Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 629(8011): 426-434, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658764

RESUMO

Expansion of antigen-experienced CD8+ T cells is critical for the success of tumour-infiltrating lymphocyte (TIL)-adoptive cell therapy (ACT) in patients with cancer1. Interleukin-2 (IL-2) acts as a key regulator of CD8+ cytotoxic T lymphocyte functions by promoting expansion and cytotoxic capability2,3. Therefore, it is essential to comprehend mechanistic barriers to IL-2 sensing in the tumour microenvironment to implement strategies to reinvigorate IL-2 responsiveness and T cell antitumour responses. Here we report that prostaglandin E2 (PGE2), a known negative regulator of immune response in the tumour microenvironment4,5, is present at high concentrations in tumour tissue from patients and leads to impaired IL-2 sensing in human CD8+ TILs via the PGE2 receptors EP2 and EP4. Mechanistically, PGE2 inhibits IL-2 sensing in TILs by downregulating the IL-2Rγc chain, resulting in defective assembly of IL-2Rß-IL2Rγc membrane dimers. This results in impaired IL-2-mTOR adaptation and PGC1α transcriptional repression, causing oxidative stress and ferroptotic cell death in tumour-reactive TILs. Inhibition of PGE2 signalling to EP2 and EP4 during TIL expansion for ACT resulted in increased IL-2 sensing, leading to enhanced proliferation of tumour-reactive TILs and enhanced tumour control once the cells were transferred in vivo. Our study reveals fundamental features that underlie impairment of human TILs mediated by PGE2 in the tumour microenvironment. These findings have therapeutic implications for cancer immunotherapy and cell therapy, and enable the development of targeted strategies to enhance IL-2 sensing and amplify the IL-2 response in TILs, thereby promoting the expansion of effector T cells with enhanced therapeutic potential.


Assuntos
Linfócitos T CD8-Positivos , Proliferação de Células , Dinoprostona , Interleucina-2 , Linfócitos do Interstício Tumoral , Mitocôndrias , Transdução de Sinais , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Dinoprostona/metabolismo , Regulação para Baixo , Ferroptose , Subunidade gama Comum de Receptores de Interleucina/biossíntese , Subunidade gama Comum de Receptores de Interleucina/deficiência , Subunidade gama Comum de Receptores de Interleucina/metabolismo , Interleucina-2/antagonistas & inibidores , Interleucina-2/imunologia , Interleucina-2/metabolismo , Subunidade beta de Receptor de Interleucina-2/metabolismo , Linfócitos do Interstício Tumoral/citologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Receptores de Prostaglandina E Subtipo EP2/antagonistas & inibidores , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Receptores de Prostaglandina E Subtipo EP4/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Microambiente Tumoral/imunologia
2.
Cell ; 137(1): 87-98, 2009 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-19345189

RESUMO

TGFbeta ligands act as tumor suppressors in early stage tumors but are paradoxically diverted into potent prometastatic factors in advanced cancers. The molecular nature of this switch remains enigmatic. Here, we show that TGFbeta-dependent cell migration, invasion and metastasis are empowered by mutant-p53 and opposed by p63. Mechanistically, TGFbeta acts in concert with oncogenic Ras and mutant-p53 to induce the assembly of a mutant-p53/p63 protein complex in which Smads serve as essential platforms. Within this ternary complex, p63 functions are antagonized. Downstream of p63, we identified two candidate metastasis suppressor genes associated with metastasis risk in a large cohort of breast cancer patients. Thus, two common oncogenic lesions, mutant-p53 and Ras, selected in early neoplasms to promote growth and survival, also prefigure a cellular set-up with particular metastasis proclivity by TGFbeta-dependent inhibition of p63 function.


Assuntos
Metástase Neoplásica , Proteínas Smad/metabolismo , Transativadores/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Humanos , Camundongos , Mutação , Transplante de Neoplasias , Organismos Livres de Patógenos Específicos , Fatores de Transcrição , Proteína Supressora de Tumor p53/genética , Proteínas ras/metabolismo
3.
Nat Chem Biol ; 16(11): 1269-1276, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32807968

RESUMO

T-cell recognition of peptides incorporating nonsynonymous mutations, or neoepitopes, is a cornerstone of tumor immunity and forms the basis of new immunotherapy approaches including personalized cancer vaccines. Yet as they are derived from self-peptides, the means through which immunogenic neoepitopes overcome immune self-tolerance are often unclear. Here we show that a point mutation in a non-major histocompatibility complex anchor position induces structural and dynamic changes in an immunologically active ovarian cancer neoepitope. The changes pre-organize the peptide into a conformation optimal for recognition by a neoepitope-specific T-cell receptor, allowing the receptor to bind the neoepitope with high affinity and deliver potent T-cell signals. Our results emphasize the importance of structural and physical changes relative to self in neoepitope immunogenicity. Considered broadly, these findings can help explain some of the difficulties in identifying immunogenic neoepitopes from sequence alone and provide guidance for developing novel, neoepitope-based personalized therapies.


Assuntos
Aciltransferases/metabolismo , Epitopos de Linfócito T/metabolismo , Tolerância Imunológica/efeitos dos fármacos , Imunoterapia/métodos , Peptídeos/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Aciltransferases/genética , Domínio Catalítico , Feminino , Genoma Humano , Humanos , Cinética , Simulação de Dinâmica Molecular , Mutação , Neoplasias Ovarianas/metabolismo , Ligação Proteica , Conformação Proteica , Transdução de Sinais , Relação Estrutura-Atividade , Linfócitos T/metabolismo , Termodinâmica
4.
Biochim Biophys Acta ; 1865(1): 72-82, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26241169

RESUMO

Immunotherapy is emerging as a promising anti-cancer curative modality. However, in contrast to recent advances obtained employing checkpoint blockade agents and T cell therapies, clinical efficacy of therapeutic cancer vaccines is still limited. Most vaccination attempts in the clinic represent "off-the shelf" approaches since they target common "self" tumor antigens, shared among different patients. In contrast, personalized approaches of vaccination are tailor-made for each patient and in spite being laborious, hold great potential. Recent technical advancement enabled the first steps in the clinic of personalized vaccines that target patient-specific mutated neo-antigens. Such vaccines could induce enhanced tumor-specific immune response since neo-antigens are mutation-derived antigens that can be recognized by high affinity T cells, not limited by central tolerance. Alternatively, the use of personalized vaccines based on whole autologous tumor cells, overcome the need for the identification of specific tumor antigens. Whole autologous tumor cells could be administered alone, pulsed on dendritic cells as lysate, DNA, RNA or delivered to dendritic cells in-vivo through encapsulation in nanoparticle vehicles. Such vaccines may provide a source for the full repertoire of the patient-specific tumor antigens, including its private neo-antigens. Furthermore, combining next-generation personalized vaccination with other immunotherapy modalities might be the key for achieving significant therapeutic outcome.


Assuntos
Imunoterapia Ativa , Neoplasias/terapia , Medicina de Precisão , Antígenos de Neoplasias/imunologia , Autoantígenos/imunologia , Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Humanos , Nanopartículas
5.
J Immunol ; 193(9): 4704-11, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25246498

RESUMO

Immunodominance is a complex phenomenon that relies on a mere numerical concept, while being potentially influenced at every step of the immune response. We investigated the mechanisms leading to the establishment of CTL immunodominance in a retroviral model and found that the previously defined subdominant Env-specific CD8(+) T cells are endowed with an unexpectedly higher functional avidity than is the immunodominant Gag-recognizing counterpart. This high avidity, along with the Env Ag overload, results in a supraoptimal TCR engagement. The overstimulation makes Env-specific T lymphocytes more susceptible to apoptosis, thus hampering their expansion and leading to an unintentional "immune kamikazing." Therefore, Ag-dependent, hyperactivation-induced cell death can be regarded as a novel mechanism in the establishment of the immunodominance that restrains and opposes the expansion of high-avidity T cells in favor of lower-affinity populations.


Assuntos
Epitopos Imunodominantes/imunologia , Ativação Linfocitária/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Antígenos Virais/imunologia , Apoptose/imunologia , Linhagem Celular , Citotoxicidade Imunológica , Feminino , Produtos do Gene env/imunologia , Produtos do Gene gag/imunologia , Humanos , Camundongos , Retroviridae/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Citotóxicos/metabolismo
6.
PLoS Genet ; 9(3): e1003350, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23555276

RESUMO

The CDKN1B gene encodes the cyclin-dependent kinase inhibitor p27(KIP1), an atypical tumor suppressor playing a key role in cell cycle regulation, cell proliferation, and differentiation. Impaired p27(KIP1) expression and/or localization are often observed in tumor cells, further confirming its central role in regulating the cell cycle. Recently, germline mutations in CDKN1B have been associated with the inherited multiple endocrine neoplasia syndrome type 4, an autosomal dominant syndrome characterized by varying combinations of tumors affecting at least two endocrine organs. In this study we identified a 4-bp deletion in a highly conserved regulatory upstream ORF (uORF) in the 5'UTR of the CDKN1B gene in a patient with a pituitary adenoma and a well-differentiated pancreatic neoplasm. This deletion causes the shift of the uORF termination codon with the consequent lengthening of the uORF-encoded peptide and the drastic shortening of the intercistronic space. Our data on the immunohistochemical analysis of the patient's pancreatic lesion, functional studies based on dual-luciferase assays, site-directed mutagenesis, and on polysome profiling show a negative influence of this deletion on the translation reinitiation at the CDKN1B starting site, with a consequent reduction in p27(KIP1) expression. Our findings demonstrate that, in addition to the previously described mechanisms leading to reduced p27(KIP1) activity, such as degradation via the ubiquitin/proteasome pathway or non-covalent sequestration, p27(KIP1) activity can also be modulated by an uORF and mutations affecting uORF could change p27(KIP1) expression. This study adds the CDKN1B gene to the short list of genes for which mutations that either create, delete, or severely modify their regulatory uORFs have been associated with human diseases.


Assuntos
Inibidor de Quinase Dependente de Ciclina p27 , Predisposição Genética para Doença , Neoplasia Endócrina Múltipla/genética , Biossíntese de Proteínas , Regiões 5' não Traduzidas , Ciclo Celular , Diferenciação Celular , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Células HeLa , Humanos , Neoplasia Endócrina Múltipla/metabolismo , Neoplasia Endócrina Múltipla/patologia , Mutagênese Sítio-Dirigida , Mutação , Fases de Leitura Aberta/genética
7.
Nat Commun ; 15(1): 3211, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615042

RESUMO

T cells have the ability to eliminate infected and cancer cells and play an essential role in cancer immunotherapy. T cell activation is elicited by the binding of the T cell receptor (TCR) to epitopes displayed on MHC molecules, and the TCR specificity is determined by the sequence of its α and ß chains. Here, we collect and curate a dataset of 17,715 αßTCRs interacting with dozens of class I and class II epitopes. We use this curated data to develop MixTCRpred, an epitope-specific TCR-epitope interaction predictor. MixTCRpred accurately predicts TCRs recognizing several viral and cancer epitopes. MixTCRpred further provides a useful quality control tool for multiplexed single-cell TCR sequencing assays of epitope-specific T cells and pinpoints a substantial fraction of putative contaminants in public databases. Analysis of epitope-specific dual α T cells demonstrates that MixTCRpred can identify α chains mediating epitope recognition. Applying MixTCRpred to TCR repertoires from COVID-19 patients reveals enrichment of clonotypes predicted to bind an immunodominant SARS-CoV-2 epitope. Overall, MixTCRpred provides a robust tool to predict TCRs interacting with specific epitopes and interpret TCR-sequencing data from both bulk and epitope-specific T cells.


Assuntos
COVID-19 , Aprendizado Profundo , Humanos , Linfócitos T , Epitopos , Epitopos Imunodominantes
8.
Nat Biotechnol ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714897

RESUMO

A central challenge in developing personalized cancer cell immunotherapy is the identification of tumor-reactive T cell receptors (TCRs). By exploiting the distinct transcriptomic profile of tumor-reactive T cells relative to bystander cells, we build and benchmark TRTpred, an antigen-agnostic in silico predictor of tumor-reactive TCRs. We integrate TRTpred with an avidity predictor to derive a combinatorial algorithm of clinically relevant TCRs for personalized T cell therapy and benchmark it in patient-derived xenografts.

9.
Sci Immunol ; 9(92): eadg7995, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38306416

RESUMO

Adoptive cell therapy (ACT) using ex vivo-expanded tumor-infiltrating lymphocytes (TILs) can eliminate or shrink metastatic melanoma, but its long-term efficacy remains limited to a fraction of patients. Using longitudinal samples from 13 patients with metastatic melanoma treated with TIL-ACT in a phase 1 clinical study, we interrogated cellular states within the tumor microenvironment (TME) and their interactions. We performed bulk and single-cell RNA sequencing, whole-exome sequencing, and spatial proteomic analyses in pre- and post-ACT tumor tissues, finding that ACT responders exhibited higher basal tumor cell-intrinsic immunogenicity and mutational burden. Compared with nonresponders, CD8+ TILs exhibited increased cytotoxicity, exhaustion, and costimulation, whereas myeloid cells had increased type I interferon signaling in responders. Cell-cell interaction prediction analyses corroborated by spatial neighborhood analyses revealed that responders had rich baseline intratumoral and stromal tumor-reactive T cell networks with activated myeloid populations. Successful TIL-ACT therapy further reprogrammed the myeloid compartment and increased TIL-myeloid networks. Our systematic target discovery study identifies potential T-myeloid cell network-based biomarkers that could improve patient selection and guide the design of ACT clinical trials.


Assuntos
Imunoterapia Adotiva , Melanoma , Humanos , Melanoma/genética , Linfócitos do Interstício Tumoral/metabolismo , Proteômica , Linfócitos T CD8-Positivos/metabolismo , Microambiente Tumoral
10.
Cell Syst ; 14(1): 72-83.e5, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36603583

RESUMO

The recognition of pathogen or cancer-specific epitopes by CD8+ T cells is crucial for the clearance of infections and the response to cancer immunotherapy. This process requires epitopes to be presented on class I human leukocyte antigen (HLA-I) molecules and recognized by the T-cell receptor (TCR). Machine learning models capturing these two aspects of immune recognition are key to improve epitope predictions. Here, we assembled a high-quality dataset of naturally presented HLA-I ligands and experimentally verified neo-epitopes. We then integrated these data in a refined computational framework to predict antigen presentation (MixMHCpred2.2) and TCR recognition (PRIME2.0). The depth of our training data and the algorithmic developments resulted in improved predictions of HLA-I ligands and neo-epitopes. Prospectively applying our tools to SARS-CoV-2 proteins revealed several epitopes. TCR sequencing identified a monoclonal response in effector/memory CD8+ T cells against one of these epitopes and cross-reactivity with the homologous peptides from other coronaviruses.


Assuntos
Linfócitos T CD8-Positivos , COVID-19 , Humanos , Epitopos de Linfócito T , Apresentação de Antígeno , SARS-CoV-2 , Ligantes , Receptores de Antígenos de Linfócitos T , Antígenos HLA
11.
J Infect ; 87(2): 111-119, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37321353

RESUMO

OBJECTIVES: Intradermal skin test (IDT) with mRNA vaccines may represent a simple, reliable, and affordable tool to measure T cell response in immunocompromised patients who failed to mount serological responses following vaccination with mRNA covid-19 vaccines. METHODS: We compared anti-SARS-CoV-2 antibodies and cellular responses in vaccinated immunocompromised patients (n = 58), healthy seronegative naive controls (NC, n = 8), and healthy seropositive vaccinated controls (VC, n = 32) by Luminex, spike-induced IFN-γ Elispot and an IDT. A skin biopsy 24 h after IDT and single-cell RNAseq was performed in three vaccinated volunteers. RESULTS: Twenty-five percent of seronegative NC had a positive Elispot (2/8) and IDT (1/4), compared to 95% (20/21) and 93% (28/30) in seropositive VC, respectively. Single-cell RNAseq data in the skin of VC showed a predominant mixed population of effector helper and cytotoxic T cells. The TCR repertoire revealed 18/1064 clonotypes with known specificities against SARS-CoV-2, among which six were spike-specific. Seronegative immunocompromised patients with positive Elispot and IDT were in 83% (5/6) treated with B cell-depleting reagents, while those with negative IDT were all transplant recipients. CONCLUSIONS: Our results indicate that delayed local reaction to IDT reflects vaccine-induced T-cell immunity opening new perspectives to monitor seronegative patients and elderly populations with waning immunity.


Assuntos
COVID-19 , Linfócitos T , Idoso , Humanos , Vacinas contra COVID-19 , COVID-19/diagnóstico , COVID-19/prevenção & controle , SARS-CoV-2 , Biomarcadores , Vacinas de mRNA , Anticorpos Antivirais , Hospedeiro Imunocomprometido , Testes Cutâneos , Vacinação
12.
Cell Rep Methods ; 3(4): 100459, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37159666

RESUMO

T cell receptor (TCR) technologies, including repertoire analyses and T cell engineering, are increasingly important in the clinical management of cellular immunity in cancer, transplantation, and other immune diseases. However, sensitive and reliable methods for repertoire analyses and TCR cloning are still lacking. Here, we report on SEQTR, a high-throughput approach to analyze human and mouse repertoires that is more sensitive, reproducible, and accurate as compared with commonly used assays, and thus more reliably captures the complexity of blood and tumor TCR repertoires. We also present a TCR cloning strategy to specifically amplify TCRs from T cell populations. Positioned downstream of single-cell or bulk TCR sequencing, it allows time- and cost-effective discovery, cloning, screening, and engineering of tumor-specific TCRs. Together, these methods will accelerate TCR repertoire analyses in discovery, translational, and clinical settings and permit fast TCR engineering for cellular therapies.


Assuntos
Neoplasias , Receptores de Antígenos de Linfócitos T , Humanos , Animais , Camundongos , Receptores de Antígenos de Linfócitos T/genética , Neoplasias/genética , Bioensaio , Engenharia Celular , Clonagem Molecular
13.
Nat Cancer ; 4(10): 1410-1417, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37735588

RESUMO

We have previously shown that vaccination with tumor-pulsed dendritic cells amplifies neoantigen recognition in ovarian cancer. Here, in a phase 1 clinical study ( NCT01312376 /UPCC26810) including 19 patients, we show that such responses are further reinvigorated by subsequent adoptive transfer of vaccine-primed, ex vivo-expanded autologous peripheral blood T cells. The treatment is safe, and epitope spreading with novel neopeptide reactivities was observed after cell infusion in patients who experienced clinical benefit, suggesting reinvigoration of tumor-sculpting immunity.


Assuntos
Neoplasias Ovarianas , Vacinas , Humanos , Feminino , Neoplasias Ovarianas/terapia , Transferência Adotiva , Vacinação , Linfócitos T
14.
Nat Commun ; 14(1): 3188, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280206

RESUMO

The success of cancer immunotherapy depends in part on the strength of antigen recognition by T cells. Here, we characterize the T cell receptor (TCR) functional (antigen sensitivity) and structural (monomeric pMHC-TCR off-rates) avidities of 371 CD8 T cell clones specific for neoantigens, tumor-associated antigens (TAAs) or viral antigens isolated from tumors or blood of patients and healthy donors. T cells from tumors exhibit stronger functional and structural avidity than their blood counterparts. Relative to TAA, neoantigen-specific T cells are of higher structural avidity and, consistently, are preferentially detected in tumors. Effective tumor infiltration in mice models is associated with high structural avidity and CXCR3 expression. Based on TCR biophysicochemical properties, we derive and apply an in silico model predicting TCR structural avidity and validate the enrichment in high avidity T cells in patients' tumors. These observations indicate a direct relationship between neoantigen recognition, T cell functionality and tumor infiltration. These results delineate a rational approach to identify potent T cells for personalized cancer immunotherapy.


Assuntos
Melanoma , Animais , Camundongos , Melanoma/metabolismo , Linfócitos T CD8-Positivos , Receptores de Antígenos de Linfócitos T/metabolismo , Antígenos de Neoplasias , Células Clonais/metabolismo
15.
J Immunol ; 184(10): 5895-902, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20385879

RESUMO

Although adoptive immunotherapy with CD8(+) CTL is providing clinically relevant results against EBV-driven malignancies, the effector role of CD4(+) T cells has been poorly investigated. We addressed this issue in a lymphoblastoid cell line-induced mouse model of posttransplant lymphoproliferative disease (PTLD) by comparing the therapeutic efficacy of EBV-specific CD4(+) and CD8(+) T cell lines upon adoptive transfer. CD4(+) T cells disclosed a long-lasting and stronger proliferative potential than CD8(+) T cells, had a similar activation and differentiation marker profile, efficiently killed their targets in a MHC class II-restricted manner, and displayed a lytic machinery comparable to that of cognate CD8(+) T cells. A detailed analysis of Ag specificity revealed that CD4(+) T cells potentially target EBV early lytic cycle proteins. Nonetheless, when assessed for the relative therapeutic impact after in vivo transfer, CD4(+) T cells showed a reduced activity compared with the CD8(+) CTL counterpart. This feature was apparently due to a strong and selective downmodulation of MHC class II expression on the tumor cells surface, a phenomenon that could be reverted by the demethylating agent 5-aza-2'-deoxycytidine, thus leading to restoration of lymphoblastoid cell line recognition and killing by CD4(+) T cells, as well as to a more pronounced therapeutic activity. Conversely, immunohistochemical analysis disclosed that HLA-II expression is fully retained in human PTLD samples. Our data indicate that EBV-specific cytotoxic CD4(+) T cells are therapeutic in mice bearing PTLD-like tumors, even in the absence of CD8(+) T cells. These findings pave the way to use cultures of pure CD4(+) T cells in immunotherapeutic approaches for EBV-related malignancies.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/transplante , Testes Imunológicos de Citotoxicidade , Epitopos de Linfócito T/imunologia , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/terapia , Herpesvirus Humano 4/imunologia , Imunoterapia Adotiva , Animais , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/virologia , Callithrix , Linhagem Celular Transformada , Linhagem Celular Tumoral , Testes Imunológicos de Citotoxicidade/métodos , Regulação para Baixo/imunologia , Infecções por Vírus Epstein-Barr/patologia , Antígenos HLA-DR/biossíntese , Antígenos HLA-DR/imunologia , Antígenos HLA-DR/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Imunoterapia Adotiva/métodos , Linfoma de Células B/imunologia , Linfoma de Células B/patologia , Linfoma de Células B/terapia , Camundongos , Camundongos SCID
16.
Nat Biotechnol ; 40(5): 656-660, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34782741

RESUMO

The identification of patient-specific tumor antigens is complicated by the low frequency of T cells specific for each tumor antigen. Here we describe NeoScreen, a method that enables the sensitive identification of rare tumor (neo)antigens and of cognate T cell receptors (TCRs) expressed by tumor-infiltrating lymphocytes. T cells transduced with tumor antigen-specific TCRs identified by NeoScreen mediate regression of established tumors in patient-derived xenograft mice.


Assuntos
Neoplasias , Receptores de Antígenos de Linfócitos T , Animais , Antígenos de Neoplasias/genética , Linfócitos T CD8-Positivos , Humanos , Linfócitos do Interstício Tumoral , Camundongos , Neoplasias/genética , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T
17.
Front Immunol ; 12: 701636, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394096

RESUMO

Mutation-derived neoantigens are now established as attractive targets for cancer immunotherapy. The field of adoptive T cell transfer (ACT) therapy was significantly reshaped by tumor neoantigens and is now moving towards the genetic engineering of T cells with neoantigen-specific T cell receptors (TCRs). Yet, the identification of neoantigen-reactive TCRs remains challenging and the process needs to be adapted to clinical timelines. In addition, the state of recipient T cells for TCR transduction is critical and can affect TCR-ACT efficacy. Here we provide an overview of the main strategies for TCR-engineering, describe the selection and expansion of optimal carrier cells for TCR-ACT and discuss the next-generation methods for rapid identification of relevant TCR candidates for gene transfer therapy.


Assuntos
Neoplasias/imunologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Antígenos de Neoplasias/imunologia , Humanos , Imunoterapia/métodos , Linfócitos do Interstício Tumoral/imunologia
18.
Micromachines (Basel) ; 12(9)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34577720

RESUMO

Droplet microfluidics are characterized by the generation and manipulation of discrete volumes of solutions, generated with the use of immiscible phases. Those droplets can then be controlled, transported, analyzed or their content modified. In this wide droplet microfluidic toolbox, no means are available to generate, in a controlled manner, droplets co-encapsulating to aqueous phases. Indeed, current methods rely on random co-encapsulation of two aqueous phases during droplet generation or the merging of two random droplets containing different aqueous phases. In this study, we present a novel droplet microfluidic device to reliably and efficiently co-encapsulate two different aqueous phases in micro-droplets. In order to achieve this, we combined existing droplet microfluidic modules in a novel way. The different aqueous phases are individually encapsulated in droplets of different sizes. Those droplet populations are then filtered in order to position each droplet type towards its adequate trapping compartment in traps of a floating trap array. Single droplets, each containing a different aqueous phase, are thus paired and then merged. This pairing at high efficiency is achieved thanks to a unique combination of floating trap arrays, a droplet railing system and a droplet size-based filtering mechanism. The microfluidic chip design presented here provides a filtering threshold with droplets larger than 35 µm (big droplets) being deviated to the lower rail while droplets smaller than 20 µm (small droplets) remain on the upper rail. The effects of the rail height and the distance between the two (upper and lower) rails were investigated. The optimal trap dimensions provide a trapping efficiency of 100% for small and big droplets with a limited double trapping (both compartments of the traps filled with the same droplet type) of 5%. The use of electrocoalescence enables the generation of a droplet while co-encapsulating two aqueous phases. Using the presented microfluidic device libraries of 300 droplets, dual aqueous content can be generated in less than 30 min.

19.
Cell Rep Med ; 2(2): 100194, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33665637

RESUMO

CD8+ T cell recognition of peptide epitopes plays a central role in immune responses against pathogens and tumors. However, the rules that govern which peptides are truly recognized by existing T cell receptors (TCRs) remain poorly understood, precluding accurate predictions of neo-epitopes for cancer immunotherapy. Here, we capitalize on recent (neo-)epitope data to train a predictor of immunogenic epitopes (PRIME), which captures molecular properties of both antigen presentation and TCR recognition. PRIME not only improves prioritization of neo-epitopes but also correlates with T cell potency and unravels biophysical determinants of TCR recognition that we experimentally validate. Analysis of cancer genomics data reveals that recurrent mutations tend to be less frequent in patients where they are predicted to be immunogenic, providing further evidence for immunoediting in human cancer. PRIME will facilitate identification of pathogen epitopes in infectious diseases and neo-epitopes in cancer immunotherapy.


Assuntos
Apresentação de Antígeno/imunologia , Epitopos de Linfócito T/imunologia , Neoplasias/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/genética , Humanos , Imunoterapia/métodos , Peptídeos/imunologia
20.
Cell Rep ; 36(3): 109412, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34289354

RESUMO

In this study, we investigate mechanisms leading to inflammation and immunoreactivity in ovarian tumors with homologous recombination deficiency (HRD). BRCA1 loss is found to lead to transcriptional reprogramming in tumor cells and cell-intrinsic inflammation involving type I interferon (IFN) and stimulator of IFN genes (STING). BRCA1-mutated (BRCA1mut) tumors are thus T cell inflamed at baseline. Genetic deletion or methylation of DNA-sensing/IFN genes or CCL5 chemokine is identified as a potential mechanism to attenuate T cell inflammation. Alternatively, in BRCA1mut cancers retaining inflammation, STING upregulates VEGF-A, mediating immune resistance and tumor progression. Tumor-intrinsic STING elimination reduces neoangiogenesis, increases CD8+ T cell infiltration, and reverts therapeutic resistance to dual immune checkpoint blockade (ICB). VEGF-A blockade phenocopies genetic STING loss and synergizes with ICB and/or poly(ADP-ribose) polymerase (PARP) inhibitors to control the outgrowth of Trp53-/-Brca1-/- but not Brca1+/+ ovarian tumors in vivo, offering rational combinatorial therapies for HRD cancers.


Assuntos
Proteína BRCA1/deficiência , Inflamação/patologia , Proteínas de Membrana/metabolismo , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/patologia , Animais , Proteína BRCA1/metabolismo , Linhagem Celular Tumoral , Quimiocina CCL5/metabolismo , Cromatina/metabolismo , DNA/metabolismo , Dano ao DNA , Epigênese Genética , Feminino , Inativação Gênica , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inflamação/complicações , Inflamação/imunologia , Interferons/metabolismo , Camundongos Endogâmicos C57BL , Gradação de Tumores , Neovascularização Patológica/patologia , Neoplasias Ovarianas/complicações , Neoplasias Ovarianas/genética , Proteínas Serina-Treonina Quinases/metabolismo , Linfócitos T/imunologia , Transcrição Gênica , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa