Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 40(16): e106540, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34121210

RESUMO

Dendritic cells (DC) subsets, like Langerhans cells (LC), are immune cells involved in pathogen sensing. They express specific antimicrobial cellular factors that are able to restrict infection and limit further pathogen transmission. Here, we identify the alarmin S100A9 as a novel intracellular antiretroviral factor expressed in human monocyte-derived and skin-derived LC. The intracellular expression of S100A9 is decreased upon LC maturation and inversely correlates with enhanced susceptibility to HIV-1 infection of LC. Furthermore, silencing of S100A9 in primary human LC relieves HIV-1 restriction while ectopic expression of S100A9 in various cell lines promotes intrinsic resistance to both HIV-1 and MLV infection by acting on reverse transcription. Mechanistically, the intracellular expression of S100A9 alters viral capsid uncoating and reverse transcription. S100A9 also shows potent inhibitory effect against HIV-1 and MMLV reverse transcriptase (RTase) activity in vitro in a divalent cation-dependent manner. Our findings uncover an unexpected intracellular function of the human alarmin S100A9 in regulating antiretroviral immunity in Langerhans cells.


Assuntos
Alarminas/genética , Calgranulina B/genética , HIV-1/fisiologia , Células de Langerhans/virologia , Vírus da Leucemia Murina de Moloney/fisiologia , Infecções por Retroviridae/prevenção & controle , Animais , Linfócitos T CD4-Positivos/imunologia , Linhagem Celular , Cricetulus , HIV-1/genética , Interações Hospedeiro-Patógeno , Humanos , Células de Langerhans/imunologia , Leucemia Experimental/prevenção & controle , Camundongos , Vírus da Leucemia Murina de Moloney/genética , Transcrição Reversa , Fator de Crescimento Transformador beta/imunologia , Infecções Tumorais por Vírus/prevenção & controle , Replicação Viral
2.
J Virol ; 98(1): e0183023, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38088560

RESUMO

Usutu virus (USUV) and West Nile virus (WNV) are closely related emerging arboviruses belonging to the Flavivirus genus and posing global public health concerns. Although human infection by these viruses is mainly asymptomatic, both have been associated with neurological disorders such as encephalitis and meningoencephalitis. Since USUV and WNV are transmitted through the bite of an infected mosquito, the skin represents the initial site of virus inoculation and provides the first line of host defense. Although some data on the early stages of WNV skin infection are available, very little is known about USUV. Herein, USUV-skin resident cell interactions were characterized. Using primary human keratinocytes and fibroblasts, an early replication of USUV during the first 24 hours was shown in both skin cells. In human skin explants, a high viral tropism for keratinocytes was observed. USUV infection of these models induced type I and III interferon responses associated with upregulated expression of various interferon-stimulated genes as well as pro-inflammatory cytokine and chemokine genes. Among the four USUV lineages studied, the Europe 2 strain replicated more efficiently in skin cells and induced a higher innate immune response. In vivo, USUV and WNV disseminated quickly from the inoculation site to distal cutaneous tissues. In addition, viral replication and persistence in skin cells were associated with an antiviral response. Taken together, these results provide a better understanding of the pathophysiology of the early steps of USUV infection and suggest that the skin constitutes a major amplifying organ for USUV and WNV infection.IMPORTANCEUsutu virus (USUV) and West Nile virus (WNV) are closely related emerging Flaviviruses transmitted through the bite of an infected mosquito. Since they are directly inoculated within the upper skin layers, the interactions between the virus and skin cells are critical in the pathophysiology of USUV and WNV infection. Here, during the early steps of infection, we showed that USUV can efficiently infect two human resident skin cell types at the inoculation site: the epidermal keratinocytes and the dermal fibroblasts, leading to the induction of an antiviral innate immune response. Moreover, following cutaneous inoculation, we demonstrated that both viruses can rapidly spread, replicate, and persist in all distal cutaneous tissues in mice, a phenomenon associated with a generalized skin inflammatory response. These results highlight the key amplifying and immunological role of the skin during USUV and WNV infection.


Assuntos
Infecções por Flavivirus , Flavivirus , Tropismo Viral , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Humanos , Camundongos , Antivirais , Culicidae , Infecções por Flavivirus/virologia , Interferons , Febre do Nilo Ocidental/virologia , Pele/imunologia , Pele/patologia , Pele/virologia , Técnicas In Vitro
3.
Mar Drugs ; 22(6)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38921592

RESUMO

The growing demand for phycobiliproteins from microalgae generates a significant volume of by-products, such as extraction cakes. These cakes are enriched with products of interest for the cosmetics market, namely free fatty acids, particularly polyunsaturated (PUFA). In this work, two cakes, one of spirulina and one of Porphyridium cruentum, were valorized using innovative natural hydrophobic deep eutectic solvents (NaDES) based on alkanediols. The most promising NaDES, as determined by physicochemical properties and screening, are mixtures of alkanediols and fatty acids. These include the mixtures of 1,3-propanediol and octanoic acid (1:5, mol/mol) and 1,3-propanediol and octanoic and decanoic acid (1:3:1, mol/mol). Two extractive processes were implemented: ultrasound-assisted extraction and an innovative mechanical process involving dual asymmetric centrifugation. The second process resulted in the production of extracts significantly enriched in PUFA, ranging from 65 to 220 mg/g dry matter with the two cakes. The extracts and NaDES demonstrated good safety with respect to epidermal keratinocyte viability (>80% at 200 µg/mL). The study of their impact on commensal and pathogenic cutaneous bacteria demonstrated significant effects on the viability of Staphylococcus aureus and Staphylococcus epidermidis (>50% decrease at 200 µg/mL) while preserving Corynebacterium xerosis and Cutibacterium acnes. These results highlight the potential of valorizing these co-products using alkanediol-based NaDES, in a strategy combining an active vector (NaDES) and a growth regulator extract, for the management of cutaneous dysbiosis involving staphylococci.


Assuntos
Ácidos Graxos não Esterificados , Spirulina , Spirulina/química , Humanos , Solventes Eutéticos Profundos/química , Microalgas/química , Queratinócitos/efeitos dos fármacos , Cosméticos/química , Fármacos Dermatológicos/farmacologia , Fármacos Dermatológicos/química , Organismos Aquáticos
4.
Mar Drugs ; 21(6)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37367673

RESUMO

Even after hundreds of clinical trials, the search for new antivirals to treat COVID-19 is still relevant. Carrageenans are seaweed sulfated polysaccharides displaying antiviral activity against a wide range of respiratory viruses. The objective of this work was to study the antiviral properties of Halymenia floresii and Solieria chordalis carrageenans against SARS-CoV-2. Six polysaccharide fractions obtained from H. floresii and S. chordalis by Enzyme-Assisted Extraction (EAE) or Hot Water Extraction (HWE) were tested. The effect of carrageenan on viral replication was assessed during infection of human airway epithelial cells with a clinical strain of SARS-CoV-2. The addition of carrageenans at different times of the infection helped to determine their mechanism of antiviral action. The four polysaccharide fractions isolated from H. floresii displayed antiviral properties while the S. chordalis fractions did not. EAE-purified fractions caused a stronger reduction in viral RNA concentration. Their antiviral action is likely related to an inhibition of the virus attachment to the cell surface. This study confirms that carrageenans could be used as first-line treatment in the respiratory mucosa to inhibit the infection and transmission of SARS-CoV-2. Low production costs, low cytotoxicity, and a broad spectrum of antiviral properties constitute the main strengths of these natural molecules.


Assuntos
COVID-19 , Rodófitas , Humanos , SARS-CoV-2 , Polissacarídeos/farmacologia , Carragenina/farmacologia , Antivirais/farmacologia
5.
Chem Biodivers ; 20(8): e202300130, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37452792

RESUMO

The extracts of five invasive plants were investigated for antifungal and antibiofilm activities against Candida albicans, C. glabrata, C. krusei, and C. parapsilosis. The antifungal activity was evaluated using the microdilution assay and the antibiofilm effect by measurement of the metabolic activity. Ethanol and ethanol-water extracts of Reynoutria japonica leaves inhibited 50 % of planktonic cells at 250 µg mL-1 and 15.6 µg mL-1 , respectively. Ethanol and ethanol-water extracts of Baccharis halimifolia inhibited >75 % of the mature biofilm of C. albicans at 500 µg mL-1 . The essential oil (EO) of B. halimifolia leaves was the most active (50 % inhibition (IC50 ) at 4 and 74 µg mL-1 against the maturation phase and 24 h old-biofilms of C. albicans, respectively). Oxygenated sesquiterpenes were the primary contents in this EO (62.02 %), with ß-caryophyllene oxide as the major component (37 %). Aromadendrene oxide-(2), ß-caryophyllene oxide, and (±)-ß-pinene displayed significant activities against the maturation phase (IC50 =9-310 µ mol l-1 ) and preformed 24 h-biofilm (IC50 =38-630 µ mol l-1 ) of C. albicans with very low cytotoxicity for the first two compounds. C. albicans remained the most susceptible species to this EO and its components. This study highlighted for the first time the antibiofilm potential of B. halimifolia, its EO and some of its components.


Assuntos
Baccharis , Óleos Voláteis , Candida albicans , Antifúngicos/farmacologia , Óleos Voláteis/farmacologia , Etanol/farmacologia , Biofilmes , Testes de Sensibilidade Microbiana
6.
Helicobacter ; 23(3): e12479, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29582503

RESUMO

BACKGROUND: The pathological determinism of H. pylori infection is explained by complex interplay between bacterial virulence and host inflammatory response. In a large prospective multicenter clinical study, Th17 response, expression of antimicrobial peptides (AMPs), cagA and vacA status, and bacterial density were investigated in the gastric mucosa of H. pylori -infected patients. MATERIALS AND METHODS: Gastric inflammatory response was analyzed by RT-qPCR for quantification of Th17 cytokines (IL-17A, IL-22), CXCL-8, and AMPs (BD2 and S100A9) mRNA levels in gastric biopsies. Detection and genotyping of H. pylori strains were achieved by bacterial culture and PCR. RESULTS: Among 787 patients screened for H. pylori, 269 were analyzed (147 H. pylori -infected and 122 uninfected patients). In H. pylori -infected patients, distribution was 83 gastritis, 12 duodenal ulcers, 5 gastric ulcers, and 47 precancerous and cancerous lesions. CXCL-8, IL-17A, BD2, and S100A9 mRNA levels were significantly increased in H. pylori -infected patients but, surprisingly, IL-22 was not, and no difference was shown between H. pylori -related diseases. A positive correlation was identified between S100A9 expression and bacterial density. Although expression of the virulence genes cagA and vacA did not impact inflammatory response, patients infected with a cagA-positive strain were associated with severe H. pylori -related diseases. CONCLUSION: This study showed that CXCL-8, IL-17A, and AMPs are not differently expressed according to the various H. pylori -related diseases. The clinical outcome determinism of H. pylori infection is most likely not driven by gastric inflammation but rather tends to mainly influenced by bacterial virulence factors.


Assuntos
Mucosa Gástrica/microbiologia , Gastrite/microbiologia , Infecções por Helicobacter/microbiologia , Helicobacter pylori/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos de Bactérias/genética , Peptídeos Catiônicos Antimicrobianos/genética , Proteínas de Bactérias/genética , Feminino , Mucosa Gástrica/imunologia , Gastrite/classificação , Gastrite/imunologia , Infecções por Helicobacter/imunologia , Helicobacter pylori/genética , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto Jovem
7.
Helicobacter ; 22(2)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27592706

RESUMO

BACKGROUND: Human gastric mucosa shows continuous self-renewal via differentiation from stem cells that remain poorly characterized. METHODS: We describe an original protocol for culture of gastric stem/progenitor cells from adult human stomach. The molecular characteristics of cells were studied using TaqMan low-density array and qRT-PCR analyses using the well-characterized H1 and H9 embryonic stem cells as reference. Epithelial progenitor cells were challenged with H. pylori to characterize their inflammatory response. RESULTS: Resident gastric stem cells expressed specific molecular markers of embryonic stem cells (SOX2, NANOG, and OCT4), as well as others specific to adult stem cells, particularly LGR5 and CD44. We show that gastric stem cells spontaneously differentiate into epithelial progenitor cells that can be challenged with H. pylori. The epithelial progenitor response to H. pylori showed a cag pathogenicity island-dependent induction of matrix metalloproteinases 1 and 3, chemokine (CXCL1, CXCL5, CXCL8, CCL20) and interleukine 33 expression. CONCLUSION: This study opens new outlooks for investigation of gastric stem cell biology and pathobiology as well as host-H. pylori interactions.


Assuntos
Técnicas de Cultura de Células/métodos , Mucosa Gástrica/citologia , Células-Tronco/fisiologia , Adulto , Diferenciação Celular , Células Epiteliais/microbiologia , Células Epiteliais/fisiologia , Feminino , Perfilação da Expressão Gênica , Marcadores Genéticos , Helicobacter pylori/patogenicidade , Humanos , Masculino , Análise em Microsséries , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real
8.
J Nat Prod ; 78(4): 597-603, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25756503

RESUMO

Two heterodimers comprising anthraquinone and methylbenzoisocoumarin moieties (1 and 2) were isolated, together with emodin and physcion from the tubers of Pyrenacantha kaurabassana. The structures of 1 and 2 were established by NMR spectroscopy, including the analysis of a 2D INADEQUATE spectrum. On the basis of the data obtained, the structures that were previously proposed in the literature for these compounds were revised. Compounds 1 and 2 showed antibacterial activity against three different strains of Staphylococcus aureus. Compound 2 also showed bactericidal activity against Helicobacter pylori.


Assuntos
Antraquinonas/isolamento & purificação , Antraquinonas/farmacologia , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Cumarínicos/isolamento & purificação , Cumarínicos/farmacologia , Magnoliopsida/química , Policetídeos/isolamento & purificação , Policetídeos/farmacologia , Antraquinonas/química , Antibacterianos/química , Cumarínicos/química , Emodina/análogos & derivados , Emodina/química , Emodina/isolamento & purificação , Helicobacter pylori/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Moçambique , Ressonância Magnética Nuclear Biomolecular , Tubérculos/química , Policetídeos/química , Staphylococcus aureus/efeitos dos fármacos
9.
Infect Immun ; 82(7): 2881-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24778119

RESUMO

Helicobacter pylori infection systematically causes chronic gastric inflammation that can persist asymptomatically or evolve toward more severe gastroduodenal pathologies, such as ulcer, mucosa-associated lymphoid tissue (MALT) lymphoma, and gastric cancer. The cag pathogenicity island (cag PAI) of H. pylori allows translocation of the virulence protein CagA and fragments of peptidoglycan into host cells, thereby inducing production of chemokines, cytokines, and antimicrobial peptides. In order to characterize the inflammatory response to H. pylori, a new experimental protocol for isolating and culturing primary human gastric epithelial cells was established using pieces of stomach from patients who had undergone sleeve gastrectomy. Isolated cells expressed markers indicating that they were mucin-secreting epithelial cells. Challenge of primary epithelial cells with H. pylori B128 underscored early dose-dependent induction of expression of mRNAs of the inflammatory mediators CXCL1 to -3, CXCL5, CXCL8, CCL20, BD2, and tumor necrosis factor alpha (TNF-α). In AGS cells, significant expression of only CXCL5 and CXCL8 was observed following infection, suggesting that these cells were less reactive than primary epithelial cells. Infection of both cellular models with H. pylori B128ΔcagM, a cag PAI mutant, resulted in weak inflammatory-mediator mRNA induction. At 24 h after infection of primary epithelial cells with H. pylori, inflammatory-mediator production was largely due to cag PAI substrate-independent virulence factors. Thus, H. pylori cag PAI substrate appears to be involved in eliciting an epithelial response during the early phases of infection. Afterwards, other virulence factors of the bacterium take over in development of the inflammatory response. Using a relevant cellular model, this study provides new information on the modulation of inflammation during H. pylori infection.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Quimiocinas/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Helicobacter pylori/imunologia , Estômago/citologia , Antígenos de Bactérias/imunologia , Peptídeos Catiônicos Antimicrobianos/genética , Proteínas de Bactérias/imunologia , Células Cultivadas , Quimiocinas/genética , Ilhas Genômicas , Helicobacter pylori/metabolismo , Humanos
10.
Front Immunol ; 13: 801579, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464457

RESUMO

Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by barrier dysfunction, dysregulated immune response, and dysbiosis with increased Staphylococcus aureus colonization. Infiltration of various T helper cell subsets into lesional skin and subsequent cytokine release are a hallmark of AD. Release of cytokines by both T cells and keratinocytes plays a key role in skin inflammation and drives many AD features. This review aims to discuss cytokine-mediated crosstalk between T cells and keratinocytes in AD pathogenesis and the potential impact of virulence factors produced by Staphylococcus aureus on these interactions.


Assuntos
Dermatite Atópica , Infecções Estafilocócicas , Citocinas , Humanos , Queratinócitos , Infecções Estafilocócicas/patologia , Staphylococcus aureus
11.
Viruses ; 14(7)2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35891533

RESUMO

West Nile virus (WNV) is an emerging flavivirus transmitted through mosquito bites and responsible for a wide range of clinical manifestations. Following their inoculation within the skin, flaviviruses replicate in keratinocytes of the epidermis, inducing an innate immune response including the production of antimicrobial peptides (AMPs). Among them, the cathelicidin LL-37 and the human beta-defensin (hBD)-3 are known for their antimicrobial and immunomodulatory properties. We assessed their role during WNV infection of human primary keratinocytes. LL-37 reduced the viral load in the supernatant of infected keratinocytes and of the titer of a viral inoculum incubated in the presence of the peptide, suggesting a direct antiviral effect of this AMP. Conversely, WNV replication was not inhibited by hBD-3. The two peptides then demonstrated immunomodulatory properties whether in the context of keratinocyte stimulation by poly(I:C) or infection by WNV, but not alone. This study demonstrates the immunostimulatory properties of these two skin AMPs at the initial site of WNV replication and the ability of LL-37 to directly inactivate West Nile viral infectious particles. The results provide new information on the multiple functions of these two peptides and underline the potential of AMPs as new antiviral strategies in the fight against flaviviral infections.


Assuntos
Catelicidinas , Queratinócitos , Febre do Nilo Ocidental , beta-Defensinas , Fatores de Restrição Antivirais/imunologia , Catelicidinas/imunologia , Humanos , Queratinócitos/virologia , Febre do Nilo Ocidental/imunologia , Vírus do Nilo Ocidental , beta-Defensinas/imunologia
12.
Emerg Microbes Infect ; 11(1): 761-774, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35191820

RESUMO

Usutu virus (USUV) and West Nile virus (WNV) are phylogenetically close emerging arboviruses and constitute a global public health threat. Since USUV and WNV are transmitted by mosquitoes, the first immune cells they encounter are skin-resident dendritic cells, the most peripheral outpost of immune defense. This unique network is composed of Langerhans cells (LCs) and dermal DCs, which reside in the epidermis and the dermis, respectively. Using human skin explants, we show that while both viruses can replicate in keratinocytes, they can also infect resident DCs with distinct tropism: WNV preferentially infects DCs in the dermis, whereas USUV has a greater propensity to infect LCs. Using both purified human epidermal LCs (eLCs) and monocyte derived LCs (MoLCs), we confirm that LCs sustain a faster and more efficient replication of USUV than WNV and that this correlates with a more intense innate immune response to USUV compared with WNV. Next, we show that ectopic expression of the LC-specific C-type lectin receptor (CLR), langerin, in HEK293T cells allows WNV and USUV to bind and enter, but supports the subsequent replication of USUV only. Conversely, blocking or silencing langerin in MoLCs or eLCs made them resistant to USUV infection, thus demonstrating that USUV uses langerin to enter and replicate in LCs. Altogether, our results demonstrate that LCs constitute privileged target cells for USUV in human skin, because langerin favours its entry and replication. Intriguingly, this suggests that USUV efficiently escapes the antiviral functions of langerin, which normally safeguards LCs from most viral infections.


Assuntos
Infecções por Flavivirus , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Flavivirus , Células HEK293 , Humanos , Células de Langerhans , Vírus do Nilo Ocidental/genética
13.
Front Immunol ; 13: 984016, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275755

RESUMO

Introduction: Although the presence of pathogens in skin wounds is known to delay the wound healing process, the mechanisms underlying this delay remain poorly understood. In the present study, we have investigated the regulatory role of proinflammatory cytokines on the healing kinetics of infected wounds. Methods: We have developed a mouse model of cutaneous wound healing, with or without wound inoculation with Staphylococcus aureus and Pseudomonas aeruginosa, two major pathogens involved in cutaneous wound bacterial infections. Results: Aseptic excision in C57BL/6 mouse skin induced early expression of IL-1ß, TNFα and Oncostatin M (OSM), without detectable expression of IL-22 and IL-17A/F. S. aureus and P. aeruginosa wound inoculation not only increased the expression of IL-1ß and OSM, but also induced a strong cutaneous expression of IL-22, IL-17A and IL-17F, along with an increased number of infiltrating IL-17A and/or IL-22-producing γδ T cells. The same cytokine expression pattern was observed in infected human skin wounds. When compared to uninfected wounds, mouse skin infection delayed the wound healing process. Injection of IL-1α, TNFα, OSM, IL-22 and IL-17 together in the wound edges induced delayed wound healing similar to that induced by the bacterial infection. Wound healing experiments in infected Rag2KO mice (deficient in lymphocytes) showed a wound healing kinetic similar to uninfected Rag2KO mice or WT mice. Rag2KO infected-skin lesions expressed lower levels of IL-17 and IL-22 than WT, suggesting that the expression of these cytokines is mainly dependent on γδ T cells in this model. Wound healing was not delayed in infected IL-17R/IL-22KO, comparable to uninfected control mice. Injection of recombinant IL-22 and IL-17 in infected wound edges of Rag2KO mice re-establish the delayed kinetic of wound healing, as in infected WT mice. Conclusion: These results demonstrate the synergistic and specific effects of IL-22 and IL-17 induced by bacterial infection delay the wound healing process, regardless of the presence of bacteria per se. Therefore, these cytokines play an unexpected role in delayed skin wound healing.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Pseudomonas aeruginosa , Camundongos , Humanos , Animais , Pseudomonas aeruginosa/metabolismo , Interleucina-17/metabolismo , Staphylococcus aureus/metabolismo , Fator de Necrose Tumoral alfa , Oncostatina M , Staphylococcus aureus Resistente à Meticilina/metabolismo , Camundongos Endogâmicos C57BL , Interleucina 22
14.
Appl Environ Microbiol ; 77(14): 4974-80, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21602398

RESUMO

Acanthamoeba castellanii is a free-living amoebae commonly found in water systems. Free-living amoebae might be pathogenic but are also known to bear phagocytosis-resistant bacteria, protecting these bacteria from water treatments. The mode of action of these treatments is poorly understood, particularly on amoebae. It is important to examine the action of these treatments on amoebae in order to improve them. The cellular response to chlorine, chlorine dioxide, and monochloramine was tested on A. castellanii trophozoites. Doses of disinfectants leading to up to a 3-log reduction were compared by flow cytometry and electron microscopy. Chlorine treatment led to size reduction, permeabilization, and retraction of pseudopods. In addition, treatment with chlorine dioxide led to a vacuolization of the cytoplasm. Monochloramine had a dose-dependent effect. At the highest doses monochloramine treatment resulted in almost no changes in cell size and permeability, as shown by flow cytometry, but the cell surface became smooth and dense, as seen by electron microscopy. We show that these disinfectants globally induced size reduction, membrane permeabilization, and morphological modifications but that they have a different mode of action on A. castellanii.


Assuntos
Acanthamoeba castellanii/efeitos dos fármacos , Cloraminas/farmacologia , Compostos Clorados/farmacologia , Cloro/farmacologia , Óxidos/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Citoplasma/efeitos dos fármacos , Desinfetantes/farmacologia , Citometria de Fluxo , Microscopia Eletrônica , Pseudópodes/efeitos dos fármacos , Vacúolos/efeitos dos fármacos
15.
Viruses ; 13(4)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808354

RESUMO

The poly-adenosine diphosphate (ADP)-ribose polymerases (PARPs) are responsible for ADP-ribosylation, a reversible post-translational modification involved in many cellular processes including DNA damage repair, chromatin remodeling, regulation of translation and cell death. In addition to these physiological functions, recent studies have highlighted the role of PARPs in host defenses against viruses, either by direct antiviral activity, targeting certain steps of virus replication cycle, or indirect antiviral activity, via modulation of the innate immune response. This review focuses on the antiviral activity of PARPs, as well as strategies developed by viruses to escape their action.


Assuntos
ADP-Ribosilação/fisiologia , Interações entre Hospedeiro e Microrganismos/imunologia , Poli(ADP-Ribose) Polimerases/genética , Vírus/imunologia , ADP-Ribosilação/genética , Morte Celular , Interações entre Hospedeiro e Microrganismos/genética , Humanos , Imunidade Inata , Imunomodulação , Poli(ADP-Ribose) Polimerases/imunologia , Processamento de Proteína Pós-Traducional , Vírus/genética
16.
Pharmaceuticals (Basel) ; 14(8)2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34451812

RESUMO

Hg-CATH and Pb-CATH4 are cathelicidins from Heterocephalus glaber and Python bivittatus that have been previously identified as potent antibacterial peptides. However, their antiviral properties were not previously investigated. In this study, their activity against the herpes simplex virus (HSV)-1 was evaluated during primary human keratinocyte infection. Both of them significantly reduced HSV-1 DNA replication and production of infectious viral particles in keratinocytes at noncytotoxic concentrations, with the stronger activity of Pb-CATH4. These peptides did not show direct virucidal activity and did not exhibit significant immunomodulatory properties, except for Pb-CATH4, which exerted a moderate proinflammatory action. All in all, our results suggest that Hg-CATH and Pb-CATH4 could be potent candidates for the development of new therapies against HSV-1.

17.
Virulence ; 12(1): 2474-2492, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34516337

RESUMO

Staphylococcus aureus is a skin commensal microorganism commonly colonizing healthy humans. Nevertheless, S. aureus can also be responsible for cutaneous infections and contribute to flare-up of inflammatory skin diseases such as atopic dermatitis (AD), which is characterized by dysbiosis of the skin microbiota with S. aureus as the predominant species. However, the role of major virulence factors of this pathogen such as phenol-soluble modulin (PSM) toxins in epidermal inflammation remains poorly understood. Stimulation of primary human keratinocytes with sublytic concentrations of synthetic and purified PSM α3 resulted in upregulation of a large panel of pro-inflammatory chemokine and cytokine gene expression, including CXCL1, CXCL2, CXCL3, CXCL5, CXCL8, CCL20, IL-1α, IL-1ß, IL-6, IL-36γ and TNF-α, while inducing the release of CXCL8, CCL20, TNF-α and IL-6. In addition, using S. aureus culture supernatant from mutants deleted from genes encoding either α-type PSMs or all PSM production, PSMs were shown to be the main factors of S. aureus secretome responsible for pro-inflammatory mediator induction in human keratinocytes. On the other hand, α-type PSM-containing supernatant triggered an intense induction of pro-inflammatory mediator expression and secretion during both topical and basal layer stimulation of an ex vivo model of human skin explants, a physiologically relevant model of pluristratified epidermis. Taken together, the results of this study show that PSMs and more specifically α-type PSMs are major virulence factors of S. aureus inducing a potent inflammatory response during infection of the human epidermis and could thereby contribute to AD flare-up through exacerbation of skin inflammation.


Assuntos
Toxinas Bacterianas/metabolismo , Epiderme , Secretoma , Infecções Estafilocócicas , Staphylococcus aureus , Fatores de Virulência , Quimiocinas/imunologia , Citocinas/imunologia , Epiderme/imunologia , Epiderme/microbiologia , Humanos , Inflamação , Mediadores da Inflamação/imunologia , Staphylococcus aureus/metabolismo , Fatores de Virulência/metabolismo
18.
Exp Parasitol ; 126(1): 97-102, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20034490

RESUMO

Chlorination is a well-known disinfection method, used in water treatment to inactivate various microorganisms, it induces numerous cellular changes. Even though Acanthamoebae are frequently found in water, the cellular changes induced in Acanthamoebae have not been described in the literature. Acanthamoebae are pathogenic amoebae and may provide a reservoir for pathogenic bacteria such as Legionellapneumophila; it is consequently important to understand the response of this amoeba to chlorination, and our study was indeed aimed at examining cellular changes in Acanthamoebae following chlorination. Acanthamoeba trophozoites were treated at various chlorine concentrations (1-5mg/L). A 3-log reduction in Acanthamoebae population was achieved with 5mg/L of free chlorine. Confocal microscopy and flow cytometry experiments indicated that chlorination induced cell permeabilization, size reduction and likely intracellular thiol concentration. Our data show that among the non-cultivable cells some remained impermeabilized (negative staining with propidium iodide), thereby suggesting that these cells might remained viable. A similar state is described in other microorganisms as a VBNC (viable but not cultivable) state. Electron microscopy observations illustrate drastic morphological changes: the pseudopods disappeared and subcellular components, such as mitochondrion, were pronouncedly affected. In conclusion, depending on the concentration used, chlorination leads to many cellular effects on Acanthamoeba that could well arise in cell inactivation.


Assuntos
Acanthamoeba castellanii/efeitos dos fármacos , Cloro/farmacologia , Desinfecção/métodos , Purificação da Água/métodos , Acanthamoeba castellanii/citologia , Acanthamoeba castellanii/ultraestrutura , Permeabilidade da Membrana Celular/efeitos dos fármacos , Cloro/administração & dosagem , Cloro/química , Citometria de Fluxo , Halogenação , Microscopia Confocal , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Compostos de Sulfidrila/metabolismo
19.
Clin Rev Allergy Immunol ; 59(1): 1-18, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31836943

RESUMO

Atopic dermatitis (AD) is the most common chronic inflammatory skin disease in the world. AD is a complex pathology mainly characterized by an impaired skin barrier, immune response dysfunction, and unbalanced skin microbiota. Moreover, AD patients exhibit an increased risk of developing bacterial and viral infections. One of the most current, and potentially life-threatening, viral infection is caused by herpes simplex virus (HSV), which occurs in about 3% of AD patients under the name of eczema herpeticum (EH). Following a first part dedicated to the clinical features, virological diagnosis, and current treatments of EH, this review will focus on the description of the pathophysiology and, more particularly, the presently known predisposing factors to herpetic complications in AD patients. These factors include those related to impairment of the skin barrier such as deficit in filaggrin and anomalies in tight and adherens junctions. In addition, low production of the antimicrobial peptides cathelicidin LL-37 and human ß-defensins; overexpression of cytokines such as interleukin (IL)-4, IL-13, IL-25, IL-33, and thymic stromal lymphopoietin (TSLP); or downregulation of type I to III interferons as well as defect in functions of immune cells such as dendritic, natural killer, and regulatory T cells have been involved. Otherwise, genetic polymorphisms and AD topical calcineurin inhibitor treatments have been associated with an increased risk of EH. Finally, dysbiosis of skin microbiota characterized in AD patients by Staphylococcus aureus colonization and toxin secretion, such as α-toxin, has been described as promoting HSV replication and could therefore contribute to EH.


Assuntos
Dermatite Atópica/imunologia , Disbiose/imunologia , Infecções por Herpesviridae/imunologia , Erupção Variceliforme de Kaposi/imunologia , Microbiota/imunologia , Simplexvirus/fisiologia , Pele/patologia , Suscetibilidade a Doenças , Proteínas Filagrinas , Humanos
20.
Front Microbiol ; 11: 1155, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582097

RESUMO

Keratinocytes, the main cells of the epidermis, are the first site of replication as well as the first line of defense against many viruses such as arboviruses, enteroviruses, herpes viruses, human papillomaviruses, or vaccinia virus. During viral replication, these cells can sense virus associated molecular patterns leading to the initiation of an innate immune response composed of pro-inflammatory cytokines, chemokines, and antimicrobial peptides. Human keratinocytes produce and secrete at least nine antimicrobial peptides: human cathelicidin LL-37, types 1-4 human ß-defensins, S100 peptides such as psoriasin (S100A7), calprotectin (S100A8/9) and koebnerisin (S100A15), and RNase 7. These peptides can exert direct antiviral effects on the viral particle or its replication cycle, and indirect antiviral activity, by modulating the host immune response. The purpose of this review is to summarize current knowledge of antiviral and immunomodulatory properties of human keratinocyte antimicrobial peptides.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa