Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 68: 116880, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35714535

RESUMO

l-Threonine aldolases (LTAs) employing pyridoxal phosphate (PLP) as cofactor can convert low-cost achiral substrates glycine and aldehyde directly into valuable ß-hydroxy-α-amino acids such as (2R,3S)-2-amino-3-hydroxy-3-(4-nitrophenyl) propanoic acid ((R,S)-AHNPA), which is utilized broadly as crucial chiral intermediates for bioactive compounds. However, LTAs' stereospecificity towards the ß carbon is rather moderate and their activity and stability at high substrate load is low, which limits their industrial application. Here, computer-aided directed evolution was applied to improve overall activity, selectivity and stability under desired process conditions of a l-threonine aldolase in the asymmetric synthesis of (R,S)-AHNPA. Selectivity and stability determining regions were computationally identified for structure-guided directed evolution of LTA-variants under efficient biocatalytic process conditions using 40% ethanol as cosolvent. We applied molecular modeling to rationalize selectivity improvement and design focused libraries targeting the substrate binding pocket, and we also used MD simulations in nonaqueous process environment as an effective and promising method to predict potential unstable loop regions near the tetramer interface which are hot-spots for cosolvent resistance. An excellent LTA variant EM-ALDO031 with 18 mutations was obtained, which showed âˆ¼ 30-fold stability improvement in 40% ethanol and diastereoselectivity (de) raised from 31.5% to 85% through a three-phase evolution campaign. Our fast and efficient data-driven methodology utilizing a combination of experimental and computational tools enabled us to evolve an aldolase variant to achieve the target of 90% conversion at up to 150 g/L substrate load in 40% ethanol, enabling the biocatalytic production of ß-hydroxy-α-amino acids from cheap achiral precursors at multi-ton scale.


Assuntos
Cloranfenicol , Glicina Hidroximetiltransferase , Aminoácidos/química , Computadores , Etanol , Glicina Hidroximetiltransferase/química , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/metabolismo , Hidrolases/metabolismo , Especificidade por Substrato
2.
J Biol Chem ; 294(36): 13434-13444, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31337703

RESUMO

High sequence and structural homology between mature human insulin-like growth factors IGF-1 and IGF-2 makes serological discrimination by immunodiagnostic IGF tests a challenging task. There is an urgent need for highly specific IGF-1 and IGF-2 antibodies, yet only a short sequence element, i.e. the IGF loop, provides enough difference in sequence to discriminate between the two molecules. We sought to address this unmet demand by investigating novel chimeric immunogens as carriers for recombinant peptide motif grafting. We found Thermus thermophilus sensitive to lysis D (SlyD) and Thermococcus gammatolerans SlyD FK-506-binding protein (FKBP) domains suitable for presentation of the predefined epitopes, namely the IGF-1 and IGF-2 loops. Chimeric SlyD-IGF proteins allowed for the development of exceptionally specific IGF-1 and IGF-2 monoclonal antibodies. The selected antibodies bound with high affinity to the distinct IGF epitopes displayed on the protein scaffolds, as well as on the mature human IGF isoforms. The respective SlyD scaffolds display favorable engineering properties in that they are small, monomeric, and cysteine-free and can be produced in high yields in a prokaryotic host, such as Escherichia coli In conclusion, FKBP domains from thermostable SlyD proteins are highly suitable as a generic scaffold platform for epitope grafting.


Assuntos
Anticorpos Monoclonais/imunologia , Epitopos/imunologia , Fator de Crescimento Insulin-Like II/imunologia , Fator de Crescimento Insulin-Like I/imunologia , Temperatura , Humanos , Simulação de Dinâmica Molecular
3.
Chembiochem ; 21(20): 2957-2965, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32415803

RESUMO

The zinc-dependent medium-chain alcohol dehydrogenase from Rhodococcus erythropolis (ReADH) is one of the most versatile biocatalysts for the stereoselective reduction of ketones to chiral alcohols. Despite its known broad substrate scope, ReADH only accepts carbonyl substrates with either a methyl or an ethyl group adjacent to the carbonyl moiety; this limits its use in the synthesis of the chiral alcohols that serve as a building blocks for pharmaceuticals. Protein engineering to expand the substrate scope of ReADH toward bulky substitutions next to carbonyl group (ethyl 2-oxo-4-phenylbutyrate) opens up new routes in the synthesis of ethyl-2-hydroxy-4-phenylbutanoate, an important intermediate for anti-hypertension drugs like enalaprilat and lisinopril. We have performed computer-aided engineering of ReADH toward ethyl 2-oxo-4-phenylbutyrate and octanone derivatives. W296, which is located in the small binding pocket of ReADH, sterically restricts the access of ethyl 2-oxo-4-phenylbutyrate, octan-3-one or octan-4-one toward the catalytic zinc ion and thereby limits ReADH activity. Computational analysis was used to identify position W296 and site-saturation mutagenesis (SSM) yielded an improved variant W296A with a 3.6-fold improved activity toward ethyl 2-oxo-4-phenylbutyrate when compared to WT ReADH (ReADH W296A: 17.10 U/mg and ReADH WT: 4.7 U/mg). In addition, the regioselectivity of ReADH W296A is shifted toward octanone substrates. ReADH W296A has a more than 16-fold increased activity toward octan-4-one (ReADH W296A: 0.97 U/mg and ReADH WT: 0.06 U/mg) and a more than 30-fold decreased activity toward octan-2-one (ReADH W296A: 0.23 U/mg and ReADH WT: 7.69 U/mg). Computational and experimental results revealed the role of position W296 in controlling the substrate scope and regiopreference of ReADH for a variety of carbonyl substrates.


Assuntos
Álcool Desidrogenase/metabolismo , Complexos de Coordenação/metabolismo , Octanos/metabolismo , Rhodococcus/enzimologia , Zinco/metabolismo , Álcool Desidrogenase/química , Biocatálise , Complexos de Coordenação/química , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Octanos/química , Engenharia de Proteínas , Zinco/química
4.
J Am Chem Soc ; 140(1): 310-318, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29232125

RESUMO

Directed evolution of limonene epoxide hydrolase (LEH), which catalyzes the hydrolytic desymmetrization reactions of cyclopentene oxide and cyclohexene oxide, results in (R,R)- and (S,S)-selective mutants. Their crystal structures combined with extensive theoretical computations shed light on the mechanistic intricacies of this widely used enzyme. From the computed activation energies of various pathways, we discover the underlying stereochemistry for favorable reactions. Surprisingly, some of the most enantioselective mutants that rapidly convert cyclohexene oxide do not catalyze the analogous transformation of the structurally similar cyclopentene oxide, as shown by additional X-ray structures of the variants harboring this slightly smaller substrate. We explain this puzzling observation on the basis of computational calculations which reveal a disrupted alignment between nucleophilic water and cyclopentene oxide due to the pronounced flexibility of the binding pocket. In contrast, in the stereoselective reactions of cyclohexene oxide, reactive conformations are easily reached. The unique combination of structural and computational data allows insight into mechanistic details of this epoxide hydrolase and provides guidance for future protein engineering in reactions of structurally different substrates.


Assuntos
Biocatálise , Cicloexenos/metabolismo , Epóxido Hidrolases/química , Epóxido Hidrolases/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação , Terpenos/metabolismo , Epóxido Hidrolases/genética , Limoneno , Simulação de Dinâmica Molecular , Estrutura Molecular , Proteínas Mutantes/genética , Teoria Quântica , Estereoisomerismo
5.
Biochem Biophys Res Commun ; 499(2): 233-238, 2018 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-29567479

RESUMO

Protein engineering of enzyme loop regions is an effective strategy to improve enzymatic properties. Previous studies that aimed to boost the activity of PpADI (an arginine deiminase from Pseudomonas plecoglossicida) under physiological conditions yielded several significantly improved variants that harbor substitutions predominantly located in active-site-decorating loops. A multi-site saturation mutagenesis at four positions in loop 1 (37, 38, 42, and 43) and three positions in loop 4 (402, 403, and 404) was performed to elucidate the importance of these loops in modulating the substrate affinity of PpADI. The identified "best" variant (M6-L1-4) showed a decreased S0.5 ('KM') of 0.48 mM compared with the parent M6 (0.81 mM). Subsequently, a rational design to recombine beneficial substitutions within loops 1 and 4 yielded variant L6 with a substantially decreased S0.5 value (0.17 mM). A comprehensive simulation analysis resulted in a conclusion that high loop flexibility (especially the gating residue Arg400) is beneficial for substrate affinity due to less efficient blocking of the active site.


Assuntos
Domínio Catalítico , Hidrolases/química , Hidrolases/metabolismo , Engenharia de Proteínas , Pseudomonas/enzimologia , Sequência de Aminoácidos , Cinética , Simulação de Dinâmica Molecular , Proteínas Mutantes/química , Estrutura Secundária de Proteína , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato
6.
Biochim Biophys Acta Proteins Proteom ; 1866(1): 134-140, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28739446

RESUMO

P450 BM3 is a multi-domain heme-containing soluble bacterial monooxygenase. P450 BM3 and variants are known to oxidize structurally diverse substrates. Crystal structures of individual domains of P450 BM3 are available. However, the spatial organization of the full-length protein is unknown. In this study, crystal structures of the P450 BM3 M7 heme domain variant with and without cobalt (III) sepulchrate are reported. Cobalt (III) sepulchrate acts as an electron shuttle in an alternative cofactor system employing zinc dust as the electron source. The crystal structure shows a binding site for the mediator cobalt (III) sepulchrate at the entrance of the substrate access channel. The mediator occupies an unusual position which is far from the active site and distinct from the binding of the natural redox partner (FAD/NADPH binding domain).


Assuntos
Bacillus megaterium/química , Proteínas de Bactérias/química , Cobalto/química , Coenzimas/química , Sistema Enzimático do Citocromo P-450/química , Elétrons , Heme/química , NADPH-Ferri-Hemoproteína Redutase/química , NADP/química , Bacillus megaterium/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Clonagem Molecular , Cobalto/metabolismo , Coenzimas/metabolismo , Cristalografia por Raios X , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Heme/metabolismo , Modelos Moleculares , NADP/metabolismo , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Zinco/química , Zinco/metabolismo
7.
Biotechnol Bioeng ; 115(10): 2405-2415, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29959868

RESUMO

Glucose oxidase (GOx) is of high industrial interest for glucose sensing because of its high ß-d-glucose specificity. The efficient and specific electrochemical communication between the redox center and electrodes is crucial to ensure accurate glucose determination. The efficiency of the electron transfer rates (ETR) with GOx, together with quinone diamine based mediators, is low and differs even among mediator derivatives. To design optimized enzyme-mediator couples and to describe a mediator binding model, a joint experimental and computational study was performed based on an oxygen-independent GOx variant V7 and two quinone diimine based electron mediators (QDM-1 and QDM-2), which differ in polarity and size, and ferrocenemethanol (FM). A site saturation library at position 414 was screened with all three mediators and yielded four beneficial substitutions Tyr, Met, Leu, and Val. The variants showed increased mediator activity for the more polar QDM-2 with a simultaneously decreased activity for the less polar and smaller QDM-1 and for FM. The variant GOx V7-I414Y exhibited the biggest change for the quinone diimine derivatives compared with V7 (QDM-1: 55.9 U/mg V7, 33.2 U/mg V7-I414Y; QDM-2: 2.7 U/mg V7, 12.9 U/mg V7-I414Y). Theoretical ETR calculated based on the Marcus theory were in good agreement with the experimental results. Molecular docking studies revealed a preferable binding of the two QD mediators directly in the active site, 3.5 Å away from the N5 atom of the flavin adenine dinucleotide (FAD) and in direct vicinity to position 414. In summary, position 414 in the active site was identified to modulate the electron shuttling from the FAD of the GOx to small water-soluble mediators dependent on the polarity and size of residue 414 and on the polarity and size of the mediator. The presented mediator binding model offers a promising possibility for the design of optimized enzyme-mediator couples.


Assuntos
Benzoquinonas/química , Glucose Oxidase/química , Glucose/química , Simulação de Acoplamento Molecular , Oxigênio/química , Engenharia de Proteínas , Domínio Catalítico , Transporte de Elétrons , Glucose Oxidase/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
8.
Phys Chem Chem Phys ; 20(14): 9600-9609, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29578220

RESUMO

Understanding of the structural and dynamic properties of enzymes in non-aqueous media (e.g., ionic liquids, ILs) is highly attractive for protein engineers and synthetic biochemists. Despite a growing number of molecular dynamics (MD) simulation studies on the influence of different ILs on wild-type enzymes, the effects of various amino acid substitutions on the stability and activity of enzymes in ILs remain to be unraveled at the molecular level. Herein, we selected fifty previously reported Bacillus subtilis lipase A (BSLA) variants with increased resistance towards an IL (15 vol% 1-butyl-3-methylimidazolium trifluoromethanesulfonate; [Bmim][TfO]), and also ten non-resistant BSLA variants for a MD simulation study to identify the underlying molecular principles. Some important properties differentiating resistant and non-resistant BSLA variants from wild-type were elucidated. Results show that, in 15 vol% [Bmim][TfO] aqueous solution, 40% and 60% of non-resistant variants have lower and equal probabilities to form a catalytically important hydrogen bond between S77 and H156 compared to wild-type, whereas 36% and 56% of resistant variants show increased and equal probabilities, respectively. Introducing positively charged amino acids close to the substrate-binding cleft for instance I12R is beneficial for the BSLA resistance towards 15 vol% [Bmim][TfO], likely due to the reduced probability of [Bmim]+ cations clustering near the cleft. In contrast, substitution with a large hydrophobic residue like I12F can block the cleft through hydrophobic interaction with a neighboring nonpolar loop 134-137 or/and an attractive π-π interaction with [Bmim]+ cations. In addition, the resistant variants having polar substitutions on the surface show higher ability to stabilize the surface water molecule network in comparison to non-resistant variants. This study can guide experimentalists to rationally design promising IL-resistant enzymes, and contribute to a deeper understanding of protein-IL interactions at the molecular level.


Assuntos
Líquidos Iônicos/química , Lipase/química , Simulação de Dinâmica Molecular , Substituição de Aminoácidos , Bacillus subtilis , Transporte Biológico , Catálise , Cátions , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Imidazóis/química , Mesilatos/química , Conformação Proteica , Relação Estrutura-Atividade
9.
Chemistry ; 23(51): 12636-12645, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-28727189

RESUMO

Expanding the substrate scope of enzymes opens up new routes for synthesis of valuable chemicals. Ketone-functionalized fatty acid derivatives and corresponding chiral alcohols are valuable building blocks for the synthesis of a variety of chemicals including pharmaceuticals. The alcohol dehydrogenase from Candida parapsilosis (cpADH5) catalyzes the reversible oxidations of chiral alcohols and has a broad substrate range; a challenge for cpADH5 is to convert alcohols with small substituents (methyl or ethyl) next to the oxidized alcohol moiety. Molecular docking studies revealed that W286 is located in the small binding pocket and limits the access to substrates that contain aliphatic chains longer than ethyl substituent. In the current manuscript, we report that positions L119 and W286 are key residues to boost oxidation of medium chain methyl 3-hydroxy fatty acids; interestingly the enantiopreference toward methyl 3-hydroxybutyrate was inverted. Kinetic characterization of W286A showed a 5.5 fold increase of Vmax and a 9.6 fold decrease of Km values toward methyl 3-hydroxyhexanoate (Vmax : 2.48 U mg- and Km : 4.76 mm). Simultaneous saturation at positions 119 and 286 library yielded a double mutant (L119M/W286S) with more than 30-fold improved activity toward methyl 3-hydroxyoctanoate (WT: no conversion; L119M/W286S: 30 %) and inverted enantiopreference (S-enantiomer ≥99 % activity decrease and R-enantiomer >20-fold activity improvement) toward methyl 3-hydroxybutyrate.

10.
Soft Matter ; 13(15): 2866-2875, 2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28352880

RESUMO

The high interfacial activity of protein-polymer conjugates has inspired their use as stabilizers for Pickering emulsions, resulting in many interesting applications such as synthesis of templated micro-compartments and protocells or vehicles for drug and gene delivery. In this study we report, for the first time, the stabilization of Pickering emulsions with conjugates of a genetically modified transmembrane protein, ferric hydroxamate uptake protein component A (FhuA). The lysine residues of FhuA with open pore (FhuA ΔCVFtev) were modified to attach an initiator and consequently controlled radical polymerization (CRP) carried out via the grafting-from technique. The resulting conjugates of FhuA ΔCVFtev with poly(N-isopropylacrylamide) (PNIPAAm) and poly((2-dimethylamino)ethyl methacrylate) (PDMAEMA), the so-called building blocks based on transmembrane proteins (BBTP), have been shown to engender larger structures. The properties such as pH-responsivity, temperature-responsivity and interfacial activity of the BBTP were analyzed using UV-Vis spectrophotometry and pendant drop tensiometry. The BBTP were then utilized for the synthesis of highly stable Pickering emulsions, which could remain non-coalesced for well over a month. A new UV-crosslinkable monomer was synthesized and copolymerized with NIPAAm from the protein. The emulsion droplets, upon crosslinking of polymer chains, yielded micro-compartments. Fluorescence microscopy proved that these compartments are of micrometer scale, while cryo-scanning electron microscopy and scanning force microscopy analysis yielded a thickness in the range of 11.1 ± 0.6 to 38.0 ± 18.2 nm for the stabilizing layer of the conjugates. Such micro-compartments would prove to be beneficial in drug delivery applications, owing to the possibility of using the channel of the transmembrane protein as a gate and the smart polymer chains as trigger switches to tune the behavior of the capsules.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/química , Nanoestruturas/química , Polímeros/química , Concentração de Íons de Hidrogênio , Lisina , Modelos Moleculares , Domínios Proteicos , Temperatura
11.
Appl Microbiol Biotechnol ; 101(8): 3177-3187, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28050632

RESUMO

The quality of amino acid substitution patterns in random mutagenesis libraries is decisive for the success in directed evolution campaigns. In this manuscript, we provide a detailed analysis of the amino acid substitutions by analyzing 3000 mutations of three random mutagenesis libraries (1000 mutations each; epPCR with a low-mutation and a high-mutation frequency and SeSaM-Tv P/P) employing lipase A from Bacillus subtilis (bsla). A comparison of the obtained numbers of beneficial variants in the mentioned three random mutagenesis libraries with a site saturation mutagenesis (SSM) (covering the natural diversity at each amino acid position of BSLA) concludes the diversity analysis. Seventy-six percent of the SeSaM-Tv P/P-generated substitutions yield chemically different amino acid substitutions compared to 64% (epPCR-low) and 69% (epPCR-high). Unique substitutions from one amino acid to others are termed distinct amino acid substitutions. In the SeSaM-Tv P/P library, 35% of all theoretical distinct amino acid substitutions were found in the 1000 mutation library compared to 25% (epPCR-low) and 26% (epPCR-high). Thirty-six percent of distinct amino acid substitutions found in SeSaM-Tv P/P were unobtainable by epPCR-low. Comparison with the SSM library showed that epPCR-low covers 15%, epPCR-high 18%, and SeSaM-Tv P/P 21% of obtainable beneficial amino acid positions. In essence, this study provides first insights on the quality of epPCR and SeSaM-Tv P/P libraries in terms of amino acid substitutions, their chemical differences, and the number of obtainable beneficial amino acid positions.


Assuntos
Substituição de Aminoácidos , Biblioteca Gênica , Mutagênese , Mutação , Bacillus subtilis/enzimologia , Análise Mutacional de DNA , Evolução Molecular Direcionada/métodos , Lipase/genética , Reação em Cadeia da Polimerase/métodos , Engenharia de Proteínas/métodos
12.
Biotechnol Lett ; 39(2): 283-288, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27783176

RESUMO

OBJECTIVES: To explore systemic effects of mutations in the UDP-N-acetylmuramoylalanyl-D-glutamate 2,6-diaminopimelate ligase (MurE) of Corynebacterium glutamicum, that leads to extracellular L-lysine accumulation by this bacterium. RESULTS: The analysis of a mutant cohort of C. glutamicum strains carrying all possible 20 amino acids at position 81 of MurE revealed unexpected effects on cellular properties. With increasing L-lysine accumulation the growth rate of the producing strain is reduced. A dynamic flux balance analysis including the flux over MurE fully supports this finding and suggests that further reductions at this flux control point would enhance L-lysine accumulation even further. The strain carrying the best MurE variant MurE-G81K produces 37 mM L-lysine with a yield of 0.17 g/g (L-lysine·HCl/glucose·H2O), bearing no other genetic modification. Interestingly, among the strains with high L-lysine titers, strain variants occur which, despite possessing the desired amino acid substitutions in MurE, have regained close to normal growth and correspondingly lower L-lysine accumulation. Genome analyses of such variants revealed the transposition of mobile genetic elements which apparently annulled the favorable consequences of the MurE mutations on L-lysine formation. CONCLUSION: MurE is an attractive target to achieve high L-lysine accumulation, and product formation is inversely related to the specific growth rate. Moreover, single point mutations leading to elevated L-lysine titers may cause systemic effects on different levels comprising also major genome modifications. The latter caused by the activity of mobile genetic elements, most likely due to the stress conditions being characteristic for microbial metabolite producers.


Assuntos
Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/enzimologia , Corynebacterium glutamicum/metabolismo , Lisina/metabolismo , Peptídeo Sintases/metabolismo , Proteínas de Bactérias/genética , Peptídeo Sintases/genética
13.
Beilstein J Org Chem ; 13: 1498-1506, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28845193

RESUMO

Covering hydrophobic regions with stabilization agents to solubilize purified transmembrane proteins is crucial for their application in aqueous media. The small molecule 2-methyl-2,4-pentanediol (MPD) was used to stabilize the transmembrane protein Ferric hydroxamate uptake protein component A (FhuA) utilized as host for the construction of a rhodium-based biohybrid catalyst. Unlike commonly used detergents such as sodium dodecyl sulfate or polyethylene polyethyleneglycol, MPD does not form micelles in solution. Molecular dynamics simulations revealed the effect and position of stabilizing MPD molecules. The advantage of the amphiphilic MPD over micelle-forming detergents is demonstrated in the polymerization of phenylacetylene, showing a ten-fold increase in yield and increased molecular weights.

14.
Biophys J ; 110(5): 1064-74, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26958884

RESUMO

We used neutron-scattering experiments to probe the conformational dynamics of the light, oxygen, voltage (LOV) photoreceptor PpSB1-LOV from Pseudomonas putida in both the dark and light states. Global protein diffusion and internal macromolecular dynamics were measured using incoherent neutron time-of-flight and backscattering spectroscopy on the picosecond to nanosecond timescales. Global protein diffusion of PpSB1-LOV is not influenced by photoactivation. Observation-time-dependent global diffusion coefficients were found, which converge on the nanosecond timescale toward diffusion coefficients determined by dynamic light scattering. Mean-square displacements of localized internal motions and effective force constants, , describing the resilience of the proteins were determined on the respective timescales. Photoactivation significantly modifies the flexibility and the resilience of PpSB1-LOV. On the fast, picosecond timescale, small changes in the mean-square displacement and are observed, which are enhanced on the slower, nanosecond timescale. Photoactivation results in a slightly larger resilience of the photoreceptor on the fast, picosecond timescale, whereas in the nanosecond range, a significantly less resilient structure of the light-state protein is observed. For a residue-resolved interpretation of the experimental neutron-scattering data, we analyzed molecular dynamics simulations of the PpSB1-LOV X-ray structure. Based on these data, it is tempting to speculate that light-induced changes in the protein result in altered side-chain mobility mostly for residues on the protruding Jα helix and on the LOV-LOV dimer interface. Our results provide strong experimental evidence that side-chain dynamics play a crucial role in photoactivation and signaling of PpSB1-LOV via modulation of conformational entropy.


Assuntos
Luz , Fotorreceptores Microbianos/química , Proteínas de Bactérias/química , Óxido de Deutério , Difusão , Elasticidade , Entropia , Simulação de Dinâmica Molecular , Nêutrons , Pseudomonas putida/metabolismo , Espectrofotometria Ultravioleta , Fatores de Tempo
15.
BMC Plant Biol ; 16: 48, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26912131

RESUMO

BACKGROUND: Mitogen-activated protein kinase (MPK) cascades are important to cellular signaling in eukaryotes. They regulate growth, development and the response to environmental challenges. MPK cascades function via reversible phosphorylation of cascade components, MEKK, MEK, and MPK, but also by MPK substrate phosphorylation. Using mass spectrometry, we previously identified many in vivo MPK3 and MPK6 substrates in Arabidopsis thaliana, and we disclosed their phosphorylation sites. RESULTS: We verified phosphorylation of several of our previously identified MPK3/6 substrates using a nonradioactive in vitro labeling assay. We engineered MPK3, MPK4, and MPK6 to accept bio-orthogonal ATPγS analogs for thiophosphorylating their appropriate substrate proteins. Subsequent alkylation of the thiophosphorylated amino acid residue(s) allows immunodetection using thiophosphate ester-specific antibodies. Site-directed mutagenesis of amino acids confirmed the protein substrates' site-specific phosphorylation by MPK3 and MPK6. A combined assay with MPK3, MPK6, and MPK4 revealed substrate specificity of the individual kinases. CONCLUSION: Our work demonstrates that the in vitro-labeling assay represents an effective, specific and highly sensitive test for determining kinase-substrate relationships.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fosforilação , Especificidade por Substrato
16.
Bioconjug Chem ; 27(6): 1484-92, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27182715

RESUMO

Enzymes able to ligate biomolecules are emerging tools to generate site-specific bioconjugates. In this study we present a detection and screening method for bioconjugating enzymes which overcomes limitations of analytical methods such as HPLC or MS. These techniques are experimentally demanding and often limited in sensitivity and throughput compared to enzymatic assays. The principle of this Reporter Immobilization Assay (REIA) is the ligation of a reporter enzyme to a peptide carrying an affinity handle, which can be utilized for its isolation. The REIA system exhibits a high sensitivity with a linear range down to 1 µg/mL (55 nM), a variation coefficient of 6.5%, and can be performed cost-efficiently in 96-well microtiter plate format. The application of this assay allowed the characterization of a thiol transpeptidase sortase from S. aureus which is an important drug target and a biotechnological tool for ligation and modification of proteins. Thereby, yet-undetectable promiscuous activity of sortase could be detected, e.g., the acceptance of alanine as nucleophile. In addition, we were able to provide evidence that the REIA is suitable for high throughput screening of enzyme libraries using crude cellular extract with a throughput of 600 samples per hour.


Assuntos
Ensaios Enzimáticos/métodos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Sequência de Aminoácidos , Corantes Fluorescentes/química , Glucose 1-Desidrogenase/química , Glucose 1-Desidrogenase/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Peptidil Transferases/química , Peptidil Transferases/metabolismo , Staphylococcus aureus/enzimologia
17.
J Chem Inf Model ; 56(7): 1313-23, 2016 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-27387009

RESUMO

Zinc-dependent medium chain reductase from Candida parapsilosis can be used in the reduction of carbonyl compounds to pharmacologically important chiral secondary alcohols. To date, the nomenclature of cpADH5 is differing (CPCR2/RCR/SADH) in the literature, and its natural substrate is not known. In this study, we utilized a substrate docking based virtual screening method combined with KEGG, MetaCyc pathway, and Candida genome databases search for the discovery of natural substrates of cpADH5. The virtual screening of 7834 carbonyl compounds from the ZINC database provided 94 aldehydes or methyl/ethyl ketones as putative carbonyl substrates. Out of which, 52 carbonyl substrates of cpADH5 with catalytically active docking pose were identified by employing mechanism based substrate docking protocol. Comparison of the virtual screening results with KEGG, MetaCyc database search, and Candida genome pathway analysis suggest that cpADH5 might be involved in the Ehrlich pathway (reduction of fusel aldehydes in leucine, isoleucine, and valine degradation). Our QM/MM calculations and experimental activity measurements affirmed that butyraldehyde substrates are the potential natural substrates of cpADH5, suggesting a carbonyl reductase role for this enzyme in butyraldehyde reduction in aliphatic amino acid degradation pathways. Phylogenetic tree analysis of known ADHs from Candida albicans shows that cpADH5 is close to caADH5. We therefore propose, according to the experimental substrate identification and sequence similarity, the common name butyraldehyde dehydrogenase cpADH5 for Candida parapsilosis CPCR2/RCR/SADH.


Assuntos
Álcool Desidrogenase/metabolismo , Candida/enzimologia , Candida/genética , Bases de Dados Genéticas , Genômica/métodos , Álcool Desidrogenase/química , Álcoois/metabolismo , Sequência de Aminoácidos , Avaliação Pré-Clínica de Medicamentos/métodos , Cinética , NAD/metabolismo , Conformação Proteica , Teoria Quântica , Especificidade por Substrato , Interface Usuário-Computador
18.
Chembiochem ; 16(10): 1512-9, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26096455

RESUMO

Zinc-dependent alcohol dehydrogenases (ADHs) are a class of enzymes applied in different biocatalytic processes ranging from lab to industrial scale. However, one drawback is the limited substrate range, necessitating a whole array of different ADHs for the relevant substrate classes. In this study, we investigated structural determinants of the substrate spectrum in the zinc-dependent ADH carbonyl reductase 2 from Candida parapsilosis (CPCR2), combining methods of mutational analysis with in silico substrate docking. Assigned active site residues were genetically randomized, and the resulting mutant libraries were screened with a selection of challenging carbonyl substrates. Three variants (C57A, W116K, and L119M) with improved activities toward different substrates were detected at neighboring positions in the active site. Thus, all possible combinations of the mutations were generated and characterized for their substrate specificity, yielding several improved variants. The most interesting were a C57A variant, with a 27-fold increase in specific activity for 4'-acetamidoacetophenone, and the double mutant CPCR2 B16-(C57A, L119M), with a 45-fold improvement in the kcat ⋅KM (-1) value. The obtained variants were further investigated by in silico docking experiments. The results indicate that the mentioned residues are structural determinants of the substrate specificity of CPCR2, being major players in the definition of the active site. Comparison of these results with closely related enzymes suggests that these might even be transferred to other ADHs.


Assuntos
Álcool Desidrogenase/química , Álcool Desidrogenase/metabolismo , Candida/enzimologia , Zinco/metabolismo , Acetofenonas/química , Acetofenonas/metabolismo , Álcool Desidrogenase/genética , Candida/química , Candida/genética , Candida/metabolismo , Domínio Catalítico , Análise Mutacional de DNA , Simulação de Acoplamento Molecular , Mutação Puntual , Conformação Proteica , Especificidade por Substrato
19.
Chembiochem ; 16(6): 937-45, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25786654

RESUMO

Ionic liquids (ILs) are attractive (co-)solvents for biocatalysis. However, in high concentration (>10 % IL), enzymes usually show decreased activity. No general principles have been discovered to improve IL resistance of enzymes by protein engineering. We present a systematic study to elucidate general engineering principles by site saturation mutagenesis on the complete gene bsla. Screening in presence of four [BMIM]-based ILs revealed two unexpected lessons on directed evolution: 1) resistance improvement was obtainable at 50-69 % of all amino acid positions, thus explaining the success of small sized random mutant libraries; 2) 6-13 % of substitutions led to improved resistance. Among these, 66-95 % were substitutions by chemically different amino acids (e.g., aromatic to polar/aliphatic/charged amino acids), thus indicating that mutagenesis methods introducing such changes should, at least for lipases like BSLA, be favored to improve IL resistance.


Assuntos
Bacillus subtilis/enzimologia , Evolução Molecular Direcionada , Líquidos Iônicos/farmacologia , Lipase/química , Lipase/genética , Substituição de Aminoácidos , Lipase/antagonistas & inibidores , Lipase/metabolismo , Mutagênese
20.
Biotechnol Bioeng ; 112(10): 1997-2004, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25899108

RESUMO

The interest in performing enzyme-catalyzed reactions in amphiphilic systems, e.g., imidazolium-based ionic liquids (ILs) or surfactants, has been increased over the past decades. Directed protein evolution has been successful in tailoring enzymes for desired properties. Herein, nine IL-resistant Bacillus subtilis lipase A variants, particularly an IL-activated variant M1 (M134N/N138S/L140S), were identified by directed evolution. For instance, variant M2 (M134R/L140S) showed almost doubled specific activity (16.9 vs. 9.4 U/mg) and resistance (233% vs. 111%) at 9 vol% 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([C4 mim][TfO]) compared with wild-type. The specific activities and resistance of purified individual single and double variants have been studied in five different IL-aqueous mixtures. The re-activation of lipase variant M1 (not wild-type) at high IL concentration was attributed to the cooperative effect of three surface substitutions (M134N, N138S, L140S) near the substrate-binding cleft. The presence of IL/substrate clusters under assay conditions was likely related to the re-activation effect. This study provides first example of IL-activated lipase variant generated by protein engineering, and helps to better understand the protein-IL interaction.


Assuntos
Bacillus subtilis/enzimologia , Ativadores de Enzimas/metabolismo , Líquidos Iônicos/metabolismo , Lipase/metabolismo , Substituição de Aminoácidos , Sítios de Ligação , Evolução Molecular Direcionada , Lipase/genética , Modelos Moleculares , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformação Proteica , Engenharia de Proteínas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa