Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Fish Biol ; 102(6): 1442-1454, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36999199

RESUMO

Polar cod (Boreogadus saida) is an important trophic link within Arctic marine food webs and is likely to experience diet shifts in response to climate change. One important tool for assessing organism diet is bulk stable isotope analysis. However, key parameters necessary for interpreting the temporal context of stable isotope values are lacking, especially for Arctic species. This study provides the first experimental determination of isotopic turnover (as half-life) and trophic discrimination factors (TDFs) of both δ13 C and δ15 N in adult polar cod muscle. Using a diet enriched in both 13 C and 15 N, we measured isotopic turnover times of 61 and 49 days for δ13 C and δ15 N, respectively, with metabolism accounting for >94% of the total turnover. These half-life estimates are valid for adult polar cod (>3 years) experiencing little somatic growth. We measured TDFs in our control of 2.6‰ and 3.9‰ for δ13 C and δ15 N, respectively, and we conclude that applying the commonly used TDF of ~1‰ for δ13 C for adult polar cod may lead to misrepresentation of dietary carbon source, while the use of 3.8‰ for δ15 N is appropriate. Based on these results, we recommend that studies investigating seasonal shifts in the diet of adult polar cod sample at temporal intervals of at least 60 days to account for isotopic turnover in polar cod muscle. Although isotopic equilibrium was reached by the fish in this study, it was at substantially lower isotope values than the diet. Additionally, the use of highly enriched algae in the experimental feed caused very high variability in diet isotope values which precluded accurate calculation of TDFs from the enriched fish. As a result of the challenges faced in this study, we discourage the use of highly enriched diets for similar experiments and provide recommendations to guide the design of future isotopic turnover experiments.


Assuntos
Gadiformes , Músculos , Animais , Isótopos de Carbono/análise , Isótopos de Nitrogênio/análise , Músculos/química , Carbono , Estado Nutricional , Dieta , Peixes/metabolismo , Gadiformes/metabolismo
2.
Philos Trans A Math Phys Eng Sci ; 378(2181): 20190355, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-32862815

RESUMO

Climate warming influences structure and function of Arctic benthic ecosystems. Assessing the response of these systems to perturbations requires long-term studies addressing key ecological processes related to recolonization and succession of species. Based on unique time-series (1980-2017), this study addresses successional patterns of hard-bottom benthos in two fjords in NW Svalbard after a pulse perturbation in 1980 and during a period of rapid climate warming. Analysis of seafloor photographs revealed different return rates of taxa, and variability in species densities, through time. It took 13 and 24 years for the community compositions of cleared and control transects to converge in the two fjords. Nearly two decades after the study initiation, an increase in filamentous and foliose macroalgae was observed with a subsequent reorganization in the invertebrate community. Trait analyses showed a decrease in body size and longevity of taxa in response to the pulse perturbation and a shift towards small/medium size and intermediate longevity following the macroalgae takeover. The observed slow recovery rates and abrupt shifts in community structure document the vulnerability of Arctic coastal ecosystems to perturbations and continued effects of climate warming. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.


Assuntos
Ecossistema , Aquecimento Global , Animais , Organismos Aquáticos/classificação , Organismos Aquáticos/crescimento & desenvolvimento , Regiões Árticas , Biomassa , Hidrozoários/classificação , Hidrozoários/crescimento & desenvolvimento , Noruega , Oceanos e Mares , Poliplacóforos/classificação , Poliplacóforos/crescimento & desenvolvimento , Alga Marinha/classificação , Alga Marinha/crescimento & desenvolvimento
3.
Sci Rep ; 13(1): 6739, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37185804

RESUMO

Pelagic-benthic coupling describes the connection between surface-water production and seafloor habitats via energy, nutrient and mass exchange. Massive ice loss and warming in the poorly studied Arctic Chukchi Borderland are hypothesized to affect this coupling. The strength of pelagic-benthic coupling was compared between 2 years varying in climate settings, 2005 and 2016, based on δ13C and δ15N stable isotopes of food-web end-members and pelagic and deep-sea benthic consumers. Considerably higher isotopic niche overlap and generally shorter isotopic distance were found between pelagic and benthic food web components in 2005 than in 2016, suggesting weaker coupling in the latter, low-ice year. δ15N values indicated more refractory food consumed by benthos in 2016 and fresher food reaching the seafloor in 2005. Higher δ13C values of zooplankton indirectly suggested a higher contribution of ice algae in 2005 than 2016. The difference in pelagic-benthic coupling between these years is consistent with higher energy retention within the pelagic system, perhaps due to strong stratification in the Amerasian Basin in the recent decade. Weaker coupling to the benthos can be expected to continue with ice loss in the study area, perhaps reducing benthic biomass and remineralization capacity; monitoring of the area is needed to confirm this prediction.


Assuntos
Ecossistema , Camada de Gelo , Cadeia Alimentar , Regiões Árticas , Biomassa
4.
Mar Environ Res ; 189: 106046, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37295307

RESUMO

Amid the alarming atmospheric and oceanic warming rates taking place in the Arctic, western fjords around the Svalbard archipelago are experiencing an increased frequency of warm water intrusions in recent decades, causing ecological shifts in their ecosystems. However, hardly anything is known about their potential impacts on the until recently considered stable and colder northern fjords. We analyzed macrobenthic fauna from four locations in Rijpfjorden (a high-Arctic fjord in the north of Svalbard) along its axis, sampled intermittently in the years 2003, 2007, 2010, 2013 and 2017. After a strong seafloor warm water temperature anomaly (SfWWTA) in 2006, the abundance of individuals and species richness dropped significantly across the entire fjord in 2007, together with diversity declines at the outer parts (reflected in Shannon index drops) and increases in beta diversity between inner and outer parts of the fjord. After a period of three years with stable water temperatures and higher sea-ice cover, communities recovered through recolonization processes by 2010, leading to homogenization in community composition across the fjord and less beta diversity. For the last two periods (2010-2013 and 2013-2017), beta diversity between the inner and outer parts gradually increased again, and both the inner and outer sites started to re-assemble in different directions. A few taxa began to dominate the fjord from 2010 onwards at the outer parts, translating into evenness and diversity drops. The inner basin, however, although experiencing strong shifts in abundances, was partially protected by a fjordic sill from impacts of these temperature anomalies and remained comparatively more stable regarding community diversity after the disturbance event. Our results indicate that although shifts in abundances were behind important spatio-temporal community fluctuations, beta diversity variations were also driven by the occurrence-based macrofauna data, suggesting an important role of rare taxa. This is the first multidecadal time series of soft-bottom macrobenthic communities for a high-Arctic fjord, indicating that potential periodic marine heatwaves might drive shifts in community structure, either through direct effects from thermal stress on the communities or through changes in environmental regimes led by temperature fluctuations (i.e. sea ice cover and glacial runoff, which could lead to shifts in primary production and food supply to the benthos). Although high-Arctic macrobenthic communities might be resilient to some extent, sustained warm water anomalies could lead to permanent changes in cold-water fjordic benthic systems.


Assuntos
Ecossistema , Estuários , Humanos , Temperatura , Água , Oceanos e Mares , Regiões Árticas
5.
Sci Rep ; 13(1): 1000, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653387

RESUMO

The rapid ongoing changes in the Central Arctic Ocean call for baseline information on the pelagic fauna. However, sampling for motile organisms which easily escape vertically towed nets is challenging. Here, we report the species composition and catch weight of pelagic fishes and larger zooplankton from 12 trawl hauls conducted in ice covered waters in the Central Arctic Ocean beyond the continental slopes in late summer. Combined trawl catches with acoustics data revealed low amounts of fish and zooplankton from the advective influenced slope region in the Nansen Basin in the south to the ice-covered deep Amundsen Basin in the north. Both arctic and subarctic-boreal species, including the ones considered as Atlantic expatriate species were found all the way to 87.5o N. We found three fish species (Boreogadus saida, Benthosema glaciale and Reinhardtius hippoglossoides), but the catch was limited to only seven individuals. Euphausiids, amphipods and gelatinous zooplankton dominated the catch weight in the Nansen Basin in the mesopelagic communities. Euphausiids were almost absent in the Amundsen Basin with copepods, amphipods, chaetognaths and gelatinous zooplankton dominating. We postulate asymmetric conditions in the pelagic ecosystems of the western and eastern Eurasian Basin caused by ice and ocean circulation regimes.


Assuntos
Anfípodes , Ecossistema , Animais , Zooplâncton , Peixes , Camada de Gelo , Acústica , Oceanos e Mares , Regiões Árticas
6.
J Plankton Res ; 42(1): 73-86, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32025067

RESUMO

Apherusa glacialis is a common, sea ice-associated amphipod found throughout the Arctic Ocean and has long been considered permanently associated with the sea ice habitat. However, pelagic occurrences of A. glacialis have also been reported. It was recently suggested that A. glacialis overwinters at depth within the Atlantic-water inflow near Svalbard, to avoid being exported out of the Arctic Ocean through the Fram Strait. This study collated pelagic occurrence records over a 71-year period and found that A. glacialis was consistently found away from its presumed sea ice habitat on a pan-Arctic scale, in different depths and water masses. In the Svalbard region, A. glacialis was found in Atlantic Water both in winter and summer. Additionally, we analyzed A. glacialis size distributions throughout the year, collected mostly from sea ice, in order to elucidate potential life cycle strategies. The majority of young-of-the-year A. glacialis was found in the sea ice habitat during spring, supporting previous findings. Data on size distributions and sex ratios suggest a semelparous lifestyle. A synchronous seasonal vertical migration was not evident, but our data imply a more complex life history than previously assumed. We provide evidence that A. glacialis can no longer be regarded as an autochthonous sympagic species.

7.
Ecol Appl ; 18(2 Suppl): S77-96, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18494364

RESUMO

This review provides an overview of prey preferences of seven core Arctic marine mammal species (AMM) and four non-core species on a pan-Arctic scale with regional examples. Arctic marine mammal species exploit prey resources close to the sea ice, in the water column, and at the sea floor, including lipid-rich pelagic and benthic crustaceans and pelagic and ice-associated schooling fishes such as capelin and Arctic cod. Prey preferred by individual species range from cephalopods and benthic bivalves to Greenland halibut. A few AMM are very prey-, habitat-, and/or depth-specific (e.g., walrus, polar bear), while others are rather opportunistic and, therefore, likely less vulnerable to change (e.g., beluga, bearded seal). In the second section, we review prey distribution patterns and current biomass hotspots in the three major physical realms (sea ice, water column, and seafloor), highlighting relations to environmental parameters such as advection patterns and the sea ice regime. The third part of the contribution presents examples of documented changes in AMM prey distribution and biomass and, subsequently, suggests three potential scenarios of large-scale biotic change, based on published observations and predictions of environmental change. These scenarios discuss (1) increased pelagic primary and, hence, secondary production, particularly in the central Arctic, during open-water conditions in the summer (based on surplus nutrients currently unutilized); (2) reduced benthic and pelagic biomass in coastal/shelf areas (due to increased river runoff and, hence, changed salinity and turbidity conditions); and (3) increased pelagic grazing and recycling in open-water conditions at the expense of the current tight benthic-pelagic coupling in part of the ice-covered shelf regions (due to increased pelagic consumption vs. vertical flux). Should those scenarios hold true, pelagic-feeding and generalist AMM might be advantaged, while the range for benthic shelf-feeding, ice-dependent AMM such as walrus would decrease. New pelagic feeding grounds may open up to AMM and subarctic marine mammal species in the High Arctic basins while nearshore waters might provide less abundant food in the future.


Assuntos
Abastecimento de Alimentos , Mamíferos , Biologia Marinha , Animais , Regiões Árticas , Mamíferos/fisiologia , Comportamento Predatório , Especificidade da Espécie
8.
Ecol Evol ; 8(4): 2350-2364, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29468049

RESUMO

Arctic sea ice provides microhabitats for biota that inhabit the liquid-filled network of brine channels and the ice-water interface. We used meta-analysis of 23 published and unpublished datasets comprising 721 ice cores to synthesize the variability in composition and abundance of sea ice meiofauna at spatial scales ranging from within a single ice core to pan-Arctic and seasonal scales. Two-thirds of meiofauna individuals occurred in the bottom 10 cm of the ice. Locally, replicate cores taken within meters of each other were broadly similar in meiofauna composition and abundance, while those a few km apart varied more; 75% of variation was explained by station. At the regional scale (Bering Sea first-year ice), meiofauna abundance varied over two orders of magnitude. At the pan-Arctic scale, the same phyla were found across the region, with taxa that have resting stages or tolerance to extreme conditions (e.g., nematodes and rotifers) dominating abundances. Meroplankton, however, was restricted to nearshore locations and landfast sea ice. Light availability, ice thickness, and distance from land were significant predictor variables for community composition on different scales. On a seasonal scale, abundances varied broadly for all taxa and in relation to the annual ice algal bloom cycle in both landfast and pack ice. Documentation of ice biota composition, abundance, and natural variability is critical for evaluating responses to decline in Arctic sea ice. Consistent methodology and protocols must be established for comparability of meiofauna monitoring across the Arctic. We recommend to (1) increase taxonomic resolution of sea ice meiofauna, (2) focus sampling on times of peak abundance when seasonal sampling is impossible, (3) include the bottom 30 cm of ice cores rather than only bottom 10 cm, (4) preserve specimens for molecular analysis to improve taxonomic resolution, and (5) formulate a trait-based framework that relates to ecosystem functioning.

9.
PLoS One ; 6(1): e14491, 2011 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-21253595

RESUMO

Nematodes occur regularly in macrobenthic samples but are rarely identified from them and are thus considered exclusively a part of the meiobenthos. Our study compares the generic composition of nematode communities and their individual body weight trends with water depth in macrobenthic (>250/300 µm) samples from the deep Arctic (Canada Basin), Gulf of Mexico (GOM) and the Bermuda slope with meiobenthic samples (<45 µm) from GOM. The dry weight per individual (µg) of all macrobenthic nematodes combined showed an increasing trend with increasing water depth, while the dry weight per individual of the meiobenthic GOM nematodes showed a trend to decrease with increasing depth. Multivariate analyses showed that the macrobenthic nematode community in the GOM was more similar to the macrobenthic nematodes of the Canada Basin than to the GOM meiobenthic nematodes. In particular, the genera Enoploides, Crenopharynx, Micoletzkyia, Phanodermella were dominant in the macrobenthos and accounted for most of the difference. Relative abundance of non-selective deposit feeders (1B) significantly decreased with depth in macrobenthos but remained dominant in the meiobenthic community. The occurrence of a distinct assemblage of bigger nematodes of high dry weight per individual in the macrobenthos suggests the need to include nematodes in macrobenthic studies.


Assuntos
Ecossistema , Nematoides/fisiologia , Características de Residência , Animais , Peso Corporal , História do Século XXI , Dinâmica Populacional
10.
PLoS One ; 5(12): e15323, 2010 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-21209928

RESUMO

A comprehensive seafloor biomass and abundance database has been constructed from 24 oceanographic institutions worldwide within the Census of Marine Life (CoML) field projects. The machine-learning algorithm, Random Forests, was employed to model and predict seafloor standing stocks from surface primary production, water-column integrated and export particulate organic matter (POM), seafloor relief, and bottom water properties. The predictive models explain 63% to 88% of stock variance among the major size groups. Individual and composite maps of predicted global seafloor biomass and abundance are generated for bacteria, meiofauna, macrofauna, and megafauna (invertebrates and fishes). Patterns of benthic standing stocks were positive functions of surface primary production and delivery of the particulate organic carbon (POC) flux to the seafloor. At a regional scale, the census maps illustrate that integrated biomass is highest at the poles, on continental margins associated with coastal upwelling and with broad zones associated with equatorial divergence. Lowest values are consistently encountered on the central abyssal plains of major ocean basins The shift of biomass dominance groups with depth is shown to be affected by the decrease in average body size rather than abundance, presumably due to decrease in quantity and quality of food supply. This biomass census and associated maps are vital components of mechanistic deep-sea food web models and global carbon cycling, and as such provide fundamental information that can be incorporated into evidence-based management.


Assuntos
Biomassa , Biologia Marinha/métodos , Algoritmos , Animais , Inteligência Artificial , Biodiversidade , Carbono/química , Biologia Computacional/métodos , Ecossistema , Modelos Biológicos , Oceanos e Mares , Análise de Regressão
11.
Oecologia ; 158(1): 11-22, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18709389

RESUMO

Food web studies based on stable C and N isotope ratios usually assume isotopic equilibrium between a consumer and its diet. In the Arctic, strong seasonality in food availability often leads to diet switching, resulting in a consumer's isotopic composition to be in flux between different food sources. Experimental work investigating the time course and dynamics of isotopic change in Arctic fauna has been lacking, although these data are crucial for accurate interpretation of food web relationships. We investigated seasonal (ice-covered spring vs. ice-free summer) and temperature (1 vs. 4 degrees C) effects on growth and stable C and N isotopic change in the common nearshore Arctic amphipod Onisimus litoralis following a diet switch and while fasting in the laboratory. In spring we found no significant temperature effect on N turnover [half-life (HL) estimates: HL-N = 20.4 at 4 degrees C, 22.4 days at 1 degrees C] and a nonsignificant trend for faster growth and C turnover at the higher temperature (HL-C = 13.9 at 4 degrees C, 18.7 days at 1 degrees C). A strong seasonal effect was found, with significantly slower growth and C and N turnover in the ice-free summer period (HL-N = 115.5 days, HL-C = 77.0 days). Contrary to previous studies, metabolic processes rather than growth accounted for most of the change in C and N isotopic composition (84-89 and 67-77%, respectively). This study provides the first isotopic change and metabolic turnover rates for an Arctic marine invertebrate and demonstrates the risk of generalizing turnover rates based on taxon, physiology, and environment. Our results highlight the importance of experimental work to determine turnover rates for species of interest.


Assuntos
Anfípodes/metabolismo , Carbono/metabolismo , Dieta , Eucariotos/metabolismo , Nitrogênio/metabolismo , Anfípodes/crescimento & desenvolvimento , Animais , Regiões Árticas , Isótopos de Carbono/metabolismo , Cadeia Alimentar , Camada de Gelo , Isótopos de Nitrogênio/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa