Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 992: 3-15, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23076576

RESUMO

A major drawback of nuclear magnetic resonance (NMR) spectroscopy compared to other methods is that the technique has been limited to relatively small molecules. However, in the last two decades the size limit has been pushed upwards considerably and it is now possible to use NMR spectroscopy for structure calculations of proteins of molecular weights approaching 100 kDa and to probe dynamics for supramolecular complexes of molecular weights in excess of 500 kDa. Instrumental for this progress has been development in instrumentation and pulse sequence design but also improved isotopic labeling schemes that lead to increased sensitivity as well as improved spectral resolution and simplification. These are described and discussed in this chapter, focusing on labeling schemes for amide proton and methyl proton detected experiments. We also discuss labeling methods for other potentially useful positions in proteins.


Assuntos
Marcação por Isótopo/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Animais , Humanos , Biossíntese de Proteínas
2.
Adv Exp Med Biol ; 992: 63-82, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23076579

RESUMO

Nuclear magnetic spin relaxation has emerged as a powerful technique for probing molecular dynamics. Not only is it possible to use it for determination of time constant(s) for molecular reorientation but it can also be used to characterize internal motions on time scales from picoseconds to seconds. Traditionally, uniformly (15)N labeled samples have been used for these experiments but it is clear that this limits the applications. For instance, sensitivity for large systems is dramatically increased if dynamics is probed at methyl groups and structural characterization of low-populated states requires measurements on (13)Cα, (13)Cß or (13)CO or (1)Hα. Unfortunately, homonuclear scalar couplings may lead to artifacts in the latter types of experiments and selective isotopic labeling schemes that only label the desired position are necessary. Both selective and uniform labeling schemes for measurements of relaxation rates for a large number of positions in proteins are discussed in this chapter.


Assuntos
Marcação por Isótopo/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Aminoácidos/biossíntese , Sistema Livre de Células
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa