Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37479023

RESUMO

In eukaryotes, the performances of an organism are dependent on body mass and chemically supported by the mitochondrial production of ATP. Although the relationship between body mass and mitochondrial oxygen consumption is well described, the allometry of the transduction efficiency from oxygen to ATP production (ATP/O) is still poorly understood. Using a comparative approach, we investigated the oxygen consumption and ATP production of liver mitochondria from twelve species of mammals ranging from 5 g to 600 kg. We found that both oxygen consumption and ATP production are mass dependent but not the ATP/O at the maximal phosphorylating state. The results also showed that for sub-maximal phosphorylating states the ATP/O value positively correlated with body mass, irrespective of the metabolic intensity. This result contrasts with previous data obtained in mammalian muscles, suggesting a tissue-dependence of the body mass effect on mitochondrial efficiency.


Assuntos
Mitocôndrias Hepáticas , Fosforilação Oxidativa , Animais , Mitocôndrias Hepáticas/metabolismo , Trifosfato de Adenosina/metabolismo , Mitocôndrias/metabolismo , Mamíferos/metabolismo , Consumo de Oxigênio/fisiologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-34748935

RESUMO

Skeletal muscle mitochondria of the African pygmy mouse Mus mattheyi exhibit markedly reduced oxygen consumption and ATP synthesis rates but a higher mitochondrial efficiency than what would be expected from allometric trends. In the present study, we assessed whether such reduction of mitochondrial activity in M. mattheyi can limit the oxidative stress associated with an increased generation of mitochondrial reactive oxygen species. We conducted a comparative study of mitochondrial oxygen consumption, H2O2 release, and electron leak (%H2O2/O) in skeletal muscle mitochondria isolated from the extremely small African pygmy mouse (M. mattheyi, ~5 g) and Mus musculus, which is a larger Mus species (~25 g). Mitochondria were energized with pyruvate, malate, and succinate, after which fluxes were measured at different steady-state rates of oxidative phosphorylation. Overall, M. mattheyi exhibited lower oxidative activity and higher electron leak than M. musculus, while the H2O2 release did not differ significantly between these two Mus species. We further found that the high coupling efficiency of skeletal muscle mitochondria from M. mattheyi was associated with high electron leak. Nevertheless, data also show that, despite the higher electron leak, the lower mitochondrial respiratory capacity of M. mattheyi limits the cost of a net increase in H2O2 release, which is lower than that expected for a mammals of this size.


Assuntos
Mitocôndrias Musculares/metabolismo , Difosfato de Adenosina/metabolismo , Animais , Peróxido de Hidrogênio/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Fosforilação Oxidativa , Estresse Oxidativo , Consumo de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Especificidade da Espécie
3.
J Exp Biol ; 223(Pt 5)2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32041806

RESUMO

Mass-specific metabolic rate negatively co-varies with body mass from the whole-animal to the mitochondrial levels. Mitochondria are the mainly consumers of oxygen inspired by mammals to generate ATP or compensate for energetic losses dissipated as the form of heat (proton leak) during oxidative phosphorylation. Consequently, ATP synthesis and proton leak compete for the same electrochemical gradient. Because proton leak co-varies negatively with body mass, it is unknown whether extremely small mammals further decouple their mitochondria to maintain their body temperature or whether they implement metabolic innovations to ensure cellular homeostasis. The present study investigated the impact of body mass variation on cellular and mitochondrial functioning in small mammals, comparing two extremely small African pygmy mice (Mus mattheyi, ∼5 g, and Mus minutoides, ∼7 g) with the larger house mouse (Mus musculus, ∼22 g). Oxygen consumption rates were measured from the animal to the mitochondrial levels. We also measured mitochondrial ATP synthesis in order to appreciate the mitochondrial efficiency (ATP/O). At the whole-animal scale, mass- and surface-specific metabolic rates co-varied negatively with body mass, whereas this was not necessarily the case at the cellular and mitochondrial levels. Mus mattheyi had generally the lowest cellular and mitochondrial fluxes, depending on the tissue considered (liver or skeletal muscle), as well as having more-efficient muscle mitochondria than the other two species. Mus mattheyi presents metabolic innovations to ensure its homeostasis, by generating more ATP per oxygen consumed.


Assuntos
Peso Corporal , Camundongos/metabolismo , Mitocôndrias Musculares/metabolismo , Animais , Metabolismo Basal , Fígado/metabolismo , Masculino , Músculo Esquelético/metabolismo
4.
J Exp Biol ; 222(Pt 4)2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30679239

RESUMO

Under nutritional deprivation, the energetic benefits of reducing mitochondrial metabolism are often associated with enhanced harmful pro-oxidant effects and a subsequent long-term negative impact on cellular integrity. However, the flexibility of mitochondrial functioning under stress has rarely been explored during the transition from basal non-phosphorylating to maximal phosphorylating oxygen consumption. Here, we experimentally tested whether ducklings (Cairina moschata), fasted for 6 days and subsequently refed for 3 days, exhibited modifications to their mitochondrial fluxes, i.e. oxygen consumption, ATP synthesis, reactive oxygen species generation (ROS) and associated ratios, such as the electron leak (% ROS/O) and the oxidative cost of ATP production (% ROS/ATP). This was carried out at different steady-state rates of oxidative phosphorylation in both pectoralis (glycolytic) and gastrocnemius (oxidative) muscles. Fasting induced a decrease in the rates of oxidative phosphorylation and maximal ROS release. These changes were completely reversed by 3 days of refeeding. Yet, the fundamental finding of the present study was the existence of a clear threshold in ROS release and associated ratios, which remained low until a low level of mitochondrial activity was reached (30-40% of maximal oxidative phosphorylation activity).


Assuntos
Patos/fisiologia , Jejum/fisiologia , Peróxido de Hidrogênio/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Animais , Fenótipo , Distribuição Aleatória
5.
J Exp Biol ; 221(Pt 4)2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29361595

RESUMO

During food deprivation, animals must develop physiological responses to maximize energy conservation and survival. At the subcellular level, energy conservation is mainly achieved by a reduction in mitochondrial activity and an upregulation of oxidative phosphorylation efficiency. The aim of this study was to decipher mechanisms underlying the increased mitochondrial coupling efficiency reported in fasted birds. Mitochondrial oxidative phosphorylation activity, efficiency and membrane potential were measured in mitochondria isolated from the gastrocnemius muscle of ducklings. The content and activities of respiratory chain complexes were also determined. Results from ducklings fasted for 6 days were compared with ducklings fed ad libitum Here, we report that 6 days of fasting improved coupling efficiency in muscle mitochondria of ducklings by depressing proton-motive force through the downregulation of substrate oxidation reactions. Fasting did not change the basal proton conductance of mitochondria but largely decreased the oxidative phosphorylation activity, which was associated with decreased activities of succinate-cytochrome c reductase (complexes II-III) and citrate synthase, and altered contents in cytochromes b and c+c1 In contrast, fasting did not change cytochrome aa3 content or the activity of complexes I, II and IV. Altogether, these data show that the lower capacity of the respiratory machinery to pump protons in ducklings fasted for 6 days generates a lower membrane potential, which triggers a decreased proton leak activity and thus a higher coupling efficiency. We propose that the main site of action would be located at the level of co-enzyme Q pool/complex III of the electron transport chain.


Assuntos
Patos/fisiologia , Privação de Alimentos/fisiologia , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/fisiologia , Fosforilação Oxidativa , Animais , Regulação para Baixo , Masculino , Distribuição Aleatória , Regulação para Cima
6.
J Exp Biol ; 219(Pt 1): 80-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26567341

RESUMO

Osmoregulating decapods such as the Mediterranean green crab Carcinus aestuarii possess two groups of spatially segregated gills: anterior gills serve mainly respiratory purposes, while posterior gills contain osmoregulatory structures. The co-existence of similar tissues serving different functions allows the study of differential adaptation, in terms of free radical metabolism, upon salinity change. Crabs were immersed for 2 weeks in seawater (SW, 37 ppt), diluted SW (dSW, 10 ppt) and concentrated SW (cSW, 45 ppt). Exposure to dSW was the most challenging condition, elevating respiration rates of whole animals and free radical formation in hemolymph (assessed fluorometrically using C-H2DFFDA). Further analyses considered anterior and posterior gills separately, and the results showed that posterior gills are the main tissues fueling osmoregulatory-related processes because their respiration rates in dSW were 3.2-fold higher than those of anterior gills, and this was accompanied by an increase in mitochondrial density (citrate synthase activity) and increased levels of reactive oxygen species (ROS) formation (1.4-fold greater, measured through electron paramagnetic resonance). Paradoxically, these posterior gills showed undisturbed caspase 3/7 activity, used here as a marker for apoptosis. This may only be due to the high antioxidant protection that posterior gills benefit from [superoxide dismutase (SOD) in posterior gills was over 6 times higher than in anterior gills]. In conclusion, osmoregulating posterior gills are better adapted to dSW exposure than respiratory anterior gills because they are capable of controlling the deleterious effects of the ROS production resulting from this salinity-induced stress.


Assuntos
Braquiúros/fisiologia , Estresse Oxidativo , Salinidade , Adaptação Fisiológica , Animais , Apoptose , Radicais Livres , Brânquias/metabolismo , Hemolinfa/metabolismo , Osmorregulação , Espécies Reativas de Oxigênio/metabolismo , Taxa Respiratória , Água do Mar/química
7.
Mitochondrion ; 54: 85-91, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32738356

RESUMO

The aim of the study was to evaluate the interplay between mitochondrial respiration and H2O2 release during the transition from basal non-phosphorylating to maximal phosphorylating states. We conducted a large scale comparative study of mitochondrial oxygen consumption, H2O2 release and electron leak (% H2O2/O) in skeletal muscle mitochondria isolated from mammal species ranging from 7 g to 500 kg. Mitochondrial fluxes were measured at different steady state rates in presence of pyruvate, malate, and succinate as respiratory substrates. Every species exhibited a burst of H2O2 release from skeletal muscle mitochondria at a low rate of oxidative phosphorylation, essentially once the activity of mitochondrial oxidative phosphorylation reached 26% of the maximal respiration. This threshold for ROS generation thus appears as a general characteristic of skeletal muscle mitochondria in mammals. These findings may have implications in situations promoting succinate accumulation within mitochondria, such as ischemia or hypoxia.


Assuntos
Peróxido de Hidrogênio/análise , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/citologia , Animais , Bovinos , Cricetinae , Mesocricetus , Camundongos , Músculo Esquelético/metabolismo , Fosforilação Oxidativa , Coelhos , Ratos , Ovinos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa