Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neuroinflammation ; 21(1): 155, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872149

RESUMO

Activation of the kallikrein-kinin system promotes vascular leakage, inflammation, and neurodegeneration in ischemic stroke. Inhibition of plasma kallikrein (PK) - a key component of the KKS - in the acute phase of ischemic stroke has been reported to reduce thrombosis, inflammation, and damage to the blood-brain barrier. However, the role of PK during the recovery phase after cerebral ischemia is unknown. To this end, we evaluated the effect of subacute PK inhibition starting from day 3 on the recovery process after transient middle artery occlusion (tMCAO). Our study demonstrated a protective effect of PK inhibition by reducing infarct volume and improving functional outcome at day 7 after tMCAO. In addition, we observed reduced thrombus formation in cerebral microvessels, fewer infiltrated immune cells, and an improvement in blood-brain barrier integrity. This protective effect was facilitated by promoting tight junction reintegration, reducing detrimental matrix metalloproteinases, and upregulating regenerative angiogenic markers. Our findings suggest that PK inhibition in the subacute phase might be a promising approach to accelerate the post-stroke recovery process.


Assuntos
Calicreína Plasmática , Recuperação de Função Fisiológica , Animais , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia , Masculino , Calicreína Plasmática/antagonistas & inibidores , Calicreína Plasmática/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Infarto da Artéria Cerebral Média , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Trombose , AVC Isquêmico/tratamento farmacológico , Inflamação
2.
Sci Rep ; 14(1): 17823, 2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090252

RESUMO

So far, only a small number of medications are effective in progressive multiple sclerosis (MS). The sphingosine-1-phosphate-receptor (S1PR)-1,5 modulator siponimod, licensed for progressive MS, is acting both on peripheral immune cells and in the central nervous system (CNS). So far it remains elusive, whether those effects are related to the neurotrophin brain derived neurotrophic factor (BDNF). We hypothesized that BDNF in immune cells might be a prerequisite to reduce disease activity in experimental autoimmune encephalomyelitis (EAE) and prevent neurotoxicity. MOG35-55 immunized wild type (WT) and BDNF knock-out (BDNFko) mice were treated with siponimod or vehicle and scored daily in a blinded manner. Immune cell phenotyping was performed via flow cytometry. Immune cell infiltration and demyelination of spinal cord were assessed using immunohistochemistry. In vitro, effects on neurotoxicity and mRNA regulation were investigated using dorsal root ganglion cells incubated with EAE splenocyte supernatant. Siponimod led to a dose-dependent reduction of EAE scores in chronic WT EAE. Using a suboptimal dosage of 0.45 µg/day, siponimod reduced clinical signs of EAE independent of BDNF-expression in immune cells in accordance with reduced infiltration and demyelination. Th and Tc cells in secondary lymphoid organs were dose-dependently reduced, paralleled with an increase of regulatory T cells. In vitro, neuronal viability trended towards a deterioration after incubation with EAE supernatant; siponimod showed a slight rescue effect following treatment of WT splenocytes. Neuronal gene expression for CCL2 and CX3CL1 was elevated after incubation with EAE supernatant, which was reversed after siponimod treatment for WT, but not for BNDFko. Apoptosis markers and alternative death pathways were not affected. Siponimod exerts both anti-inflammatory and neuroprotective effects, partially related to BDNF-expression. This might in part explain effectiveness during progression in MS and could be a target for therapy.


Assuntos
Azetidinas , Compostos de Benzil , Fator Neurotrófico Derivado do Encéfalo , Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Feminino , Camundongos , Azetidinas/farmacologia , Azetidinas/uso terapêutico , Compostos de Benzil/farmacologia , Compostos de Benzil/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Moduladores do Receptor de Esfingosina 1 Fosfato/farmacologia , Moduladores do Receptor de Esfingosina 1 Fosfato/uso terapêutico , Medula Espinal/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia
3.
Brain Commun ; 6(2): fcae059, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38482371

RESUMO

Experimental autoimmune neuritis is a common animal model for acute human immune-mediated polyneuropathies. Although already established in 1955, a number of pathophysiological mechanisms remain unknown. In this study, we extensively characterize experimental autoimmune neuritis progression in Lewis rats, including new insights into the integrity of small nerve fibres, neuropathic pain and macrophage activation. Acute experimental autoimmune neuritis was induced with P253-78 peptide and consequently investigated using the gait analysis system CatWalk XT, electrophysiological and histopathological analyses, quantitative polymerase chain reaction (PCR), dorsal root ganglia outgrowth studies, as well as the von Frey hair and Hargreaves tests. For the longitudinal setup, rats were sacrificed at Day (d) 10 (onset), d15 (peak), d26 (recovery) and d29 (late recovery). We confirmed the classical T-cell and macrophage-driven inflammation and the primarily demyelinating nature of the experimental autoimmune neuritis. The dual role of macrophages in experimental autoimmune neuritis is implicated by the high number of remaining macrophages throughout disease progression. Furthermore, different subpopulations of macrophages based on Cx3-motif chemokine receptor 1 (Cx3cr1), platelet factor 4 (Pf4) and macrophage galactose-type lectin-1 (Mgl1) expressions were identified. In addition, modulation of the sensory system in experimental autoimmune neuritis was detected. An outgrowth of small fibres in the plantar skin at the onset and peak of the experimental autoimmune neuritis was evident parallel to the development of acute hyperalgesia mediated through transient receptor potential vanilloid 1 modulation. Our data depict experimental autoimmune neuritis as a primary demyelinating disease with implicated axonal damage, a small unmyelinated fibre impairment throughout the disease progression course, and underline the pivotal role of macrophages in the effector and during the recovery stage.

4.
Nat Commun ; 14(1): 8368, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114471

RESUMO

NEMO is a ubiquitin-binding protein which regulates canonical NF-κB pathway activation in innate immune signaling, cell death regulation and host-pathogen interactions. Here we identify an NF-κB-independent function of NEMO in proteostasis regulation by promoting autophagosomal clearance of protein aggregates. NEMO-deficient cells accumulate misfolded proteins upon proteotoxic stress and are vulnerable to proteostasis challenges. Moreover, a patient with a mutation in the NEMO-encoding IKBKG gene resulting in defective binding of NEMO to linear ubiquitin chains, developed a widespread mixed brain proteinopathy, including α-synuclein, tau and TDP-43 pathology. NEMO amplifies linear ubiquitylation at α-synuclein aggregates and promotes the local concentration of p62 into foci. In vitro, NEMO lowers the threshold concentrations required for ubiquitin-dependent phase transition of p62. In summary, NEMO reshapes the aggregate surface for efficient autophagosomal clearance by providing a mobile phase at the aggregate interphase favoring co-condensation with p62.


Assuntos
Quinase I-kappa B , NF-kappa B , Humanos , NF-kappa B/metabolismo , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , alfa-Sinucleína/genética , Ubiquitina/metabolismo , Autofagia/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa