Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 42(4): 581-600, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34857649

RESUMO

Proprioception, the sense of limb and body position, generates a map of the body that is essential for proper motor control, yet we know little about precisely how neurons in proprioceptive pathways are wired. Defining the anatomy of secondary neurons in the spinal cord that integrate and relay proprioceptive and potentially cutaneous information from the periphery to the cerebellum is fundamental to understanding how proprioceptive circuits function. Here, we define the unique anatomic trajectories of long-range direct and indirect spinocerebellar pathways as well as local intersegmental spinal circuits using genetic tools in both male and female mice. We find that Clarke's column neurons, a major contributor to the direct spinocerebellar pathway, has mossy fiber terminals that diversify extensively in the cerebellar cortex with axons terminating bilaterally, but with no significant axon collaterals within the spinal cord, medulla, or cerebellar nuclei. By contrast, we find that two of the indirect pathways, the spino-lateral reticular nucleus and spino-olivary pathways, are in part, derived from cervical Atoh1-lineage neurons, whereas thoracolumbar Atoh1-lineage neurons project mostly locally within the spinal cord. Notably, while cervical and thoracolumbar Atoh1-lineage neurons connect locally with motor neurons, no Clarke's column to motor neuron connections were detected. Together, we define anatomic differences between long-range direct, indirect, and local proprioceptive subcircuits that likely mediate different components of proprioceptive-motor behaviors.SIGNIFICANCE STATEMENT We define the anatomy of long-range direct and indirect spinocerebellar pathways as well as local spinal proprioceptive circuits. We observe that mossy fiber axon terminals of Clarke's column neurons diversify proprioceptive information across granule cells in multiple lobules on both ipsilateral and contralateral sides, sending no significant collaterals within the spinal cord, medulla, or cerebellar nuclei. Strikingly, we find that cervical spinal cord Atoh1-lineage neurons form mainly the indirect spino-lateral reticular nucleus and spino-olivary tracts and thoracolumbar Atoh1-lineage neurons project locally within the spinal cord, whereas only a few Atoh1-lineage neurons form a direct spinocerebellar tract.


Assuntos
Cerebelo/fisiologia , Rede Nervosa/fisiologia , Propriocepção/fisiologia , Medula Espinal/fisiologia , Tratos Espinocerebelares/fisiologia , Animais , Animais Recém-Nascidos , Cerebelo/química , Cerebelo/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rede Nervosa/química , Rede Nervosa/citologia , Medula Espinal/química , Medula Espinal/citologia , Tratos Espinocerebelares/química , Tratos Espinocerebelares/citologia
2.
Cerebellum ; 20(2): 295-299, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33159660

RESUMO

The posterior cerebellum is the most significantly compromised brain structure in individuals with metabolic syndrome (MetS) (Hum Brain Mapp 40(12):3575-3588, 2019). In light of this, we hypothesized that cognitive decline reported in patients with MetS is likely related to posterior cerebellar atrophy. In this study, we performed a post hoc analyses using T1-weighted magnetic resonance imaging (MRI), diffusion tensor imaging (DTI) in the form of voxel-wise tract-based spatial statistics (TBSS), biometric, and psychometric data from young participants with (n = 52, aged 18-35 years) and without MetS (n = 52, aged 18-35 years). To test the predictive value of components of the Schmahmann syndrome scale (SSS), also known as the cerebellar cognitive affective syndrome scale, we used structural equation modeling to adapt available psychometric scores in our participant sample to the SSS and compare them to the composite score of all psychometric data available. Our key findings point to a statistically significant correlation between TBSS fractional anisotropy (FA) values from DTI and adapted SSS psychometric scores in individuals with MetS (r2 = .139, 95% CI = 0.009, .345). This suggests that the SSS could be applied to assess cognitive and likely neuroanatomical effects associated with MetS. We strongly suggest that future work aimed at investigating the neurocognitive effects of MetS and related comorbidities (i.e., dyslipidemia, diabetes, obesity) would benefit from implementing and further exploring the validity of the SSS in this patient population.


Assuntos
Cerebelo/patologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Síndrome Metabólica/complicações , Transtornos do Humor/etiologia , Adolescente , Adulto , Estudos Transversais , Feminino , Humanos , Masculino , Transtornos do Humor/patologia , Neuroimagem , Índice de Gravidade de Doença , Síndrome , Adulto Jovem
3.
J Cell Biol ; 195(7): 1115-21, 2011 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-22184198

RESUMO

During embryonic morphogenesis, adhesion molecules are required for selective cell-cell interactions. The classical cadherins mediate homophilic calcium-dependent cell adhesion and are founding members of the large and diverse cadherin superfamily. The protocadherins are the largest subgroup within this superfamily, yet their participation in calcium-dependent cell adhesion is uncertain. In this paper, we demonstrate a novel mechanism of adhesion, mediated by a complex of Protocadherin-19 (Pcdh19) and N-cadherin (Ncad). Although Pcdh19 alone is only weakly adhesive, the Pcdh19-Ncad complex exhibited robust adhesion in bead aggregation assays, and Pcdh19 appeared to play the dominant role. Adhesion by the Pcdh19-Ncad complex was unaffected by mutations that disrupt Ncad homophilic binding but was inhibited by a mutation in Pcdh19. In addition, the complex exhibited homophilic specificity, as beads coated with Pcdh19-Ncad did not intermix with Ncad- or Pcdh17-Ncad-coated beads. We propose a model in which association of a protocadherin with Ncad acts as a switch, converting between distinct binding specificities.


Assuntos
Caderinas/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Células CHO , Adesão Celular , Agregação Celular , Cricetinae , Células HEK293 , Humanos , Complexos Multiproteicos , Protocaderinas , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa