Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 109(10): 1909-1922, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36044892

RESUMO

The transmembrane protein TMEM147 has a dual function: first at the nuclear envelope, where it anchors lamin B receptor (LBR) to the inner membrane, and second at the endoplasmic reticulum (ER), where it facilitates the translation of nascent polypeptides within the ribosome-bound TMCO1 translocon complex. Through international data sharing, we identified 23 individuals from 15 unrelated families with bi-allelic TMEM147 loss-of-function variants, including splice-site, nonsense, frameshift, and missense variants. These affected children displayed congruent clinical features including coarse facies, developmental delay, intellectual disability, and behavioral problems. In silico structural analyses predicted disruptive consequences of the identified amino acid substitutions on translocon complex assembly and/or function, and in vitro analyses documented accelerated protein degradation via the autophagy-lysosomal-mediated pathway. Furthermore, TMEM147-deficient cells showed CKAP4 (CLIMP-63) and RTN4 (NOGO) upregulation with a concomitant reorientation of the ER, which was also witnessed in primary fibroblast cell culture. LBR mislocalization and nuclear segmentation was observed in primary fibroblast cells. Abnormal nuclear segmentation and chromatin compaction were also observed in approximately 20% of neutrophils, indicating the presence of a pseudo-Pelger-Huët anomaly. Finally, co-expression analysis revealed significant correlation with neurodevelopmental genes in the brain, further supporting a role of TMEM147 in neurodevelopment. Our findings provide clinical, genetic, and functional evidence that bi-allelic loss-of-function variants in TMEM147 cause syndromic intellectual disability due to ER-translocon and nuclear organization dysfunction.


Assuntos
Deficiência Intelectual , Anormalidades Musculoesqueléticas , Anomalia de Pelger-Huët , Núcleo Celular/genética , Criança , Cromatina , Humanos , Deficiência Intelectual/genética , Perda de Heterozigosidade , Anomalia de Pelger-Huët/genética
2.
Mol Ther ; 32(7): 2150-2175, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38796706

RESUMO

Neuroglobin, a member of the globin superfamily, is abundant in the brain, retina, and cerebellum of mammals and localizes to mitochondria. The protein exhibits neuroprotective capacities by participating in electron transfer, oxygen supply, and protecting against oxidative stress. Our objective was to determine whether neuroglobin overexpression can be used to treat neurological disorders. We chose Harlequin mice, which harbor a retroviral insertion in the first intron of the apoptosis-inducing factor gene resulting in the depletion of the corresponding protein essential for mitochondrial biogenesis. Consequently, Harlequin mice display degeneration of the cerebellum and suffer from progressive blindness and ataxia. Cerebellar ataxia begins in Harlequin mice at the age of 4 months and is characterized by neuronal cell disappearance, bioenergetics failure, and motor and cognitive impairments, which aggravated with aging. Mice aged 2 months received adeno-associated viral vectors harboring the coding sequence of neuroglobin or apoptosis-inducing factor in both cerebellar hemispheres. Six months later, Harlequin mice exhibited substantial improvements in motor and cognitive skills; probably linked to the preservation of respiratory chain function, Purkinje cell numbers and connectivity. Thus, without sharing functional properties with apoptosis-inducing factor, neuroglobin was efficient in reducing ataxia in Harlequin mice.


Assuntos
Ataxia Cerebelar , Cerebelo , Globinas , Mitocôndrias , Proteínas do Tecido Nervoso , Neuroglobina , Animais , Camundongos , Fator de Indução de Apoptose/metabolismo , Fator de Indução de Apoptose/genética , Ataxia Cerebelar/metabolismo , Ataxia Cerebelar/genética , Ataxia Cerebelar/terapia , Cerebelo/metabolismo , Dependovirus/genética , Modelos Animais de Doenças , Expressão Gênica , Terapia Genética/métodos , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Globinas/metabolismo , Globinas/genética , Homeostase , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Neuroglobina/metabolismo , Neurônios/metabolismo
3.
J Med Genet ; 61(4): 369-377, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-37935568

RESUMO

BACKGROUND: Titinopathies are caused by mutations in the titin gene (TTN). Titin is the largest known human protein; its gene has the longest coding phase with 364 exons. Titinopathies are very complex neuromuscular pathologies due to the variable age of onset of symptoms, the great diversity of pathological and muscular impairment patterns (cardiac, skeletal muscle or mixed) and both autosomal dominant and recessive modes of transmission. Until now, only few CNVs in TTN have been reported without clear genotype-phenotype associations. METHODS: Our study includes eight families with dominant titinopathies. We performed next-generation sequencing or comparative genomic hybridisation array analyses and found CNVs in the TTN gene. We characterised these CNVs by RNA sequencing (RNAseq) analyses in six patients' muscles and performed genotype-phenotype inheritance association study by combining the clinical and biological data of these eight families. RESULTS: Seven deletion-type CNVs in the TTN gene were identified among these families. Genotype and RNAseq results showed that five deletions do not alter the reading frame and one is out-of-reading frame. The main phenotype identified was distal myopathy associated with contractures. The analysis of morphological, clinical and genetic data and imaging let us draw new genotype-phenotype associations of titinopathies. CONCLUSION: Identifying TTN CNVs will further increase diagnostic sensitivity in these complex neuromuscular pathologies. Our cohort of patients enabled us to identify new deletion-type CNVs in the TTN gene, with unexpected autosomal dominant transmission. This is valuable in establishing new genotype-phenotype associations of titinopathies, mainly distal myopathy in most of the patients.


Assuntos
Miopatias Distais , Humanos , Conectina/genética , Miopatias Distais/genética , Variações do Número de Cópias de DNA/genética , Músculo Esquelético/patologia , Mutação/genética , Fenótipo
4.
Clin Genet ; 105(5): 555-560, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38287449

RESUMO

Achaete-Scute Family basic-helix-loop-helix (bHLH) Transcription Factor 1 (ASCL1) is a proneural transcription factor involved in neuron development in the central and peripheral nervous system. While initially suspected to contribute to congenital central hypoventilation syndrome-1 (CCHS) with or without Hirschsprung disease (HSCR) in three individuals, its implication was ruled out by the presence, in one of the individuals, of a Paired-like homeobox 2B (PHOX2B) heterozygous polyalanine expansion variant, known to cause CCHS. We report two additional unrelated individuals sharing the same sporadic ASCL1 p.(Glu127Lys) missense variant in the bHLH domain and a common phenotype with short-segment HSCR, signs of dysautonomia, and developmental delay. One has also mild CCHS without polyalanine expansion in PHOX2B, compatible with the diagnosis of Haddad syndrome. Furthermore, missense variants with homologous position in the same bHLH domain in other genes are known to cause human diseases. The description of additional individuals carrying the same variant and similar phenotype, as well as targeted functional studies, would be interesting to further evaluate the role of ASCL1 in neurocristopathies.


Assuntos
Proteínas de Homeodomínio , Fatores de Transcrição , Humanos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Homeodomínio/genética , Mutação , Mutação de Sentido Incorreto/genética , Fenótipo , Fatores de Transcrição/genética
5.
Clin Genet ; 106(1): 90-94, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38424388

RESUMO

Central nervous system (CNS) dural arteriovenous fistulas (DAVF) have been reported in PTEN-related hamartoma tumor syndrome (PHTS). However, PHTS-associated DAVF remain an underexplored field of the PHTS clinical landscape. Here, we studied cases with a PTEN pathogenic variant identified between 2007 and 2020 in our laboratory (n = 58), and for whom brain imaging was available. Two patients had DAVF (2/58, 3.4%), both presenting at advanced stages: a 34-year-old man with a left lateral sinus DAVF at immediate risk of hemorrhage, and a 21-year-old woman with acute intracranial hypertension due to a torcular DAVF. Interestingly, not all patients had 3D TOF/MRA, the optimal sequences to detect DAVF. Early diagnosis of DAVF can be lifesaving, and is easier to treat compared to developed, proliferative, or complex lesions. As a result, one should consider brain MRI with 3D TOF/MRA in PHTS patients at genetic diagnosis, with subsequent surveillance on a case-by-case basis.


Assuntos
Malformações Vasculares do Sistema Nervoso Central , Síndrome do Hamartoma Múltiplo , PTEN Fosfo-Hidrolase , Humanos , Adulto , PTEN Fosfo-Hidrolase/genética , Feminino , Masculino , Malformações Vasculares do Sistema Nervoso Central/genética , Malformações Vasculares do Sistema Nervoso Central/complicações , Malformações Vasculares do Sistema Nervoso Central/diagnóstico por imagem , Malformações Vasculares do Sistema Nervoso Central/diagnóstico , Síndrome do Hamartoma Múltiplo/genética , Síndrome do Hamartoma Múltiplo/complicações , Adulto Jovem , Imageamento por Ressonância Magnética , Mutação
6.
Mov Disord ; 39(8): 1386-1396, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38725190

RESUMO

BACKGROUND: Paroxysmal movement disorders are common in Glut1 deficiency syndrome (Glut1DS). Not all patients respond to or tolerate ketogenic diets. OBJECTIVES: The objective was to evaluate the effectiveness and safety of triheptanoin in reducing the frequency of disabling movement disorders in patients with Glut1DS not receiving a ketogenic diet. METHODS: UX007G-CL301 was a randomized, double-blind, placebo-controlled, phase 3 crossover study. After a 6-week run-in, eligible patients were randomized 1:1 to the first sequence (triheptanoin/placebo or placebo/triheptanoin) titration plus maintenance, followed by washout and the opposite sequence titration plus maintenance. The placebo (safflower oil) matched the appearance, taste, and smell of triheptanoin. Open-label triheptanoin was administered in the extension. The frequency of disabling paroxysmal movement disorder events per 4 weeks (recorded by diary during maintenance; primary endpoint) was assessed by Wilcoxon rank-sum test. RESULTS: Forty-three patients (children, n = 16; adults, n = 27) were randomized and treated. There was no difference between triheptanoin and placebo in the mean (interquartile range) number of disabling paroxysmal movement disorder events (14.3 [4.7-38.3] vs. 11.8; [3.2-28.7]; Hodges-Lehmann estimated median difference: 1.46; 95% confidence interval, -1.12 to 4.36; P = 0.2684). Treatment-emergent adverse events were mild/moderate in severity and included diarrhea, vomiting, upper abdominal pain, headache, and nausea. Two patients discontinued the study because of non-serious adverse events that were predominantly gastrointestinal. The study was closed early during the open-label extension because of lack of effectiveness. Seven patients continued to receive triheptanoin compassionately. CONCLUSION: There were no significant differences between the triheptanoin and placebo groups in the frequency of disabling movement disorder events during the double-blind maintenance period. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Erros Inatos do Metabolismo dos Carboidratos , Estudos Cross-Over , Humanos , Feminino , Masculino , Método Duplo-Cego , Erros Inatos do Metabolismo dos Carboidratos/tratamento farmacológico , Adolescente , Criança , Pré-Escolar , Adulto , Adulto Jovem , Proteínas de Transporte de Monossacarídeos/deficiência , Transtornos dos Movimentos/tratamento farmacológico , Resultado do Tratamento , Triglicerídeos
7.
Neurol Sci ; 45(3): 1007-1016, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37853291

RESUMO

BACKGROUND: Transition from child-centered to adult-centered healthcare is a gradual process that addresses the medical, psychological, and educational needs of young people in the management of their autonomy in making decisions about their health and their future clinical assistance. This transfer is challenging across all chronic diseases but can be particularly arduous in rare neurological conditions. AIM: To describe the current practice on the transition process for young patients in centers participating in the European Reference Network for Rare Neurological Diseases (ERN-RND). METHODS: Members of the ERN-RND working group developed a questionnaire considering child-to-adult transition issues and procedures in current clinical practice. The questionnaire included 20 questions and was sent to members of the health care providers (HCPs) participating in the network. RESULTS: Twenty ERN-RND members (75% adult neurologists; 25% pediatricians; 5% nurses or study coordinators) responded to the survey, representing 10 European countries. Transition usually occurs between 16 and 18 years of age, but 55% of pediatric HCPs continue to care for their patients until they reach 40 years of age or older. In 5/20 ERN-RND centers, a standardized procedure managing transition is currently adopted, whereas in the remaining centers, the transition from youth to adult service is usually assisted by pediatricians as part of their clinical practice. CONCLUSIONS: This survey demonstrated significant variations in clinical practice between different centers within the ERN-RND network. It provided valuable data on existing transition programs and highlighted key challenges in managing transitions for patients with rare neurological disorders.


Assuntos
Atenção à Saúde , Doenças do Sistema Nervoso , Adulto , Adolescente , Humanos , Criança , Inquéritos e Questionários , Europa (Continente) , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/terapia , Doenças Raras/diagnóstico , Doenças Raras/terapia
8.
Hum Brain Mapp ; 44(11): 4321-4336, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37209313

RESUMO

In fetal alcohol spectrum disorders (FASD), brain growth deficiency is a hallmark of subjects both with fetal alcohol syndrome (FAS) and with non-syndromic FASD (NS-FASD, i.e., those without specific diagnostic features). However, although the cerebellum was suggested to be more severely undersized than the rest of the brain, it has not yet been given a specific place in the FASD diagnostic criteria where neuroanatomical features still count for little if anything in diagnostic specificity. We applied a combination of cerebellar segmentation tools on a 1.5 T 3DT1 brain MRI dataset from a monocentric population of 89 FASD (52 FAS, 37 NS-FASD) and 126 typically developing controls (6-20 years old), providing 8 volumes: cerebellum, vermis and 3 lobes (anterior, posterior, inferior), plus total brain volume. After adjustment of confounders, the allometric scaling relationship between these cerebellar volumes (Vi ) and the total brain or cerebellum volume (Vt ) was fitted (Vi = bVt a ), and the effect of group (FAS, control) on allometric scaling was evaluated. We then estimated for each cerebellar volume in the FAS population the deviation from the typical scaling (v DTS) learned in the controls. Lastly, we trained and tested two classifiers to discriminate FAS from controls, one based on the total cerebellum v DTS only, the other based on all the cerebellar v DTS, comparing their performance both in the FAS and the NS-FASD group. Allometric scaling was significantly different between FAS and control group for all the cerebellar volumes (p < .001). We confirmed the excess of total cerebellum volume deficit (v DTS = -10.6%) and revealed an antero-inferior-posterior gradient of volumetric undersizing in the hemispheres (-12.4%, 1.1%, 2.0%, respectively) and the vermis (-16.7%, -9.2%, -8.6%, repectively). The classifier based on the intracerebellar gradient of v DTS performed more efficiently than the one based on total cerebellum v DTS only (AUC = 92% vs. 82%, p = .001). Setting a high probability threshold for >95% specificity of the classifiers, the gradient-based classifier identified 35% of the NS-FASD to have a FAS cerebellar phenotype, compared to 11% with the cerebellum-only classifier (pFISHER = 0.027). In a large series of FASD, this study details the volumetric undersizing within the cerebellum at the lobar and vermian level using allometric scaling, revealing an anterior-inferior-posterior gradient of vulnerability to prenatal alcohol exposure. It also strongly suggests that this intracerebellar gradient of volumetric undersizing may be a reliable neuroanatomical signature of FAS that could be used to improve the specificity of the diagnosis of NS-FASD.


Assuntos
Transtornos do Espectro Alcoólico Fetal , Efeitos Tardios da Exposição Pré-Natal , Humanos , Gravidez , Feminino , Transtornos do Espectro Alcoólico Fetal/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Cerebelo/diagnóstico por imagem , Imageamento por Ressonância Magnética
9.
Eur J Neurol ; 30(7): 1945-1956, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-35837793

RESUMO

BACKGROUND AND PURPOSE: Spinal muscular atrophy (SMA) is caused by reduced levels of survival of motor neuron (SMN) protein due to deletions and/or mutations in the SMN1 gene. Risdiplam is an orally administered molecule that modifies SMN2 pre-mRNA splicing to increase functional SMN protein. METHODS: SUNFISH Part 1 was a dose-finding study conducted in 51 individuals with types 2 and 3 SMA aged 2-25 years. A dose-escalation method was used to identify the appropriate dose for the subsequent pivotal Part 2. Individuals were randomized (2:1) to risdiplam or placebo at escalating dose levels for a minimum 12-week, double-blind, placebo-controlled period, followed by treatment for 24 months. The dose selection for Part 2 was based on safety, tolerability, pharmacokinetic, and pharmacodynamic data. Exploratory efficacy was also measured. RESULTS: There was no difference in safety findings for all assessed dose levels. A dose-dependent increase in blood SMN protein was observed; a median twofold increase was obtained within 4 weeks of treatment initiation at the highest dose level. The increase in SMN protein was sustained over 24 months of treatment. Exploratory efficacy showed improvement or stabilization in motor function. The pivotal dose selected for Part 2 was 5 mg for patients with a body weight ≥20 kg or 0.25 mg/kg for patients with a body weight <20 kg. CONCLUSIONS: SUNFISH Part 1 demonstrated a twofold increase in SMN protein after treatment with risdiplam. The observed safety profile supported the initiation of the pivotal Part 2 study. The long-term efficacy and safety of risdiplam are being assessed with ongoing treatment.


Assuntos
Atrofia Muscular Espinal , Humanos , Atrofia Muscular Espinal/tratamento farmacológico , Atrofia Muscular Espinal/genética , Pirimidinas/farmacocinética , Pirimidinas/uso terapêutico , Compostos Azo/farmacocinética , Compostos Azo/uso terapêutico , Splicing de RNA , Fatores de Transcrição/genética
10.
Dev Med Child Neurol ; 65(10): 1332-1342, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36883642

RESUMO

AIM: To identify subtypes of developmental coordination disorder (DCD) in children. METHOD: Children with DCD diagnosed through comprehensive evaluation at Robert-Debré Children's University Hospital (Paris, France) were consecutively enrolled from February 2017 to March 2020. We performed an unsupervised hierarchical clustering based on principal component analysis using a large set of variables encompassing cognitive, motor, and visuospatial scores (Wechsler Intelligence Scale for Children, Fifth Edition; Developmental Neuropsychological Assessment, Second Edition; Movement Assessment Battery for Children, Second Edition). RESULTS: One hundred and sixty-four children with DCD were enrolled (median age 10 years 3 months; male:female ratio 5.56:1). We identified distinct subgroups with mixed visuospatial and gestural disorders, or with pure gestural disorders that predominantly impaired either speed or precision. Associated neurodevelopmental disorders, such as attention-deficit/hyperactivity disorder, did not influence the results of the clustering. Importantly, we identified a subgroup of children with marked visuospatial impairment with the lowest scores in almost all of the evaluated domains, and the poorest school performance. INTERPRETATION: The classification of DCD into distinct subgroups could be indicative of prognosis and provide critical information to guide patient management, taking into account the child's neuropsychological profile. Beyond this clinical interest, our findings also provide a relevant framework with homogeneous subgroups of patients for research on the pathogenesis of DCD. WHAT THIS PAPER ADDS: Unsupervised hierarchical clustering identified four subgroups of children with developmental coordination disorder. Two subgroups had combined visuospatial/gestural difficulties, and two had pure gestural disorders. Severe visuospatial impairment was associated with poor performance in most domains including school. Difficulties in the gestural-only clusters were predominantly either gestural precision or speed.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtornos das Habilidades Motoras , Humanos , Masculino , Criança , Feminino , Transtornos das Habilidades Motoras/diagnóstico , Transtornos das Habilidades Motoras/epidemiologia , Transtornos das Habilidades Motoras/complicações , Transtorno do Deficit de Atenção com Hiperatividade/complicações , Movimento , Análise por Conglomerados , França
11.
Dev Med Child Neurol ; 65(4): 551-562, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36137006

RESUMO

AIM: To identify easily accessible neuroanatomical abnormalities useful for diagnosing fetal alcohol spectrum disorders (FASD) in fetal alcohol syndrome (FAS) but more importantly for the probabilistic diagnosis of non-syndromic forms (NS-FASD). METHOD: We retrospectively collected monocentric data from 52 individuals with FAS, 37 with NS-FASD, and 94 paired typically developing individuals (6-20 years, 99 males, 84 females). On brain T1-weighted magnetic resonance imaging, we measured brain size, corpus callosum length and thicknesses, vermis height, then evaluated vermis foliation (Likert scale). For each parameter, we established variations with age and brain size in comparison individuals (growth and scaling charts), then identified participants with abnormal measurements (<10th centile). RESULTS: According to growth charts, there was an excess of FAS with abnormally small brain, isthmus, splenium, and vermis. According to scaling charts, this excess remained only for isthmus thickness and vermis height. The vermis foliation was pathological in 18% of those with FASD but in no comparison individual. Overall, 39% of those with FAS, 27% with NS-FASD, but only 2% of comparison individuals presented with two FAS-recurrent abnormalities, and 19% of those with FAS had all three. Considering the number of anomalies, there was a higher likelihood of a causal link with alcohol in 14% of those with NS-FASD. INTERPRETATION: Our results suggest that adding an explicit composite neuroanatomical-radiological criterion for FASD diagnosis may improve its specificity, especially in NS-FASD. WHAT THIS PAPER ADDS: Neuroanatomical anomalies independent of microcephaly can be measured with clinical-imaging tools. Small-for-age brain, small-for-brain-size callosal isthmus or vermian height, and disrupted vermis foliation are fetal alcohol syndrome (FAS)-recurrent anomalies. Associations of these anomalies are frequent in fetal alcohol spectrum disorder (FASD) even without FAS, while exceptional in typically developing individuals. These associations support higher likelihood of causal link with alcohol in some individuals with non-syndromic FASD. A new explicit and composite neuroanatomical-radiological criterion can improve the specificity of FASD diagnosis.


Assuntos
Transtornos do Espectro Alcoólico Fetal , Feminino , Masculino , Gravidez , Humanos , Estudos Retrospectivos , Encéfalo , Corpo Caloso , Etanol
12.
Mol Genet Metab ; 135(1): 109-113, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34969638

RESUMO

BACKGROUND AND OBJECTIVES: MCT8 deficiency is a rare genetic leukoencephalopathy caused by a defect of thyroid hormone transport across cell membranes, particularly through blood brain barrier and into neural cells. It is characterized by a complex neurological presentation, signs of peripheral thyrotoxicosis and cerebral hypothyroidism. Movement disorders (MDs) have been frequently mentioned in this condition, but not systematically studied. METHODS: Each patient recruited was video-recorded during a routine outpatient visit according to a predefined protocol. The presence and the type of MDs were evaluated. The type of MD was blindly scored by two child neurologists experts in inherited white matter diseases and in MD. Dystonia was scored according to Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS). When more than one MD was present, the predominant one was scored. RESULTS: 27 patients were included through a multicenter collaboration. In many cases we saw a combination of different MDs. Hypokinesia was present in 25/27 patients and was the predominant MD in 19. It was often associated with hypomimia and global hypotonia. Dystonia was observed in 25/27 patients, however, in a minority of cases (5) it was deemed the predominant MD. In eleven patients, exaggerated startle reactions and/or other paroxysmal non-epileptic events were observed. CONCLUSION: MDs are frequent clinical features of MCT8 deficiency, possibly related to the important role of thyroid hormones in brain development and functioning of normal dopaminergic circuits of the basal ganglia. Dystonia is common, but usually mild to moderate in severity, while hypokinesia was the predominant MD in the majority of patients.


Assuntos
Deficiência Intelectual Ligada ao Cromossomo X , Transtornos dos Movimentos , Simportadores , Humanos , Deficiência Intelectual Ligada ao Cromossomo X/genética , Transportadores de Ácidos Monocarboxílicos/genética , Transtornos dos Movimentos/genética , Hipotonia Muscular/complicações , Hipotonia Muscular/genética , Hipotonia Muscular/metabolismo , Atrofia Muscular/complicações , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Simportadores/genética
13.
J Hum Genet ; 67(3): 127-132, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34504271

RESUMO

Mutations in MLC1 cause megalencephalic leukoencephalopathy with subcortical cysts (MLC), a rare form of leukodystrophy characterized by macrocephaly, epilepsy, spasticity, and slow mental deterioration. Genetic studies of MLC are lacking from many parts of the world, especially in Sub-Saharan Africa. Genomic DNA was extracted for 67 leukodystrophic patients from 43 Sudanese families. Mutations were screened using the NGS panel testing 139 leukodystrophies and leukoencephalopathies causing genes (NextSeq500 Illumina). Five homozygous MLC1 variants were discovered in seven patients from five distinct families, including three consanguineous families from the same region of Sudan. Three variants were missense (c.971 T > G, p.Ile324Ser; c.344 T > C, p.Phe115Ser; and c.881 C > T, p.Pro294Leu), one duplication (c.831_838dupATATCTGT, p.Ser280Tyrfs*8), and one synonymous/splicing-site mutation (c.762 C > T, p.Ser254). The segregation pattern was consistent with autosomal recessive inheritance. The clinical presentation and brain MRI of the seven affected patients were consistent with the diagnosis of MLC1. Due to the high frequency of distinct MLC1 mutations found in our leukodystrophic Sudanese families, we analyzed the coding sequence of MLC1 gene in 124 individuals from the Sudanese genome project in comparison with the 1000-genome project. We found that Sudan has the highest proportion of deleterious variants in MLC1 gene compared with other populations from the 1000-genome project.


Assuntos
Cistos , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central , Megalencefalia , Cistos/diagnóstico , Cistos/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/diagnóstico por imagem , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Humanos , Proteínas de Membrana/genética , Mutação
14.
Eur J Neurol ; 29(1): 329-334, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34541732

RESUMO

BACKGROUND AND PURPOSE: Diagnostic criteria for adult onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) due to colony-stimulating factor 1 receptor (CSF1R) mutation have recently been proposed. Our objective was to assess their accuracy in an independent multicenter cohort. METHODS: We evaluated the sensitivity and specificity of the diagnostic criteria for ALSP (including the "probable" and "possible" definitions) in a national cohort of 22 patients with CSF1R mutation, and 59 patients with an alternative diagnosis of adult onset inherited leukoencephalopathy. RESULTS: Overall, the sensitivity of the diagnostic criteria for ALSP was 82%, including nine of 22 patients diagnosed as probable and nine of 22 diagnosed as possible. Twenty of the 59 CSF1R mutation-negative leukoencephalopathies fulfilled the diagnostic criteria, leading to a specificity of 66%. CONCLUSIONS: Diagnostic criteria for ALSP have an overall limited sensitivity along with a modest specificity. We suggest that in patients suspected of genetic leukoencephalopathy, a comprehensive magnetic resonance imaging pattern-based approach is warranted, together with white matter gene panel or whole exome sequencing.


Assuntos
Leucoencefalopatias , Substância Branca , Adulto , Humanos , Leucoencefalopatias/diagnóstico , Leucoencefalopatias/genética , Leucoencefalopatias/patologia , Imageamento por Ressonância Magnética , Mutação , Neuroglia/patologia , Receptores de Fator Estimulador de Colônias/genética , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
15.
Brain ; 144(10): 3020-3035, 2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-33964137

RESUMO

Leukodystrophies are a heterogeneous group of rare inherited disorders that mostly involve the white matter of the CNS. These conditions are characterized by primary glial cell and myelin sheath pathology of variable aetiology, which causes secondary axonal degeneration, generally emerging with disease progression. Whole exome sequencing performed in five large consanguineous nuclear families allowed us to identify homozygosity for two recurrent missense variants affecting highly conserved residues of RNF220 as the causative event underlying a novel form of leukodystrophy with ataxia and sensorineural deafness. We report these two homozygous missense variants (p.R363Q and p.R365Q) in the ubiquitin E3 ligase RNF220 as the underlying cause of this novel form of leukodystrophy with ataxia and sensorineural deafness that includes fibrotic cardiomyopathy and hepatopathy as associated features in seven consanguineous families. Mass spectrometry analysis identified lamin B1 as the RNF220 binding protein and co-immunoprecipitation experiments demonstrated reduced binding of both RNF220 mutants to lamin B1. We demonstrate that RNF220 silencing in Drosophila melanogaster specifically affects proper localization of lamin Dm0, the fly lamin B1 orthologue, promotes its aggregation and causes a neurodegenerative phenotype, strongly supporting the functional link between RNF220 and lamin B1. Finally, we demonstrate that RNF220 plays a crucial role in the maintenance of nuclear morphology; mutations in primary skin fibroblasts determine nuclear abnormalities such as blebs, herniations and invaginations, which are typically observed in cells of patients affected by laminopathies. Overall, our data identify RNF220 as a gene implicated in leukodystrophy with ataxia and sensorineural deafness and document a critical role of RNF220 in the regulation of nuclear lamina. Our findings provide further evidence on the direct link between nuclear lamina dysfunction and neurodegeneration.


Assuntos
Alelos , Ataxia/genética , Surdez/genética , Laminopatias/genética , Mutação/genética , Ubiquitina-Proteína Ligases/genética , Adolescente , Sequência de Aminoácidos , Animais , Ataxia/diagnóstico , Células COS , Criança , Chlorocebus aethiops , Surdez/diagnóstico , Drosophila , Feminino , Células HEK293 , Humanos , Laminopatias/diagnóstico , Masculino , Linhagem , Adulto Jovem
16.
J Clin Immunol ; 41(3): 603-609, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33411153

RESUMO

Whilst upregulation of type I interferon (IFN) signaling is common across the type I interferonopathies (T1Is), central nervous system (CNS) involvement varies between these disorders, the basis of which remains unclear. We collected cerebrospinal fluid (CSF) and serum from patients with Aicardi-Goutières syndrome (AGS), STING-associated vasculopathy with onset in infancy (SAVI), presumed monogenic T1Is (pT1I), childhood systemic lupus erythematosus with neuropsychiatric features (nSLE), non-IFN-related autoinflammation (AI) and non-inflammatory hydrocephalus (as controls). We measured IFN-alpha protein using digital ELISA. Eighty-two and 63 measurements were recorded respectively in CSF and serum of 42 patients and 6 controls. In an intergroup comparison (taking one sample per individual), median CSF IFN-alpha levels were elevated in AGS, SAVI, pT1I, and nSLE compared to AI and controls, with levels highest in AGS compared to all other groups. In AGS, CSF IFN-alpha concentrations were higher than in paired serum samples. In contrast, serum IFN was consistently higher compared to CSF levels in SAVI, pT1I, and nSLE. Whilst IFN-alpha is present in the CSF and serum of all IFN-related diseases studied here, our data suggest the primary sites of IFN production in the monogenic T1I AGS and SAVI are, respectively, the CNS and the periphery. These results inform the diagnosis of, and future therapeutic approaches to, monogenic and multifactorial T1Is.


Assuntos
Suscetibilidade a Doenças , Regulação da Expressão Gênica , Interferon Tipo I/genética , Interferon-alfa/genética , Especificidade de Órgãos/genética , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Interferon Tipo I/líquido cefalorraquidiano , Interferon Tipo I/metabolismo , Interferon-alfa/líquido cefalorraquidiano , Interferon-alfa/metabolismo , Masculino , Mutação , Fenótipo , Estudos Retrospectivos , Adulto Jovem
17.
Neuropediatrics ; 52(4): 302-309, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34192786

RESUMO

Hypomyelination and congenital cataract (HCC) is characterized by congenital cataract, progressive neurologic impairment, and diffuse myelin deficiency. This autosomal recessive disorder is caused by homozygous variant in the FAM126A gene. Five consanguineous Tunisian patients, belonging to three unrelated families, underwent routine blood tests, electroneuromyography, and magnetic resonance imaging of the brain. The direct sequencing of FAM126A exons was performed for the patients and their relatives. We summarized the 30 previously published HCC cases. All of our patients were carriers of a previously reported c.414 + 1G > T (IVS5 + 1G > T) variant, but the clinical spectrum was variable. Despite the absence of a phenotype-genotype correlation in HCC disease, screening of this splice site variant should be performed in family members at risk.


Assuntos
Catarata , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central , Catarata/congênito , Catarata/diagnóstico por imagem , Catarata/genética , Consanguinidade , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/diagnóstico por imagem , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Humanos , Linhagem
18.
Dev Med Child Neurol ; 63(12): 1483-1486, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34155623

RESUMO

Aicardi-Goutières syndrome (AGS) is a rare genetic neuroinflammatory disorder caused by abnormal upregulation of type 1 interferon signalling. Opsoclonus-myoclonus syndrome is a rare autoimmune phenotype demonstrating a disturbance in the humoral immune response mostly seen in the context of paraneoplastic or postinfectious states, although its pathophysiology is incompletely understood. We report the first three children described with AGS demonstrating transient opsoclonus and myoclonus after irritability and/or developmental regression, suggesting a pathological association. We describe the presentation, clinical features, progress, cerebrospinal fluid (CSF) inflammatory markers, electroencephalogram (EEG), and magnetic resonance imaging (MRI) findings in these children. Two patients had developmental regression but demonstrated a positive response to JAK1/2 inhibition clinically and on serial examination of CSF inflammatory markers. These findings suggest that AGS should be considered in children presenting with opsoclonus-myoclonus, and that the association between AGS and opsoclonus-myoclonus further supports the role of immune dysregulation as causal in the rare neurological phenomenon opsoclonus and myoclonus. What this paper adds There is a phenotypic association between opsoclonus-myoclonus syndrome and Aicardi-Goutières syndrome. There is clinical evidence of immune dysregulation in the pathogenesis of opsoclonus and myoclonus.


Assuntos
Doenças Autoimunes do Sistema Nervoso/complicações , Malformações do Sistema Nervoso/complicações , Síndrome de Opsoclonia-Mioclonia/complicações , Doenças Autoimunes do Sistema Nervoso/líquido cefalorraquidiano , Doenças Autoimunes do Sistema Nervoso/diagnóstico por imagem , Biomarcadores/líquido cefalorraquidiano , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Neopterina/líquido cefalorraquidiano , Malformações do Sistema Nervoso/líquido cefalorraquidiano , Malformações do Sistema Nervoso/diagnóstico por imagem , Síndrome de Opsoclonia-Mioclonia/líquido cefalorraquidiano , Síndrome de Opsoclonia-Mioclonia/diagnóstico por imagem , Substância Branca/diagnóstico por imagem
19.
Hum Mutat ; 41(4): 837-849, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31898846

RESUMO

IFIH1 gain-of-function has been reported as a cause of a type I interferonopathy encompassing a spectrum of autoinflammatory phenotypes including Aicardi-Goutières syndrome and Singleton Merten syndrome. Ascertaining patients through a European and North American collaboration, we set out to describe the molecular, clinical and interferon status of a cohort of individuals with pathogenic heterozygous mutations in IFIH1. We identified 74 individuals from 51 families segregating a total of 27 likely pathogenic mutations in IFIH1. Ten adult individuals, 13.5% of all mutation carriers, were clinically asymptomatic (with seven of these aged over 50 years). All mutations were associated with enhanced type I interferon signaling, including six variants (22%) which were predicted as benign according to multiple in silico pathogenicity programs. The identified mutations cluster close to the ATP binding region of the protein. These data confirm variable expression and nonpenetrance as important characteristics of the IFIH1 genotype, a consistent association with enhanced type I interferon signaling, and a common mutational mechanism involving increased RNA binding affinity or decreased efficiency of ATP hydrolysis and filament disassembly rate.


Assuntos
Mutação com Ganho de Função , Estudos de Associação Genética , Genótipo , Helicase IFIH1 Induzida por Interferon/genética , Fenótipo , Alelos , Doenças Autoimunes do Sistema Nervoso/diagnóstico , Doenças Autoimunes do Sistema Nervoso/genética , Análise Mutacional de DNA , Feminino , Estudos de Associação Genética/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Helicase IFIH1 Induzida por Interferon/química , Masculino , Modelos Moleculares , Malformações do Sistema Nervoso/diagnóstico , Malformações do Sistema Nervoso/genética , Conformação Proteica , Relação Estrutura-Atividade
20.
Ann Neurol ; 85(3): 385-395, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30635937

RESUMO

OBJECTIVE: SLC13A3 encodes the plasma membrane Na+ /dicarboxylate cotransporter 3, which imports inside the cell 4 to 6 carbon dicarboxylates as well as N-acetylaspartate (NAA). SLC13A3 is mainly expressed in kidney, in astrocytes, and in the choroid plexus. We describe two unrelated patients presenting with acute, reversible (and recurrent in one) neurological deterioration during a febrile illness. Both patients exhibited a reversible leukoencephalopathy and a urinary excretion of α-ketoglutarate (αKG) that was markedly increased and persisted over time. In one patient, increased concentrations of cerebrospinal fluid NAA and dicarboxylates (including αKG) were observed. Extensive workup was unsuccessful, and a genetic cause was suspected. METHODS: Whole exome sequencing (WES) was performed. Our teams were connected through GeneMatcher. RESULTS: WES analysis revealed variants in SLC13A3. A homozygous missense mutation (p.Ala254Asp) was found in the first patient. The second patient was heterozygous for another missense mutation (p.Gly548Ser) and an intronic mutation affecting splicing as demonstrated by reverse transcriptase polymerase chain reaction performed in muscle tissue (c.1016 + 3A > G). Mutations and segregation were confirmed by Sanger sequencing. Functional studies performed on HEK293T cells transiently transfected with wild-type and mutant SLC13A3 indicated that the missense mutations caused a marked reduction in the capacity to transport αKG, succinate, and NAA. INTERPRETATION: SLC13A3 deficiency causes acute and reversible leukoencephalopathy with marked accumulation of αKG. Urine organic acids (especially αKG and NAA) and SLC13A3 mutations should be screened in patients presenting with unexplained reversible leukoencephalopathy, for which SLC13A3 deficiency is a novel differential diagnosis. ANN NEUROL 2019;85:385-395.


Assuntos
Ácido Aspártico/análogos & derivados , Ácidos Cetoglutáricos/metabolismo , Leucoencefalopatias/genética , Simportadores/genética , Adolescente , Ácido Aspártico/líquido cefalorraquidiano , Ácido Aspártico/metabolismo , Pré-Escolar , Feminino , Células HEK293 , Humanos , Ácidos Cetoglutáricos/líquido cefalorraquidiano , Ácidos Cetoglutáricos/urina , Leucoencefalopatias/metabolismo , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Mutação de Sentido Incorreto , Linhagem , Infecções Respiratórias , Ácido Succínico/metabolismo , Simportadores/metabolismo , Tonsilite , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa