A and B strains than did DB1. DB1-QUAD was also efficacious against wild-type RSV challenge in mice and cotton rats. Thus, substitution of unique line19F residues into RSV LAV DB1 enhanced vaccine thermostability, incorporation of prefusion F, and immunogenicity and generated a promising vaccine candidate that merits further investigation.IMPORTANCE We boosted the thermostability and immunogenicity of an RSV live-attenuated vaccine candidate by substituting 4 unique residues from the RSV line19F protein into the F protein of the heterologous vaccine strain DB1. The resultant vaccine candidate, DB1-QUAD, was thermostable, attenuated in vivo, highly immunogenic, and protective against RSV challenge in mice and cotton rats.


Assuntos
Temperatura Alta , Imunogenicidade da Vacina/genética , Mutagênese Sítio-Dirigida , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Proteínas Virais de Fusão , Animais , Chlorocebus aethiops , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Vacinas contra Vírus Sincicial Respiratório/genética , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/imunologia , Sigmodontinae , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Células Vero , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/imunologia
6.
Nature ; 497(7450): 498-502, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23636320

RESUMO

There is a pressing need to develop alternatives to annual influenza vaccines and antiviral agents licensed for mitigating influenza infection. Previous studies reported that acute lung injury caused by chemical or microbial insults is secondary to the generation of host-derived, oxidized phospholipid that potently stimulates Toll-like receptor 4 (TLR4)-dependent inflammation. Subsequently, we reported that Tlr4(-/-) mice are highly refractory to influenza-induced lethality, and proposed that therapeutic antagonism of TLR4 signalling would protect against influenza-induced acute lung injury. Here we report that therapeutic administration of Eritoran (also known as E5564)-a potent, well-tolerated, synthetic TLR4 antagonist-blocks influenza-induced lethality in mice, as well as lung pathology, clinical symptoms, cytokine and oxidized phospholipid expression, and decreases viral titres. CD14 and TLR2 are also required for Eritoran-mediated protection, and CD14 directly binds Eritoran and inhibits ligand binding to MD2. Thus, Eritoran blockade of TLR signalling represents a novel therapeutic approach for inflammation associated with influenza, and possibly other infections.


Assuntos
Antivirais/farmacologia , Dissacarídeos/farmacologia , Dissacarídeos/uso terapêutico , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/patogenicidade , Infecções por Orthomyxoviridae/tratamento farmacológico , Fosfatos Açúcares/farmacologia , Fosfatos Açúcares/uso terapêutico , Receptor 4 Toll-Like/antagonistas & inibidores , Lesão Pulmonar Aguda/complicações , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/prevenção & controle , Animais , Antivirais/uso terapêutico , Citocinas/genética , Citocinas/imunologia , Dissacarídeos/metabolismo , Feminino , Ligantes , Receptores de Lipopolissacarídeos/metabolismo , Antígeno 96 de Linfócito/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Fosfatos Açúcares/metabolismo , Análise de Sobrevida , Fatores de Tempo , Receptor 2 Toll-Like/imunologia , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/imunologia
7.
J Virol ; 90(16): 7508-7518, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27279612

RESUMO

UNLABELLED: Although respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants, a safe and effective vaccine is not yet available. Live-attenuated vaccines (LAVs) are the most advanced vaccine candidates in RSV-naive infants. However, designing an LAV with appropriate attenuation yet sufficient immunogenicity has proven challenging. In this study, we implemented reverse genetics to address these obstacles with a multifaceted LAV design that combined the codon deoptimization of genes for nonstructural proteins NS1 and NS2 (dNS), deletion of the small hydrophobic protein (ΔSH) gene, and replacement of the wild-type fusion (F) protein gene with a low-fusion RSV subgroup B F consensus sequence of the Buenos Aires clade (BAF). This vaccine candidate, RSV-A2-dNS-ΔSH-BAF (DB1), was attenuated in two models of primary human airway epithelial cells and in the upper and lower airways of cotton rats. DB1 was also highly immunogenic in cotton rats and elicited broadly neutralizing antibodies against a diverse panel of recombinant RSV strains. When vaccinated cotton rats were challenged with wild-type RSV A, DB1 reduced viral titers in the upper and lower airways by 3.8 log10 total PFU and 2.7 log10 PFU/g of tissue, respectively, compared to those in unvaccinated animals (P < 0.0001). DB1 was thus attenuated, highly immunogenic, and protective against RSV challenge in cotton rats. DB1 is the first RSV LAV to incorporate a low-fusion F protein as a strategy to attenuate viral replication and preserve immunogenicity. IMPORTANCE: RSV is a leading cause of infant hospitalizations and deaths. The development of an effective vaccine for this high-risk population is therefore a public health priority. Although live-attenuated vaccines have been safely administered to RSV-naive infants, strategies to balance vaccine attenuation with immunogenicity have been elusive. In this study, we introduced a novel strategy to attenuate a recombinant RSV vaccine by incorporating a low-fusion, subgroup B F protein in the genetic background of codon-deoptimized nonstructural protein genes and a deleted small hydrophobic protein gene. The resultant vaccine candidate, DB1, was attenuated, highly immunogenic, and protective against RSV challenge in cotton rats.


Assuntos
Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Proteínas Virais de Fusão/genética , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Linhagem Celular , Modelos Animais de Doenças , Células Epiteliais/fisiologia , Células Epiteliais/virologia , Humanos , Infecções por Vírus Respiratório Sincicial/patologia , Vacinas contra Vírus Sincicial Respiratório/administração & dosagem , Vacinas contra Vírus Sincicial Respiratório/genética , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/patogenicidade , Vírus Sinciciais Respiratórios , Sistema Respiratório/virologia , Genética Reversa , Sigmodontinae , Resultado do Tratamento , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Carga Viral
8.
J Virol ; 89(19): 9825-40, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26178984

RESUMO

UNLABELLED: Subunit vaccines based on the herpes simplex virus 2 (HSV-2) glycoprotein D (gD-2) have been the major focus of HSV-2 vaccine development for the past 2 decades. Based on the promising data generated in the guinea pig model, a formulation containing truncated gD-2, aluminum salt, and MPL (gD/AS04) advanced to clinical trials. The results of these trials, however, were unexpected, as the vaccine protected against HSV-1 infection but not against HSV-2. To address this discrepancy, we developed a Depot medroxyprogesterone acetate (DMPA)-treated cotton rat Sigmodon hispidus model of HSV-2 and HSV-1 genital infection. The severity of HSV-1 genital herpes was less than that of HSV-2 genital herpes in cotton rats, and yet the model allowed for comparative evaluation of gD/AS04 immunogenicity and efficacy. Cotton rats were intramuscularly vaccinated using a prime boost strategy with gD/AS04 (Simplirix vaccine) or control vaccine formulation (hepatitis B vaccine FENDrix) and subsequently challenged intravaginally with HSV-2 or HSV-1. The gD/AS04 vaccine was immunogenic in cotton rats and induced serum IgG directed against gD-2 and serum HSV-2 neutralizing antibodies but failed to efficiently protect against HSV-2 disease or to decrease the HSV-2 viral load. However, gD/AS04 significantly reduced vaginal titers of HSV-1 and better protected animals against HSV-1 compared to HSV-2 genital disease. The latter finding is generally consistent with the clinical outcome of the Herpevac trial of Simplirix. Passive transfer of serum from gD/AS04-immunized cotton rats conferred stronger protection against HSV-1 genital disease. These findings suggest the need for alternative vaccine strategies and the identification of new correlates of protection. IMPORTANCE: In spite of the high health burden of genital herpes, there is still no effective intervention against the disease. The significant gap in knowledge on genital herpes pathogenesis has been further highlighted by the recent failure of GSK HSV-2 vaccine Simplirix (gD/AS04) to protect humans against HSV-2 and the surprising finding that the vaccine protected against HSV-1 genital herpes instead. In this study, we report that gD/AS04 has higher efficacy against HSV-1 compared to HSV-2 genital herpes in the novel DMPA-synchronized cotton rat model of HSV-1 and HSV-2 infection. The findings help explain the results of the Simplirix trial.


Assuntos
Modelos Animais de Doenças , Herpes Genital/prevenção & controle , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 2/efeitos dos fármacos , Sigmodontinae , Proteínas do Envelope Viral/farmacologia , Vacinas Virais/farmacologia , Hidróxido de Alumínio , Compostos de Anilina , Animais , Avaliação Pré-Clínica de Medicamentos , Ensaio de Imunoadsorção Enzimática , Feminino , Injeções Intramusculares , Lipídeo A/análogos & derivados , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/farmacologia , Proteínas do Envelope Viral/administração & dosagem , Vacinas Virais/administração & dosagem
9.
J Transl Med ; 13: 350, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26541285

RESUMO

BACKGROUND: Virus-like particles (VLPs) based on Newcastle disease virus (NDV) core proteins, M and NP, and containing two chimera proteins, F/F and H/G, composed of the respiratory syncytial virus (RSV) fusion protein (F) and glycoprotein (G) ectodomains fused to the transmembrane and cytoplasmic domains of the NDV F and HN proteins, respectively, stimulate durable, protective anti-RSV neutralizing antibodies in mice. Furthermore, immunization of mice with a VLP containing a F/F chimera protein with modifications previously reported to stabilize the pre-fusion form of the RSV F protein resulted in significantly improved neutralizing antibody titers over VLPs containing the wild type F protein. The goal of this study was to determine if VLPs containing the pre-fusion form of the RSV F protein stimulated protective immune responses in cotton rats, a more RSV permissive animal model than mice. METHODS: Cotton rats were immunized intramuscularly with VLPs containing stabilized pre-fusion F/F chimera protein as well as the H/G chimera protein. The anti-RSV F and RSV G antibody responses were determined by ELISA. Neutralizing antibody titers in sera of immunized animals were determined in plaque reduction assays. Protection of the animals from RSV challenge was assessed. The safety of the VLP vaccine was determined by monitoring lung pathology upon RSV challenge of immunized animals. RESULTS: The Pre-F/F VLP induced neutralizing titers that were well above minimum levels previously proposed to be required for a successful vaccine and titers significantly higher than those stimulated by RSV infection. In addition, Pre-F/F VLP immunization stimulated higher IgG titers to the soluble pre-fusion F protein than RSV infection. Cotton rats immunized with Pre-F/F VLPs were protected from RSV challenge, and, importantly, the VLP immunization did not result in enhanced respiratory disease upon RSV challenge. CONCLUSIONS: VLPs containing the pre-fusion RSV F protein have characteristics required for a safe, effective RSV vaccine.


Assuntos
Proteínas Recombinantes de Fusão/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sinciciais Respiratórios , Vacinas de Partículas Semelhantes a Vírus/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Aves , Células COS , Chlorocebus aethiops , Clonagem Molecular , Modelos Animais de Doenças , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Fibroblastos/virologia , Humanos , Imunização , Pulmão/patologia , Camundongos , Estrutura Terciária de Proteína , Sigmodontinae , Coloração pela Prata , Células Vero
10.
J Virol ; 87(4): 2036-45, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23192875

RESUMO

Animal influenza viruses (AIVs) are a major threat to human health and the source of pandemic influenza. A reliable small-mammal model to study the pathogenesis of infection and for testing vaccines and therapeutics against multiple strains of influenza virus is highly desirable. We show that cotton rats (Sigmodon hispidus) are susceptible to avian and swine influenza viruses. Cotton rats express α2,3-linked sialic acid (SA) and α2,6-linked SA residues in the trachea and α2,6-linked SA residues in the lung parenchyma. Prototypic avian influenza viruses (H3N2, H9N2, and H5N1) and swine-origin 2009 pandemic H1N1 viruses replicated in the nose and in the respiratory tract of cotton rats without prior adaptation and produced strong lung pathology that was characterized by early lung neutrophilia, followed by subsequent pneumonia. Consistent with other natural and animal models of influenza, only the H5N1 virus was lethal for cotton rats. More importantly, we show that the different avian and pandemic H1N1 strains tested are strong activators of the type I interferon (IFN)-inducible MX-1 gene both locally and systemically. Our data indicate that the cotton rat is a suitable small-mammal model to study the infection of animal influenza viruses and for validation of vaccines and therapeutics against these viruses.


Assuntos
Modelos Animais de Doenças , Vírus da Influenza A/patogenicidade , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Sigmodontinae/virologia , Animais , Vírus da Influenza A/crescimento & desenvolvimento , Pulmão/química , Pulmão/patologia , Pulmão/virologia , Receptores Virais/análise , Ácidos Siálicos/análise , Análise de Sobrevida , Traqueia/química , Traqueia/virologia
11.
Curr Top Microbiol Immunol ; 372: 347-58, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24362698

RESUMO

The cotton rat Sigmodon hispidus is a New World rodent that has become an important model of respiratory syncytial virus (RSV) infection. This small animal is relatively permissive to RSV and can be infected throughout life. It recapitulates the pathology associated with the FI-RSV vaccine-enhanced disease, the phenomenon of maternally transmitted immunity and the ability of passive immunity to suppress efficacy of RSV vaccines. Different highly susceptible human cohort scenarios have been modeled in the cotton rat, including RSV disease in infants, elderly, and immunosuppressed individuals. The cotton rat has accurately predicted efficacy and dose of antibody immunoprophylaxis, and the lack of efficacy of antibody immunotherapy for disease treatment. With the recent development of molecular reagents and tools for the model, the cotton rat is an important model of RSV infection to consider for vaccine and drug testing, and will continue to advance our understanding of RSV disease pathogenesis.


Assuntos
Anticorpos Antivirais/imunologia , Imunidade Materno-Adquirida , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Infecções por Vírus Respiratório Sincicial/veterinária , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Idoso , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Humanos , Hospedeiro Imunocomprometido , Lactente , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/fisiopatologia , Vacinas contra Vírus Sincicial Respiratório/administração & dosagem , Vacinas contra Vírus Sincicial Respiratório/efeitos adversos , Vírus Sincicial Respiratório Humano/genética , Sigmodontinae , Vacinas Atenuadas , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/imunologia
12.
Front Aging Neurosci ; 15: 1204852, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396655

RESUMO

Alzheimer's disease (AD) and multiple sclerosis (MS) are two CNS disorders affecting millions of people, for which no cure is available. AD is usually diagnosed in individuals age 65 and older and manifests with accumulation of beta amyloid in the brain. MS, a demyelinating disorder, is most commonly diagnosed in its relapsing-remitting (RRMS) form in young adults (age 20-40). The lack of success in a number of recent clinical trials of immune- or amyloid-targeting therapeutics emphasizes our incomplete understanding of their etiology and pathogenesis. Evidence is accumulating that infectious agents such as viruses may contribute either directly or indirectly. With the emerging recognition that demyelination plays a role in risk and progression of AD, we propose that MS and AD are connected by sharing a common environmental factor (a viral infection such as HSV-1) and pathology (demyelination). In the viral DEmyelinating Neurodegenerative Trigger (vDENT) model of AD and MS, the initial demyelinating viral (e.g., HSV-1) infection provokes the first episode of demyelination that occurs early in life, with subsequent virus reactivations/demyelination and associated immune/inflammatory attacks resulting in RRMS. The accumulating damage and/or virus progression deeper into CNS leads to amyloid dysfunction, which, combined with the inherent age-related defects in remyelination, propensity for autoimmunity, and increased blood-brain barrier permeability, leads to the development of AD dementia later in life. Preventing or diminishing vDENT event(s) early in life, thus, may have a dual benefit of slowing down the progression of MS and reducing incidence of AD at an older age.

13.
Viruses ; 15(2)2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36851691

RESUMO

Human metapneumovirus (hMPV) is an important cause of respiratory disease in immunocompromised individuals, yet hMPV infection has not been modeled before in immunocompromised animals. In this work, cotton rats S. hispidus immunosuppressed by cyclophosphamide were infected with hMPV, and viral replication and pulmonary inflammation in these animals were compared to those in normal hMPV-infected S. hispidus. The efficacy of prophylactic and therapeutic administration of the anti-hMPV antibody MPV467 was also evaluated. Immunosuppressed animals had higher pulmonary and nasal titers of hMPV on day 5 post-infection compared to normal animals, and large amounts of hMPV were still present in the respiratory tract of immunosuppressed animals on days 7 and 9 post-infection, indicating prolonged viral replication. Immunosuppression was accompanied by reduced pulmonary histopathology in hMPV-infected cotton rats compared to normal animals; however, a delayed increase in pathology and pulmonary chemokine expression was seen in immunosuppressed cotton rats. Prophylactic and therapeutic MPV467 treatments protected both upper and lower respiratory tracts against hMPV infection. The lung pathology and pulmonary expression of IP-10 and MIP-1α mRNA were reduced by therapeutic MPV467 administration. These results indicate that immunosuppressed cotton rats represent a useful model for studying hMPV pathogenesis and for evaluating therapeutics that could alleviate hMPV-induced disease in immunocompromised subjects.


Assuntos
Hospedeiro Imunocomprometido , Metapneumovirus , Infecções por Paramyxoviridae , Sigmodontinae , Animais , Humanos , Quimiocina CCL3 , Hospedeiro Imunocomprometido/imunologia , Terapia de Imunossupressão , Infecções por Paramyxoviridae/imunologia , Infecções por Paramyxoviridae/virologia , Sigmodontinae/imunologia , Sigmodontinae/virologia , Modelos Animais de Doenças
14.
Mucosal Immunol ; 16(3): 302-311, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36965691

RESUMO

Gastrin-releasing peptide (GRP), an evolutionarily conserved neuropeptide, significantly contributes to influenza-induced lethality and inflammation in rodent models. Because GRP is produced by pulmonary neuroendocrine cells (PNECs) in response to γ-aminobutyric acid (GABA), we hypothesized that influenza infection promotes GABA release from PNECs that activate GABAB receptors on PNECs to secrete GRP. Oxidative stress was increased in the lungs of influenza A/PR/8/34 (PR8)-infected mice, as well as serum glutamate decarboxylase 1, the enzyme that converts L-glutamic acid into GABA. The therapeutic administration of saclofen, a GABAB receptor antagonist, protected PR8-infected mice, reduced lung proinflammatory gene expression of C-C chemokine receptor type 2 (Ccr2), cluster of differentiation 68 (Cd68), and Toll like receptor 4 (Tlr4) and decreased the levels of GRP and high-mobility group box 1 (HMGB1) in sera. Conversely, baclofen, a GABAB receptor agonist, significantly increased the lethality and inflammatory responses. The GRP antagonist, NSC77427, as well as the GABAB antagonist, saclofen, blunted the PR8-induced monocyte infiltration into the lung. Together, these data provide the first report of neuroregulatory control of influenza-induced disease.


Assuntos
Influenza Humana , Camundongos , Animais , Humanos , Peptídeo Liberador de Gastrina/metabolismo , Ácido gama-Aminobutírico/metabolismo , Baclofeno/farmacologia
15.
Viruses ; 15(6)2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37376605

RESUMO

Respiratory syncytial virus (RSV) is a significant threat to elderly populations and repeated infections that occur throughout life are poorly protective. To assess the role of prior RSV infections as well as elderly immune senescence on vaccine efficacy, we compared immune responses after virus-like particle (VLP) immunization of elderly cotton rats and young cotton rats, both previously RSV infected, in order to mimic the human population. We show that immunization of RSV-experienced young or elderly animals resulted in the same levels of anti-pre-F IgG, anti-G IgG, neutralizing antibody titers, and protection from challenge indicating that the delivery of F and G proteins in a VLP is equally effective in activation of protective responses in both elderly and young populations. Our results suggest that F and G protein-containing VLPs induce anti-RSV memory established in prior RSV infections equally well in both young and elderly animals and thus can be an effective vaccine for the elderly.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Humanos , Animais , Idoso , Camundongos , Anticorpos Antivirais , Anticorpos Neutralizantes , Proteínas Virais de Fusão , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Sigmodontinae , Imunoglobulina G , Camundongos Endogâmicos BALB C
16.
Sci Rep ; 13(1): 757, 2023 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-36641520

RESUMO

Heterogeneity of COVID-19 manifestations in human population is vast, for reasons unknown. Cotton rats are a clinically relevant small animal model of human respiratory viral infections. Here, we demonstrate for the first time that SARS-CoV-2 infection in cotton rats affects multiple organs and systems, targeting species- and age-specific biological processes. Infection of S. fulviventer, which developed a neutralizing antibody response and were more susceptible to SARS-CoV-2 replication in the upper respiratory tract, was accompanied by hyperplasia of lacrimal drainage-associated lymphoid tissue (LDALT), a first known report of mucosa-associated lymphoid tissue activation at the portal of SARS-CoV-2 entry. Although less permissive to viral replication, S. hispidus showed hyperplasia of bone marrow in the facial bones and increased pulmonary thrombosis in aged males. Augmentation of these features by SARS-CoV-2 infection suggests a virus-induced breach in regulatory mechanisms which could be devastating for people of all ages with underlying conditions and in particular for elderly with a multitude of ongoing disorders.


Assuntos
COVID-19 , Masculino , Animais , Humanos , Idoso , Sigmodontinae , Hiperplasia , SARS-CoV-2 , Fatores Etários
17.
J Interferon Cytokine Res ; 42(12): 618-623, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36206057

RESUMO

Dedication: This article is dedicated to Howard Young, an exceptional scientist who has provided outstanding mentorship to many postbaccalaureates, graduate students, and postdoctoral fellows during his career. Howard has been a colleague to many and was never tired of learning new things. He has brought "thinking out of the box" to the level of an art form and has always provided thoughtful and constructive suggestions to those who have sought his counsel. I am personally greatly indebted to Howard for his guidance in molecular biology over the past 30 years, and hope that we will continue to share a passion for learning and mentoring others for years to come. Thank you, Howard! -Stephanie N. Vogel The SARS-CoV-2 pandemic has led to an unprecedented explosion in studies that have sought to identify key mechanisms that underlie the ravaging aspects of this disease on individuals. SARS-CoV-2 virus gains access to cells by (1) binding of the viral spike (S) protein to cell-associated angiotensin-converting enzyme 2 (ACE2), a key receptor in the renin-angiotensin system (RAS), followed by (2) cleavage of S protein by a cellular serine protease ("S protein priming") to facilitate viral entry. Dysregulation of the RAS system has been implicated in the spectrum of clinical symptoms associated with SARS-CoV-2, including hypercytokinemia, elevated markers of endothelial injury and thrombosis, and both localized and systemic inflammation. However, the underlying mechanisms have yet to be fully delineated.


Assuntos
Lesão Pulmonar Aguda , COVID-19 , Masculino , Humanos , Sistema Renina-Angiotensina/fisiologia , SARS-CoV-2/metabolismo , Receptor 4 Toll-Like/metabolismo , Peptidil Dipeptidase A/metabolismo , Transdução de Sinais
18.
Front Immunol ; 13: 968336, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36052067

RESUMO

Many respiratory viruses cause lung damage that may evolve into acute lung injury (ALI), a cytokine storm, acute respiratory distress syndrome, and ultimately, death. Peroxisome proliferator activated receptor gamma (PPARγ), a member of the nuclear hormone receptor (NHR) family of transcription factors, regulates transcription by forming heterodimers with another NHR family member, Retinoid X Receptor (RXR). Each component of the heterodimer binds specific ligands that modify transcriptional capacity of the entire heterodimer by recruiting different co-activators/co-repressors. However, the role of PPARγ/RXR ligands in the context of influenza infection is not well understood. PPARγ is associated with macrophage differentiation to an anti-inflammatory M2 state. We show that mice lacking the IL-4Rα receptor, required for M2a macrophage differentiation, are more susceptible to mouse-adapted influenza (A/PR/8/34; "PR8")-induced lethality. Mice lacking Ptgs2, that encodes COX-2, a key proinflammatory M1 macrophage mediator, are more resistant. Blocking the receptor for COX-2-induced Prostaglandin E2 (PGE2) was also protective. Treatment with pioglitazone (PGZ), a PPARγ ligand, increased survival from PR8 infection, decreased M1 macrophage gene expression, and increased PPARγ mRNA in lungs. Conversely, conditional knockout mice expressing PPARγ-deficient macrophages were significantly more sensitive to PR8-induced lethality. These findings were extended in cotton rats: PGZ blunted lung inflammation and M1 cytokine gene expression after challenge with non-adapted human influenza. To study mechanisms by which PPARγ/RXR transcription factors induce canonical M2a genes, WT mouse macrophages were treated with IL-4 in the absence or presence of rosiglitazone (RGZ; PPARγ ligand), LG100754 (LG; RXR ligand), or both. IL-4 dose-dependently induced M2a genes Arg1, Mrc1, Chil3, and Retnla. Treatment of macrophages with IL-4 and RGZ and/or LG differentially affected induction of Arg1 and Mrc1 vs. Chil3 and Retnla gene expression. In PPARγ-deficient macrophages, IL-4 alone failed to induce Arg1 and Mrc1 gene expression; however, concurrent treatment with LG or RGZ + LG enhanced IL-4-induced Arg1 and Mrc1 expression, but to a lower level than in WT macrophages, findings confirmed in the murine alveolar macrophage cell line, MH-S. These findings support a model in which PPARγ/RXR heterodimers control IL-4-induced M2a differentiation, and suggest that PPARγ/RXR agonists should be considered as important tools for clinical intervention against influenza-induced ALI.


Assuntos
Lesão Pulmonar Aguda , Influenza Humana , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/metabolismo , Animais , Ciclo-Oxigenase 2/metabolismo , Humanos , Influenza Humana/metabolismo , Interleucina-4/metabolismo , Ligantes , Macrófagos/metabolismo , Camundongos , PPAR gama/metabolismo , Receptores X de Retinoides/metabolismo
19.
Hum Vaccin Immunother ; 18(7): 2148499, 2022 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-36503354

RESUMO

Maternal anti-respiratory syncytial virus (RSV) antibodies protect neonates from RSV disease throughout first weeks of life. Previous studies of maternal immunization in cotton rats showed that a single immunization during pregnancy of RSV-primed dams with virus-like particles (VLPs) assembled with pre-fusion F protein and the wild type G protein boosted their RSV serum antibody concentration and protected pups early in life against RSV challenge. We extended these findings by evaluating responses to RSV infection in litters from two consecutive pregnancies of immunized dams. Using an RSV-primed population of VLP-vaccinated and unvaccinated dams, we defined correlations between dams' and litters' RSV neutralizing antibodies (NA); between litters' NA and protection; and between litter's NA and their lung expression of selected cytokines, of a first or of a second pregnancy. Lung pathology was also evaluated. We found positive correlation between the NA titers in the dams at delivery and the NA in their first and second litters and negative correlations between the litters' NA and protection from RSV challenge. Vaccination of dams modulated the mRNA expression for IFNγ and IL-6 and lung pathology in the first and in the second litter at different times after birth, even in the absence of detectable NA. Maternal RSV vaccination enhanced the levels of antibodies transferred to offspring and their protection from challenge. Importantly, maternal vaccination also impacted the immunological and inflammatory response of the offspring's lungs well into maturity, and after the antiviral effect of maternally transferred NA waned or was no longer detectable.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Animais , Gravidez , Feminino , Sigmodontinae , Imunização , Vacinação , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Pulmão/patologia , Anticorpos Antivirais , Anticorpos Neutralizantes , Proteínas Virais de Fusão
20.
Sci Rep ; 12(1): 16579, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36195733

RESUMO

The cotton rat (Sigmodon) is the gold standard pre-clinical small animal model for respiratory viral pathogens, especially for respiratory syncytial virus (RSV). However, without a reference genome or a published transcriptome, studies requiring gene expression analysis in cotton rats are severely limited. The aims of this study were to generate a comprehensive transcriptome from multiple tissues of two species of cotton rats that are commonly used as animal models (Sigmodon fulviventer and Sigmodon hispidus), and to compare and contrast gene expression changes and immune responses to RSV infection between the two species. Transcriptomes were assembled from lung, spleen, kidney, heart, and intestines for each species with a contig N50 > 1600. Annotation of contigs generated nearly 120,000 gene annotations for each species. The transcriptomes of S. fulviventer and S. hispidus were then used to assess immune response to RSV infection. We identified 238 unique genes that are significantly differentially expressed, including several genes implicated in RSV infection (e.g., Mx2, I27L2, LY6E, Viperin, Keratin 6A, ISG15, CXCL10, CXCL11, IRF9) as well as novel genes that have not previously described in RSV research (LG3BP, SYWC, ABEC1, IIGP1, CREB1). This study presents two comprehensive transcriptome references as resources for future gene expression analysis studies in the cotton rat model, as well as provides gene sequences for mechanistic characterization of molecular pathways. Overall, our results provide generalizable insights into the effect of host genetics on host-virus interactions, as well as identify new host therapeutic targets for RSV treatment and prevention.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Animais , Anticorpos Antivirais , Modelos Animais de Doenças , Queratina-6/genética , Pulmão , Vírus Sincicial Respiratório Humano/genética , Sigmodontinae , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa