Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Econ Entomol ; 105(4): 1457-64, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22928329

RESUMO

Ear-colonizing insects and diseases that reduce yield and impose health threats by mycotoxin contaminations in the grain, are critical impediments for corn (Zea mays L.) production in the southern United States. Ten germplasm lines from the Germplasm Enhancement of Maize (GEM) Program in Ames, IA, and Raleigh, NC, and 10 lines (derived from GEM germplasm) from the Texas Agricultural Experiment Station in Lubbock, TX, were examined in 2007 and 2008 with local resistant and susceptible controls. Four types of insect damage and smut disease (Ustilago maydis) infection, as well as gene X environment (G X E) interaction, was assessed on corn ears under field conditions. Insect damage on corn ears was further separated as cob and kernel damage. Cob penetration rating was used to assess corn earworm [Helicoverpa zea (Boddie)] and fall armyworm [Spodoptera frugiperda (J.E. Smith)] feeding on corn cobs, whereas kernel damage was assessed using three parameters: 1) percentage of kernels discolored by stink bugs (i.e., brown stink bug [Euschistus serous (Say)], southern green stink bug [Nezara viridula (L.)], and green stink bug [Chinavia (Acrosternum) hilare (Say)]; 2) percentage of maize weevil (Sitophilus zeamais Motschulsky)-damaged kernels; and 3) percentage of kernels damaged by sap beetle (Carpophilus spp.), "chocolate milkworm" (Moodna spp.), and pink scavenger caterpillar [Pyroderces (Anatrachyntis) rileyi (Walsingham)]. The smut infection rates on ears, tassels, and nodes also were assessed. Ear protection traits (i.e., husk tightness and extension) in relation to insect damage and smut infection also were examined. Significant differences in insect damage, smut infection, and husk protection traits were detected among the germplasm lines. Three of the 20 germplasm lines were identified as being multiple insect and smut resistant. Of the three lines, entries 5 and 7 were derived from DKXL370, which was developed using corn germplasm from Brazil, whereas entry 14 was derived from CUBA117.


Assuntos
Resistência à Doença/genética , Herbivoria , Interações Hospedeiro-Parasita/genética , Insetos/fisiologia , Zea mays/imunologia , Animais , Zea mays/genética , Zea mays/parasitologia
2.
Insect Sci ; 21(5): 541-55, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24318539

RESUMO

After examining ear-colonizing pest resistance, 20 maize lines from the USDA-ARS Germplasm Enhancement of Maize (GEM) Program were evaluated for whorl-feeding fall armyworm (FAW) (Spodoptera frugiperda) resistance using 4 maize inbred lines as the resistant and susceptible controls. Both FAW injury ratings at 7- and 14-d after infestation, and predator abundance and diversity at whorl stage (V6-V8) were recorded in 2009 and 2010. The survey of the diversity and abundance of predators in each experimental plot were conducted 7 d after the FAW infestation. Of the 20 germplasm lines examined, 3 of them (i.e., entries 9, 15, and 19 that were derived from tropical maize germplasm lines were originated from Uruguay, Cuba, and Thailand, respectively) were identified as the best FAW-resistant germplasm lines using the leaf injury ratings and predator survey data. In addition, the abundance and diversity of the predators were greater in 2010 than in 2009, which might have caused the low level of the FAW injury ratings on all lines examined in 2010. The 2-year data showed that the FAW injury ratings were negatively correlated to the predator abundance and diversity, which is also influence by genotype × environment interactions. The findings suggested that tropical germplasm is an important source of native resistance to the FAW and the corn earworm. At the same time, the maize genotype × environment interaction (e.g., predator attractiveness, and varying weather conditions) should be included in the multiple-year evaluations of insect and disease resistance of maize germplasm lines under field conditions.


Assuntos
Herbivoria , Spodoptera/fisiologia , Zea mays/fisiologia , Animais , Interação Gene-Ambiente , Larva/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Spodoptera/crescimento & desenvolvimento , Zea mays/genética , Zea mays/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa