Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 364: 121427, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38870790

RESUMO

Tidal wetlands play a critical role in emitting greenhouse gases (GHGs) into the atmosphere; our understanding of the intricate interplay between natural processes and human activities shaping their biogeochemistry and GHG emissions remains lacking. In this study, we delve into the spatiotemporal dynamics and key drivers of the GHG emissions from five tidal wetlands in the Scheldt Estuary by focusing on the interactive impacts of salinity and water pollution, two factors exhibiting contrasting gradients in this estuarine system: pollution escalates as salinity declines. Our findings reveal a marked escalation in GHG emissions when moving upstream, primarily attributed to increased concentrations of organic matter and nutrients, coupled with reduced levels of dissolved oxygen and pH. These low water quality conditions not only promote methanogenesis and denitrification to produce CH4 and N2O, respectively, but also shift the carbonate equilibria towards releasing more CO2. As a result, the most upstream freshwater wetland was the largest GHG emitter with a global warming potential around 35 to 70 times higher than the other wetlands. When moving seaward along a gradient of decreasing urbanization and increasing salinity, wetlands become less polluted and are characterized by lower concentrations of NO3-, TN and TOC, which induces stronger negative impact of elevated salinity on the GHG emissions from the saline wetlands. Consequently, these meso-to polyhaline wetlands released considerably smaller amounts of GHGs. These findings emphasize the importance of integrating management strategies, such as wetland restoration and pollution prevention, that address both natural salinity gradients and human-induced water pollution to effectively mitigate GHG emissions from tidal wetlands.


Assuntos
Gases de Efeito Estufa , Salinidade , Poluição da Água , Áreas Alagadas , Gases de Efeito Estufa/análise , Estuários , Monitoramento Ambiental
2.
J Environ Manage ; 346: 118996, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37725864

RESUMO

Nitrogen (N) fertilization is crucial to sustain global food security, but fertilizer N production is energy-demanding and subsequent environmental N losses contribute to biodiversity loss and climate change. N losses can be mitigated be interfering with microbial nitrification, and therefore the use of nitrification inhibitors in enhanced efficiency fertilizers (EEFs) is an important N management strategy to increase N use efficiency and reduce N pollution. However, currently applied nitrification inhibitors have limitations and do not target all nitrifying microorganisms. Here, to identify broad-spectrum nitrification inhibitors, we adopted a drug discovery-based approach and screened 45,400 small molecules on different groups of nitrifying microorganisms. Although a high number of potential nitrification inhibitors were identified, none of them targeted all nitrifier groups. Moreover, a high number of new nitrification inhibitors were shown to be highly effective in culture but did not reduce ammonia consumption in soil. One archaea-targeting inhibitor was not only effective in soil, but even reduced - when co-applied with a bacteria-targeting inhibitor - ammonium consumption and greenhouse gas emissions beyond what is achieved with currently applied nitrification inhibitors. This advocates for combining different types of nitrification inhibitors in EEFs to optimize N management practices and make agriculture more sustainable.

3.
Rapid Commun Mass Spectrom ; 36(13): e9296, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35289456

RESUMO

RATIONALE: Information on the isotopic composition of nitrous oxide (N2 O) at natural abundance supports the identification of its source and sink processes. In recent years, a number of mass spectrometric and laser spectroscopic techniques have been developed and are increasingly used by the research community. Advances in this active research area, however, critically depend on the availability of suitable N2 O isotope Reference Materials (RMs). METHODS: Within the project Metrology for Stable Isotope Reference Standards (SIRS), seven pure N2 O isotope RMs have been developed and their 15 N/14 N, 18 O/16 O, 17 O/16 O ratios and 15 N site preference (SP) have been analysed by specialised laboratories against isotope reference materials. A particular focus was on the 15 N site-specific isotopic composition, as this measurand is both highly diagnostic for source appointment and challenging to analyse and link to existing scales. RESULTS: The established N2 O isotope RMs offer a wide spread in delta (δ) values: δ15 N: 0 to +104‰, δ18 O: +39 to +155‰, and δ15 NSP : -4 to +20‰. Conversion and uncertainty propagation of δ15 N and δ18 O to the Air-N2 and VSMOW scales, respectively, provides robust estimates for δ15 N(N2 O) and δ18 O(N2 O), with overall uncertainties of about 0.05‰ and 0.15‰, respectively. For δ15 NSP , an offset of >1.5‰ compared with earlier calibration approaches was detected, which should be revisited in the future. CONCLUSIONS: A set of seven N2 O isotope RMs anchored to the international isotope-ratio scales was developed that will promote the implementation of the recommended two-point calibration approach. Particularly, the availability of δ17 O data for N2 O RMs is expected to improve data quality/correction algorithms with respect to δ15 NSP and δ15 N analysis by mass spectrometry. We anticipate that the N2 O isotope RMs will enhance compatibility between laboratories and accelerate research progress in this emerging field.


Assuntos
Óxido Nitroso , Calibragem , Espectrometria de Massas/métodos , Óxido Nitroso/análise , Isótopos de Oxigênio/análise , Padrões de Referência
4.
Mycorrhiza ; 32(3-4): 305-313, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35307782

RESUMO

The soil nitrogen (N) cycle in cold terrestrial ecosystems is slow and organically bound N is an important source of N for plants in these ecosystems. Many plant species can take up free amino acids from these infertile soils, either directly or indirectly via their mycorrhizal fungi. We hypothesized that plant community changes and local plant community differences will alter the soil free amino acid pool and composition; and that long-term warming could enhance this effect. To test this, we studied the composition of extractable free amino acids at five separate heath, meadow, and bog locations in subarctic and alpine Scandinavia, with long-term (13 to 24 years) warming manipulations. The plant communities all included a mixture of ecto-, ericoid-, and arbuscular mycorrhizal plant species. Vegetation dominated by grasses and forbs with arbuscular and non-mycorrhizal associations showed highest soil free amino acid content, distinguishing them from the sites dominated by shrubs with ecto- and ericoid-mycorrhizal associations. Warming increased shrub and decreased moss cover at two sites, and by using redundancy analysis, we found that altered soil free amino acid composition was related to this plant cover change. From this, we conclude that the mycorrhizal type is important in controlling soil N cycling and that expansion of shrubs with ectomycorrhiza (and to some extent ericoid mycorrhiza) can help retain N within the ecosystems by tightening the N cycle.


Assuntos
Micorrizas , Aminoácidos/metabolismo , Ecossistema , Micorrizas/metabolismo , Plantas/microbiologia , Solo/química , Microbiologia do Solo , Tundra
5.
Plant Cell Environ ; 44(11): 3494-3508, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33822389

RESUMO

Determining the fate of CO2 respired in woody tissues is necessary to understand plant respiratory physiology and to evaluate CO2 recycling mechanisms. An aqueous 13 C-enriched CO2 solution was infused into the stem of 3-4 m tall trees to estimate efflux and assimilation of xylem-transported CO2 via cavity ring-down laser spectroscopy and isotope ratio mass spectrometry, respectively. Different tree locations (lower stem, upper stem and leafy shoots) and tissues (xylem, bark and leaves) were monitored in species with tracheid, diffuse- and ring-porous wood anatomy (cedar, maple and oak, respectively). Radial xylem CO2 diffusivity and xylem [CO2 ] were lower in cedar relative to maple and oak trees, thereby limiting label diffusion. Part of the labeled 13 CO2 was assimilated in cedar (8.7%) and oak (20.6%) trees, mostly in xylem and bark tissues of the stem, while limited solution uptake in maple trees hindered the detection of label assimilation. Little label reached foliar tissues, suggesting substantial label loss along the stem-branch transition following reductions in the radial diffusive pathway. Differences in respiration rates and radial xylem CO2 diffusivity (lower in conifer relative to angiosperm species) might reconcile discrepancies in efflux and assimilation of xylem-transported CO2 so far observed between taxonomic clades.


Assuntos
Dióxido de Carbono/metabolismo , Árvores/metabolismo , Madeira/anatomia & histologia , Xilema/metabolismo , Acer/anatomia & histologia , Acer/metabolismo , Transporte Biológico , Quercus/anatomia & histologia , Quercus/metabolismo , Especificidade da Espécie , Thuja/anatomia & histologia , Thuja/metabolismo , Árvores/anatomia & histologia
6.
Proc Natl Acad Sci U S A ; 115(3): 549-554, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29295919

RESUMO

Atmospheric nitrogen (N) deposition is an important determinant of N availability for natural ecosystems worldwide. Increased anthropogenic N deposition shifts the stoichiometric equilibrium of ecosystems, with direct and indirect impacts on ecosystem functioning and biogeochemical cycles. Current simulation data suggest that remote tropical forests still receive low atmospheric N deposition due to a lack of proximate industry, low rates of fossil fuel combustion, and absence of intensive agriculture. We present field-based N deposition data for forests of the central Congo Basin, and use ultrahigh-resolution mass spectrometry to characterize the organic N fraction. Additionally, we use satellite data and modeling for atmospheric N source apportionment. Our results indicate that these forests receive 18.2 kg N hectare-1 years-1 as wet deposition, with dry deposition via canopy interception adding considerably to this flux. We also show that roughly half of the N deposition is organic, which is often ignored in N deposition measurements and simulations. The source of atmospheric N is predominantly derived from intensive seasonal burning of biomass on the continent. This high N deposition has important implications for the ecology of the Congo Basin and for global biogeochemical cycles more broadly.


Assuntos
Ar/análise , Nitrogênio/análise , Árvores/metabolismo , Congo , Florestas , Espectrometria de Massas , Nitrogênio/metabolismo , Árvores/crescimento & desenvolvimento
7.
J Environ Manage ; 288: 112291, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33773212

RESUMO

A Compound Specific Stable Isotope (CSSI) sediment tracing approach is applied for the first time in a Mediterranean mountain agroforestry catchment subjected to intense land use changes in the past decades. Many Mediterranean mountain environments underwent conversion of rangelands into croplands during the previous centuries to increase agricultural production. Converted land has increased the risk of erosion and in some cases has led to loss of the entire fertile topsoil. After land abandonment the process was gradually reversed during the middle of the 20th century, allowing the recovery of natural land cover and reduction of soil erosion rates. The 13C abundance of long chain fatty acids was used as tracer to assess the contribution of soil under different vegetation covers in complex landscapes subjected to land use changes after land abandonment in a medium-sized Mediterranean catchment. A Bayesian mixing model (MixSIAR) was used for estimating the contribution of different land use types to suspended sediments. To this purpose, composite samples were collected over the four main land covers existing in the study area: cropland, Mediterranean forest, pine forest, scrubland, and two main geomorphic elements: highly disturbed areas such as exposed subsoil and channel banks. Suspended sediment traps were installed at three locations in the catchment to assess the variability of source contributions from the headwaters to the outlet of the catchment. At every sampling point three replicating traps integrated the suspended sediment per climatologic season during a one hydrological year. The fatty acids (FAs) content was significantly higher at the catchment outlet than at the headwaters. The δ13C signatures of the FAs were successful in discriminating between Mediterranean forest, scrubland, pine forest and both geomorphic elements. Overall, the model identified agricultural land as the largest contributing source for most of the sampled seasons. The inclusion of prior information with different informativeness produced variations in the model outputs and could represent an advantage as much as a disadvantage if priors are not used with caution and supported by robust evidence. The results of this study suggest that CSSI tracers are needed to correctly assess land use related sediment sources, while channel bank and subsoil contributions require geochemical tracers. The high agricultural apportionment despite its small coverage (16%) point out to the impact of human activities and the agriculture cycle on soil loss in these mountain agroforestry systems.


Assuntos
Sedimentos Geológicos , Solo , Agricultura , Teorema de Bayes , Florestas , Humanos
8.
Glob Chang Biol ; 26(8): 4449-4461, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32364642

RESUMO

Forests exhibit leaf- and ecosystem-level responses to environmental changes. Specifically, rising carbon dioxide (CO2 ) levels over the past century are expected to have increased the intrinsic water-use efficiency (iWUE) of tropical trees while the ecosystem is gradually pushed into progressive nutrient limitation. Due to the long-term character of these changes, however, observational datasets to validate both paradigms are limited in space and time. In this study, we used a unique herbarium record to go back nearly a century and show that despite the rise in CO2 concentrations, iWUE has decreased in central African tropical trees in the Congo Basin. Although we find evidence that points to leaf-level adaptation to increasing CO2 -that is, increasing photosynthesis-related nutrients and decreasing maximum stomatal conductance, a decrease in leaf δ13 C clearly indicates a decreasing iWUE over time. Additionally, the stoichiometric carbon to nitrogen and nitrogen to phosphorus ratios in the leaves show no sign of progressive nutrient limitation as they have remained constant since 1938, which suggests that nutrients have not increasingly limited productivity in this biome. Altogether, the data suggest that other environmental factors, such as increasing temperature, might have negatively affected net photosynthesis and consequently downregulated the iWUE. Results from this study reveal that the second largest tropical forest on Earth has responded differently to recent environmental changes than expected, highlighting the need for further on-ground monitoring in the Congo Basin.


Assuntos
Ecossistema , Água , Dióxido de Carbono , Florestas , Nutrientes , Folhas de Planta , Árvores , Clima Tropical
9.
Rapid Commun Mass Spectrom ; 31(22): 1892-1902, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-28841262

RESUMO

RATIONALE: Cavity ring-down spectroscopy (CRDS) is becoming increasingly popular for δ13 C-CO2 analysis of air. However, little is known about the effect of high 13 C abundances on the performance of CRDS. Overlap between 12 CO2 and 13 CO2 spectral lines may adversely affect isotopic-CO2 CRDS measurements of 13 C-enriched samples. Resolving this issue is important so that CRDS analysers can be used in CO2 flux studies involving 13 C-labelled tracers. METHODS: We tested a Picarro G2131-i CRDS isotopic-CO2 gas analyser with specialty gravimetric standards of widely varying 13 C abundance (from natural to 20.1 atom%) and CO2 mole fraction (xCO2 : <0.1 to 2116 ppm) in synthetic air. The presence of spectroscopic interference between 12 CO2 and 13 CO2 bands was assessed by analysing errors in measurements of the standards. A multi-component calibration strategy was adopted, incorporating isotope ratio and mole fraction data to ensure accuracy and consistency in corrected values of δ13 C-CO2 , x12 CO2 , and x13 CO2 . RESULTS: CRDS measurements of x13 CO2 were found to be accurate throughout the tested range (<0.005 to 100 ppm). On the other hand, spectral cross-talk in x12 CO2 measurements of standards containing elevated levels of 13 CO2 led to inaccuracy in x12 CO2 , total-xCO2 (x12 CO2  + x13 CO2 ), and δ13 C-CO2 data. An empirical relationship for x12 CO2 measurements that incorporated the 13 C/12 C isotope ratio (i.e. 13 CO2 /12 CO2 , RCO2) as a secondary (non-linear) variable was found to compensate for the perturbations, and enabled accurate instrument calibration for all CO2 compositions covered by our standard gases. CONCLUSIONS: 13 C-enrichement in CO2 leads to minor errors in CRDS measurements of x12 CO2 . We propose an empirical correction for measurements of 13 C-enriched CO2 in air by CRDS instruments such as the Picarro G2131-i.

10.
Glob Chang Biol ; 20(1): 327-40, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23996910

RESUMO

Atmospheric nitrogen (N) deposition has frequently been observed to increase soil carbon (C) storage in forests, but the underlying mechanisms still remain unclear. Changes in microbial community composition and substrate use are hypothesized to be one of the key mechanisms affected by N inputs. Here, we investigated the effects of N deposition on amino sugars, which are used as biomarkers for fungal- and bacterial-derived microbial residues in soil. We made use of a 4-year combined CO2 enrichment and N deposition experiment in model forest ecosystems, providing a distinct (13) C signal for 'new' and 'old' C in soil organic matter and microbial residues measured in density and particle-size fractions of soils. Our hypothesis was that N deposition decreases the amount of fungal residues in soils, with the new microbial residues being more strongly affected than old residues. The soil fractionation showed that organic matter and microbial residues are mainly stabilized by association with soil minerals in the heavy and fine fractions. Moreover, the bacterial residues are relatively enriched at mineral surfaces compared to fungal residues. The (13) C tracing indicated a greater formation of fungal residues compared to bacterial residues after 4 years of experiment. In contradiction to our hypotheses, N deposition significantly increased the amount of new fungal residues in bulk soil and decreased the decomposition of old microbial residues associated with soil minerals. The preservation of old microbial residues could be due to decreased N limitation of microorganisms and therefore a reduced dependence on organic N sources. This mechanism might be especially important in fine heavy fractions with low C/N ratios, where microbial residues are effectively protected from decomposition by association with soil minerals.


Assuntos
Amino Açúcares/análise , Nitrogênio/metabolismo , Microbiologia do Solo , Solo/química , Amino Açúcares/metabolismo , Bactérias/metabolismo , Carbono/análise , Dióxido de Carbono/metabolismo , Ecossistema , Fungos/metabolismo , Magnoliopsida , Nitrogênio/análise , Picea , Árvores
11.
Rapid Commun Mass Spectrom ; 27(12): 1367-79, 2013 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-23681815

RESUMO

RATIONALE: Bacteria and fungi are key protagonists of litter degradation in soils. Often they have to share common substrates, which has led to special interactions between both microbial groups. Due to the historical classification of bacteriology and mycology as two separate fields of microbial research, the understanding of their interactions in soils is scares, while it is crucial for a better understanding of nutrient recycling and carbon sequestration in soils. Therefore, a new approach to investigate fungal-bacterial interactions is proposed using stable isotope probing of their amino sugar biomarkers. METHODS: An agricultural soil, under different microbial inhibition treatments, was incubated for 21 days with (13)C-labeled plant residues. Residue respiration was determined by measuring the isotopic composition and concentration of the produced CO2, using an isotope ratio mass spectrometer coupled to a trace gas preparation unit. At several time points, amino sugars were extracted, after hydrolysis, from the incubated microcosms. Subsequently, (13)C-isotopic composition and concentration of the individual amino sugars was determined using liquid chromatography/isotope ratio mass spectrometry. RESULTS: When the bacterial community was inhibited, fungi showed an increased capacity to metabolize added plant residues indicating an antagonistic effect of bacteria towards fungi. Furthermore, the fungal community was able to take benefit of a larger portion of the residue, which indicates that this antagonism was at least partially due to interference competition. On the other hand, the inhibition of the fungal community appeared to have a very negative effect on the capacity of bacteria to metabolize added plant residues. Therefore, the bacterial community could be considered as playing a parasitic type role towards fungi during litter degradation. CONCLUSIONS: This newly developed methodology proved to be very useful for elucidating microbial interactions during plant residue degradation.


Assuntos
Amino Açúcares/análise , Bactérias/química , Isótopos de Carbono/análise , Fungos/química , Espectrometria de Massas/métodos , Interações Microbianas , Microbiologia do Solo , Amino Açúcares/metabolismo , Fenômenos Fisiológicos Bacterianos , Fungos/fisiologia , Espectrometria de Massas/instrumentação
12.
Tree Physiol ; 43(10): 1731-1744, 2023 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-37471648

RESUMO

The carbon isotope composition of respired CO2 (δ13CR) and bulk organic matter (δ13CB) of various plant compartments informs about the isotopic fractionation and substrate of respiratory processes, which are crucial to advance the understanding of carbon allocation in plants. Nevertheless, the variation across organs, species and seasons remains poorly understood. Cavity Ring-Down Laser Spectroscopy was applied to measure δ13CR in leafy shoots and woody stems of maple (Acer platanoides L.), oak (Quercus robur L.) and cedar (Thuja occidentalis L.) trees during spring and late summer. Photosynthesis, respiration, growth and non-structural carbohydrates were measured in parallel to evaluate potential drivers for respiratory fractionation. The CO2 respired by maple and oak shoots was 13C-enriched relative to δ13CB during spring, but not late summer or in the stem. In cedar, δ13CR did not vary significantly throughout organs and seasons, with respired CO2 being 13C-depleted relative to δ13CB. Shoot δ13CR was positively related to leaf starch concentration in maple, while stem δ13CR was inversely related to stem growth. These relations were not significant for oak or cedar. The variability in δ13CR suggests (i) different contributions of respiratory pathways between organs and (ii) seasonality in the respiratory substrate and constitutive compounds for wood formation in deciduous species, less apparent in evergreen cedar, whose respiratory metabolism might be less variable.


Assuntos
Dióxido de Carbono , Árvores , Estações do Ano , Árvores/fisiologia , Dióxido de Carbono/metabolismo , Isótopos de Carbono/análise , Carbono/metabolismo , Folhas de Planta/metabolismo
13.
Environ Pollut ; 336: 122500, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37669700

RESUMO

Estuaries have been recognized as one of the major sources of greenhouse gases (GHGs) in aquatic systems; yet we still lack insights into the impact of both anthropogenic and natural factors on the dynamics of GHG emissions. Here, we assessed the spatiotemporal dynamics and underlying drivers of the GHG emissions from the Scheldt Estuary with a focus on the effects of salinity gradient, water pollution, and land use types, together with their interaction. Overall, we found a negative impact of salinity on carbon dioxide (CO2) and nitrous oxide (N2O) emissions which can be due to the decrease of both salinity and water quality when moving upstream. Stronger impact of water pollution on the GHG emissions was found at the freshwater sites upstream compared to saline sites downstream. In particular, when water quality of the sites reduced from good, mainly located in the mouth and surrounded by arable sites, to polluted, mainly located in the upstream and surrounded by urban sites, CO2 emissions from the sites doubled while N2O emissions tripled. Similarly, the effects of water pollution on methane (CH4) emissions became much stronger in the freshwater sites compared to the saline sites. These decreasing effects from upstream to the mouth were associated with the increase in urbanization as sites surrounded by urban areas released on average almost two times more CO2 and N2O than sites surrounded by nature and industry areas. Applied machine learning methods also revealed that, in addition to salinity effects, nutrient and organic enrichment stimulated the GHG emissions from the Scheldt Estuary. These findings highlight the importance of the interaction between salinity, water pollution, and land use in order to understand their influences on GHG emissions from dynamic estuarine systems.

14.
Environ Sci Pollut Res Int ; 29(25): 37277-37290, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35048344

RESUMO

Rivers act as a natural source of greenhouse gases (GHGs). However, anthropogenic activities can largely alter the chemical composition and microbial communities of rivers, consequently affecting their GHG production. To investigate these impacts, we assessed the accumulation of CO2, CH4, and N2O in an urban river system (Cuenca, Ecuador). High variation of dissolved GHG concentrations was found among river tributaries that mainly depended on water quality and land use. By using Prati and Oregon water quality indices, we observed a clear pattern between water quality and the dissolved GHG concentration: the more polluted the sites were, the higher were their dissolved GHG concentrations. When river water quality deteriorated from acceptable to very heavily polluted, the mean value of pCO2 and dissolved CH4 increased by up to ten times while N2O concentrations boosted by 15 times. Furthermore, surrounding land-use types, i.e., urban, roads, and agriculture, could considerably affect the GHG production in the rivers. Particularly, the average pCO2 and dissolved N2O of the sites close to urban areas were almost four times higher than those of the natural sites while this ratio was 25 times in case of CH4, reflecting the finding that urban areas had the worst water quality with almost 70% of their sites being polluted while this proportion of nature areas was only 12.5%. Lastly, we identified dissolved oxygen, ammonium, and flow characteristics as the main important factors to the GHG production by applying statistical analysis and random forests. These results highlighted the impacts of land-use types on the production of GHGs in rivers contaminated by sewage discharges and surface runoff.


Assuntos
Gases de Efeito Estufa , Dióxido de Carbono/análise , Monitoramento Ambiental , Gases de Efeito Estufa/análise , Metano/análise , Óxido Nitroso/análise , Rios/química , Qualidade da Água
15.
Isotopes Environ Health Stud ; 58(1): 99-110, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35072572

RESUMO

The aim of this research was to evaluate the relevance of using deuterium oxide (2H2O) and bio-impedance analysis (BIA) to assess size and function of the interstitium for urological research. Nineteen volunteers were recruited to this prospective trial combining ingestion of 2H2O and BIA. Blood samples were obtained every 10 min after ingestion of 2H2O. Urine was collected before and after the experiment. BIA was performed every 5 min. Body position was alternated to study the effect on fluid distribution. First order kinetics were assumed for the uptake of 2H2O from the gastrointestinal tract to the blood. Sex seemed to have an influence with a significantly slower exchange for women (p = 0.041, men: 0.052 min-1, women: 0.038 min-1). Impedance measured in legs (men: p = 0.012, women: p = 0.008) and trunk (both p < 0.001) decreased significantly with posture change. These changes probably reflect the orthostatic redistribution of fluid with an increase of fluid in both trunk and legs. Both methods were tested and found to be useful for further urological research. Significant gender differences in 2H2O uptake dynamics from the gastrointestinal pool were observed. An impact of posture changes on the electrical impedance measured was observed.


Assuntos
Água Corporal , Água , Composição Corporal , Óxido de Deutério , Impedância Elétrica , Feminino , Humanos , Masculino , Estudos Prospectivos
16.
Water Res ; 193: 116858, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33540345

RESUMO

Due to regular influx of organic matter and nutrients, waste stabilization ponds (WSPs) can release considerable quantities of greenhouse gases (GHGs). To investigate the spatiotemporal variations of GHG emissions from WSPs with a focus on the effects of sludge accumulation and distribution, we conducted a bathymetry survey and two sampling campaigns in Ucubamba WSP (Cuenca, Ecuador). The results indicated that spatial variation of GHG emissions was strongly dependent on sludge distribution. Thick sludge layers in aerated ponds and facultative ponds caused substantial CO2 and CH4 emissions which accounted for 21.3% and 78.7% of the total emissions from the plant. Conversely, the prevalence of anoxic conditions stimulated the N2O consumption via complete denitrification leading to a net uptake from the atmosphere, i.e. up to 1.4±0.2 mg-N m-2 d-1. Double emission rates of CO2 were found in the facultative and maturation ponds during the day compared to night-time emissions, indicating the important role of algal respiration, while no diel variation of the CH4 and N2O emissions was found. Despite the uptake of N2O, the total GHG emissions of the WSP was higher than constructed wetlands and conventional centralized wastewater treatment facilities. Hence, it is recommended that sludge management with proper desludging regulation should be included as an important mitigation measure to reduce the carbon footprint of pond treatment facilities.


Assuntos
Gases de Efeito Estufa , Dióxido de Carbono/análise , Equador , Monitoramento Ambiental , Efeito Estufa , Gases de Efeito Estufa/análise , Metano/análise , Óxido Nitroso/análise , Lagoas , Esgotos
17.
Nat Commun ; 12(1): 5129, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34446719

RESUMO

Central African tropical forests face increasing anthropogenic pressures, particularly in the form of deforestation and land-use conversion to agriculture. The long-term effects of this transformation of pristine forests to fallow-based agroecosystems and secondary forests on biogeochemical cycles that drive forest functioning are poorly understood. Here, we show that biomass burning on the African continent results in high phosphorus (P) deposition on an equatorial forest via fire-derived atmospheric emissions. Furthermore, we show that deposition loads increase with forest regrowth age, likely due to increasing canopy complexity, ranging from 0.4 kg P ha-1 yr-1 on agricultural fields to 3.1 kg P ha-1 yr-1 on old secondary forests. In forest systems, canopy wash-off of dry P deposition increases with rainfall amount, highlighting how tropical forest canopies act as dynamic reservoirs for enhanced addition of this essential plant nutrient. Overall, the observed P deposition load at the study site is substantial and demonstrates the importance of canopy trapping as a pathway for nutrient input into forest ecosystems.

18.
Rapid Commun Mass Spectrom ; 23(16): 2519-26, 2009 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-19603461

RESUMO

Amino sugars have been used as biomarkers to assess the relative contribution of dead microbial biomass of different functional groups of microorganisms to soil carbon pools. However, little is known about the dynamics of these compounds in soil. The isotopic composition of individual amino sugars can be used as a tool to determine the turnover of these compounds. Methods to determine the delta(13)C of amino sugars using gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) have been proposed in literature. However, due to derivatization, the uncertainty on the obtained delta(13)C is too high to be used for natural abundance studies. Therefore, a new high-performance liquid chromatography/isotope ratio mass spectrometry (HPLC/IRMS) methodology, with increased accuracy and precision, has been developed. The repeatability on the obtained delta(13)C values when pure amino sugars were analyzed were not significantly concentration-dependent as long as the injected amount was higher than 1.5 nmol. The delta(13)C value of the same amino sugar spiked to a soil deviated by only 0.3 per thousand from the theoretical value.


Assuntos
Amino Açúcares/análise , Isótopos de Carbono/análise , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Solo/análise
19.
Front Microbiol ; 10: 192, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30814983

RESUMO

Current methods determining biomass yield require sophisticated sensors for in situ measurements or multiple steady-state reactor runs. Determining the yield of specific groups of organisms in mixed cultures in a fast and easy manner remains challenging. This study describes a fast method to estimate the maximum biomass yield (Ymax), based on 13C incorporation during activity measurements. It was applied to mixed cultures containing ammonia oxidizing bacteria (AOB) or archaea (AOA) and nitrite oxidizing bacteria (NOB), grown under mesophilic (15-28°C) and thermophilic (50°C) conditions. Using this method, no distinction could be made between AOB and AOA co-existing in a community. A slight overestimation of the nitrifier biomass due to 13C redirection via SMP to heterotrophs could occur, meaning that this method determines the carbon fixation activity of the autotrophic microorganisms rather than the actual nitrifier biomass yield. Thermophilic AOA yields exceeded mesophilic AOB yields (0.22 vs. 0.06-0.11 g VSS g-1 N), possibly linked to a more efficient pathway for CO2 incorporation. NOB thermophilically produced less biomass (0.025-0.028 vs. 0.048-0.051 g VSS g-1 N), conceivably attributed to higher maintenance requirement, rendering less energy available for biomass synthesis. Interestingly, thermophilic nitrification yield was higher than its mesophilic counterpart, due to the dominance of AOA over AOB at higher temperatures. An instant temperature increase impacted the mesophilic AOB yield, corroborating the effect of maintenance requirement on production capacity. Model simulations of two realistic nitrification/denitrification plants were robust toward changing nitrifier yield in predicting effluent ammonium concentrations, whereas sludge composition was impacted. Summarized, a fast, precise and easily executable method was developed determining Ymax of ammonia and nitrite oxidizers in mixed communities.

20.
Tree Physiol ; 39(5): 819-830, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30726992

RESUMO

Respired CO2 in woody tissues radially diffuses to the atmosphere or it is transported upward with the transpiration stream, making the origin of CO2 in stem CO2 efflux (EA) uncertain, which may confound stem respiration (RS) estimates. An aqueous 13C-enriched solution was infused into stems of Populus tremula L. trees, and real-time measurements of 13C-CO2 and 12C-CO2 in EA were performed via Cavity Ring Down Laser Spectroscopy (CRDS). The contribution of locally respired CO2 (LCO2) and xylem-transported CO2 (TCO2) to EA was estimated from their different isotopic composition. Mean daily values of TCO2/EA ranged from 13% to 38%, evidencing the notable role that xylem CO2 transport plays in the assessment of stem respiration. Mean daily TCO2/EA did not differ between treatments of drought stress and light exclusion of woody tissues, but they showed different TCO2/EA dynamics on a sub-daily time scale. Sub-daily CO2 diffusion patterns were explained by a light-induced axial CO2 gradient ascribed to woody tissue photosynthesis, and the resistance to radial CO2 diffusion determined by bark water content. Here, we demonstrate the outstanding potential of CRDS paired with 13C-CO2 labelling to advance in the understanding of CO2 movement at the plant-atmosphere interface and the respiratory physiology in woody tissues.


Assuntos
Dióxido de Carbono/fisiologia , Transpiração Vegetal , Análise Espectral/métodos , Árvores/fisiologia , Xilema/fisiologia , Botânica/métodos , Isótopos/análise , Caules de Planta/fisiologia , Populus/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa