Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Biol Chem ; 294(14): 5521-5535, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30737285

RESUMO

AMPA-type glutamate receptors (AMPARs) mediate fast excitatory neurotransmission in the mammalian central nervous system. Preferential AMPAR subunit assembly favors heteromeric GluA1/GluA2 complexes. The presence of the GluA2 subunit generates Ca2+-impermeable (CI) AMPARs that have linear current-voltage (I-V) relationships. However, diverse forms of synaptic plasticity and pathophysiological conditions are associated with shifts from CI to inwardly rectifying, GluA2-lacking, Ca2+-permeable (CP) AMPARs on time scales ranging from minutes to days. These shifts have been linked to GluA1 phosphorylation at Ser-845, a protein kinase A (PKA)-targeted site within its intracellular C-terminal tail, often in conjunction with protein kinase A anchoring protein 79 (AKAP79; AKAP150 in rodents), which targets PKA to GluA1. However, AKAP79 may impact GluA1 phosphorylation at other sites by interacting with other signaling enzymes. Here, we evaluated the ability of AKAP79, its signaling components, and GluA1 phosphorylation sites to induce CP-AMPARs under conditions in which CI-AMPARs normally predominate. We found that GluA1 phosphorylation at Ser-831 is sufficient for the appearance of CP-AMPARs and that AKAP79-anchored protein kinase C (PKC) primarily drives the appearance of these receptors via this site. In contrast, other AKAP79-signaling components and C-terminal tail GluA1 phosphorylation sites exhibited a permissive role, limiting the extent to which AKAP79 promotes CP-AMPARs. This may reflect the need for these sites to undergo active phosphorylation/dephosphorylation cycles that control their residency within distinct subcellular compartments. These findings suggest that AKAP79, by orchestrating phosphorylation, represents a key to a GluA1 phosphorylation passcode, which allows the GluA1 subunit to escape GluA2 dominance and promote the appearance of CP-AMPARs.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Proteína Quinase C/metabolismo , Receptores de AMPA/metabolismo , Transdução de Sinais , Proteínas de Ancoragem à Quinase A/genética , Células HEK293 , Humanos , Fosforilação , Proteína Quinase C/genética , Receptores de AMPA/genética
2.
Mol Pharmacol ; 88(4): 728-35, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26199377

RESUMO

PKMζ is generated via an alternative transcriptional start site in the atypical protein kinase C (PKC)ζ isoform, which removes N-terminal regulatory elements, including the inhibitory pseudosubstrate domain, consequently rendering the kinase constitutively active. Persistent PKMζ activity has been proposed as a molecular mechanism for the long-term maintenance of synaptic plasticity underlying some forms of memory. Many studies supporting a role for PKMζ in synaptic plasticity and memory have relied on the PKCζ pseudosubstrate-derived ζ-inhibitory peptide (ZIP). However, recent studies have demonstrated that ZIP-induced impairments to synaptic plasticity and memory occur even in the absence of PKCζ, suggesting that ZIP exerts its actions via additional cellular targets. In this study, we demonstrated that ZIP interacts with conventional and novel PKC, in addition to atypical PKC isoforms. Moreover, when brain abundance of each PKC isoform and affinity for ZIP are taken into account, the signaling capacity of ZIP-responsive pools of conventional and novel PKCs may match or exceed that for atypical PKCs. Pseudosubstrate-derived peptides, like ZIP, are thought to exert their cellular action primarily by inhibiting PKC catalytic activity; however, the ZIP-sensitive catalytic core of PKC is known to participate in the enzyme's subcellular targeting, suggesting an additional mode of ZIP action. Indeed, we have demonstrated that ZIP potently disrupts PKCα interaction with the PKC-targeting protein A-kinase anchoring protein (AKAP) 79 and interferes with ionomycin-induced translocation of conventional PKC to the plasma membrane. Thus, ZIP exhibits broad-spectrum action toward the PKC family of enzymes, and this action may contribute to its unique ability to impair memory.


Assuntos
Encéfalo/metabolismo , Proteínas da Gravidez/metabolismo , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Proteínas da Gravidez/farmacologia , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Sprague-Dawley , Especificidade por Substrato/efeitos dos fármacos , Especificidade por Substrato/fisiologia
3.
J Pharmacol Exp Ther ; 347(2): 276-87, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24008337

RESUMO

Adenylyl cyclase (AC) isoforms are implicated in several physiologic processes and disease states, but advancements in the therapeutic targeting of AC isoforms have been limited by the lack of potent and isoform-selective small-molecule modulators. The discovery of AC isoform-selective small molecules is expected to facilitate the validation of AC isoforms as therapeutic targets and augment the study of AC isoform function in vivo. Identification of chemical probes for AC2 is particularly important because there are no published genetic deletion studies and few small-molecule modulators. The present report describes the development and implementation of an intact-cell, small-molecule screening approach and subsequent validation paradigm for the discovery of AC2 inhibitors. The NIH clinical collections I and II were screened for inhibitors of AC2 activity using PMA-stimulated cAMP accumulation as a functional readout. Active compounds were subsequently confirmed and validated as direct AC2 inhibitors using orthogonal and counterscreening assays. The screening effort identified SKF-83566 [8-bromo-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepin-7-ol hydrobromide] as a selective AC2 inhibitor with superior pharmacological properties for selective modulation of AC2 compared with currently available AC inhibitors. The utility of SKF-83566 as a small-molecule probe to study the function of endogenous ACs was demonstrated in C2C12 mouse skeletal muscle cells and human bronchial smooth muscle cells.


Assuntos
2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/análogos & derivados , Inibidores de Adenilil Ciclases , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Bibliotecas de Moléculas Pequenas/farmacologia , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/química , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Adenilil Ciclases/genética , Animais , Membrana Celular/enzimologia , Membrana Celular/imunologia , AMP Cíclico/metabolismo , Inibidores Enzimáticos/química , Células HEK293 , Humanos , Camundongos , Miócitos de Músculo Liso/enzimologia , Miócitos de Músculo Liso/imunologia , Células Sf9 , Bibliotecas de Moléculas Pequenas/química , Spodoptera , Transfecção
4.
J Pharmacol Exp Ther ; 342(2): 586-95, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22619251

RESUMO

Adenylyl cyclases (ACs) are important regulators of airway smooth muscle function, because ß-adrenergic receptor (ßAR) agonists stimulate AC activity and cAMP production. We have previously shown in a number of cell types that AC6 selectively couples to ßAR and these proteins are coexpressed in lipid rafts. We overexpressed AC2, AC3, and AC6 in mouse bronchial smooth muscle cells (mBSMCs) and human embryonic kidney (HEK)-293 cells by using recombinant adenoviruses and assessed their localization and regulation by various G protein-coupled receptors (GPCRs). AC3 and AC6 were expressed primarily in caveolin-rich fractions, whereas AC2 expression was excluded from these domains. AC6 expression enhanced cAMP production in response to isoproterenol but did not increase responses to butaprost, reflecting the colocalization of AC6 with ß(2)AR but not E prostanoid type 2 receptor (EP(2)R) in lipid raft fractions. AC2 expression enhanced butaprost-stimulated cAMP production but had no effect on the ß(2)AR-mediated response. AC3 did not couple to any GPCR tested. Forskolin-induced arborization of mBSMCs was assessed as a functional readout of cAMP signaling. Arborization was enhanced by overexpression of AC6 and AC3, but AC2 had no effect. GPCR-stimulated arborization mirrored the selective coupling observed for cAMP production. With the addition of the phosphodiesterase 4 (PDE4) inhibitor rolipram AC2 accelerated forskolin-stimulated arborization. Thus, AC2 selectively couples to EP(2)R, but signals from this complex are limited by PDE4 activity. AC3 does not seem to couple to GPCR in either mBSMCs or HEK-293 cells, so it probably exists in a distinct signaling domain in these cells.


Assuntos
Adenilil Ciclases/metabolismo , Brônquios/metabolismo , Músculo Liso/metabolismo , Miócitos de Músculo Liso/metabolismo , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Alprostadil/análogos & derivados , Alprostadil/farmacologia , Animais , Brônquios/efeitos dos fármacos , Caveolinas/farmacologia , Linhagem Celular Transformada , Colforsina/farmacologia , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Células HEK293 , Humanos , Isoproterenol/farmacologia , Masculino , Camundongos , Músculo Liso/efeitos dos fármacos , Músculo Liso/enzimologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/enzimologia , Receptores Adrenérgicos beta 2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
J Pharmacol Exp Ther ; 337(1): 209-17, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21228062

RESUMO

Adenylyl cyclases (AC) are important regulators of airway smooth muscle function, because ß-adrenergic receptor (AR) agonists stimulate AC activity and increase airway diameter. We assessed expression of AC isoforms in human bronchial smooth muscle cells (hBSMC). Reverse transcriptase-polymerase chain reaction and immunoblot analyses detected expression of AC2, AC4, and AC6. Forskolin-stimulated AC activity in membranes from hBSMC displayed Ca(2+)-inhibited and G(ßγ)-stimulated AC activity, consistent with expression of AC6, AC2, and AC4. Isoproterenol-stimulated AC activity was inhibited by Ca(2+) but unaltered by G(ßγ), whereas butaprost-stimulated AC activity was stimulated by G(ßγ) but unaffected by Ca(2+) addition. Using sucrose density centrifugation to isolate lipid raft fractions, we found that only AC6 localized in lipid raft fractions, whereas AC2 and AC4 localized in nonraft fractions. Immunoisolation of caveolae using caveolin-1 antibodies yielded Ca(2+)-inhibited AC activity (consistent with AC6 expression), whereas the nonprecipitated material displayed G(ßγ)-stimulated AC activity (consistent with expression of AC2 and/or AC4). Overexpression of AC6 enhanced cAMP production in response to isoproterenol and beraprost but did not increase responses to prostaglandin E(2) or butaprost. ß(2)AR, but not prostanoid EP(2) or EP(4) receptors, colocalized with AC5/6 in lipid raft fractions. Thus, particular G protein-coupled receptors couple to discreet AC isoforms based, in part, on their colocalization in membrane microdomains. These different cAMP signaling compartments in airway smooth muscle cells are responsive to different hormones and neurotransmitters and can be regulated by different coincident signals such as Ca(2+) and G(ßγ).


Assuntos
Adenilil Ciclases/biossíntese , Brônquios/enzimologia , Microdomínios da Membrana/enzimologia , Miócitos de Músculo Liso/enzimologia , Brônquios/citologia , Cálcio/fisiologia , Linhagem Celular , Regulação Enzimológica da Expressão Gênica , Humanos , Isoenzimas/biossíntese
6.
Naunyn Schmiedebergs Arch Pharmacol ; 387(4): 329-39, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24363043

RESUMO

Adenylyl cyclase (AC) isoforms differ in their tissue distribution, cellular localization, regulation, and protein interactions. Most cell types express multiple AC isoforms. We hypothesized that cAMP produced by different AC isoforms regulates unique cellular responses in human bronchial smooth muscle cells (BSMC). Overexpression of AC2, AC3, or AC6 had distinct effects on forskolin (Fsk)-induced expression of a number of known cAMP-responsive genes. These data show that different AC isoforms can differentially regulate gene expression. Most notable, overexpression and activation of AC2 enhanced interleukin 6 (IL-6) expression, but overexpression of AC3 or AC6 had no effect. IL-6 production by BSMC was induced by Fsk and select G protein-coupled receptor (GPCR) agonists, though IL-6 levels did not directly correlate with global cAMP levels. Treatment with PKA selective 6-Bnz-cAMP or Epac selective 8-CPT-2Me-cAMP cAMP analogs revealed a predominant role for PKA in cAMP-mediated induction of IL-6. IL-6 promoter mutations demonstrated that AP-1 and CRE transcription sites were required for Fsk to stimulate IL-6 expression. Our present study defines an AC2 cAMP signaling compartment that specifically regulates IL-6 expression in BSMC via Epac and PKA and demonstrates that other AC isoforms are excluded from this pool.


Assuntos
Adenilil Ciclases/metabolismo , AMP Cíclico/metabolismo , Interleucina-6/genética , Miócitos de Músculo Liso/metabolismo , Brônquios/citologia , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Isoenzimas/metabolismo , RNA Mensageiro/metabolismo
7.
Naunyn Schmiedebergs Arch Pharmacol ; 385(1): 5-12, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22012074

RESUMO

Adenylyl cyclases are a ubiquitous family of enzymes and are critical regulators of metabolic and cardiovascular function. Multiple isoforms of the enzyme are expressed in a range of tissues. However, for many processes, the adenylyl cyclase isoforms have been thought of as essentially interchangeable, with their impact more dependent on their common actions to increase intracellular cyclic adenosine monophosphate content regardless of the isoform involved. It has long been appreciated that each subfamily of isoforms demonstrate a specific pattern of "upstream" regulation, i.e., specific patterns of ion dependence (e.g., calcium-dependence) and specific patterns of regulation by kinases (protein kinase A (PKA), protein kinase C (PKC), raf). However, more recent studies have suggested that adenylyl cyclase isoform-selective patterns of signaling are a wide-spread phenomenon. The determinants of these selective signaling patterns relate to a number of factors, including: (1) selective coupling of specific adenylyl cyclase isoforms with specific G protein-coupled receptors, (2) localization of specific adenylyl cyclase isoforms in defined structural domains (AKAP complexes, caveolin/lipid rafts), and (3) selective coupling of adenylyl cyclase isoforms with specific downstream signaling cascades important in regulation of cell growth and contractility. The importance of isoform-specific regulation has now been demonstrated both in mouse models as well as in humans. Adenylyl cyclase has not been viewed as a useful target for therapeutic regulation, given the ubiquitous expression of the enzyme and the perceived high risk of off-target effects. Understanding which isoforms of adenylyl cyclase mediate distinct cellular effects would bring new significance to the development of isoform-specific ligands to regulate discrete cellular actions.


Assuntos
Adenilil Ciclases/metabolismo , Animais , Humanos , Isoenzimas , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa