Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cell ; 185(17): 3232-3247.e18, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35952671

RESUMO

How mis-regulated chromatin directly impacts human immune disorders is poorly understood. Speckled Protein 140 (SP140) is an immune-restricted PHD and bromodomain-containing epigenetic "reader," and SP140 loss-of-function mutations associate with Crohn's disease (CD), multiple sclerosis (MS), and chronic lymphocytic leukemia (CLL). However, the relevance of these mutations and mechanisms underlying SP140-driven pathogenicity remains unexplored. Using a global proteomic strategy, we identified SP140 as a repressor of topoisomerases (TOPs) that maintains heterochromatin and macrophage fate. In humans and mice, SP140 loss resulted in unleashed TOP activity, de-repression of developmentally silenced genes, and ultimately defective microbe-inducible macrophage transcriptional programs and bacterial killing that drive intestinal pathology. Pharmacological inhibition of TOP1/2 rescued these defects. Furthermore, exacerbated colitis was restored with TOP1/2 inhibitors in Sp140-/- mice, but not wild-type mice, in vivo. Collectively, we identify SP140 as a TOP repressor and reveal repurposing of TOP inhibition to reverse immune diseases driven by SP140 loss.


Assuntos
Doença de Crohn , Animais , Humanos , Camundongos , Antígenos Nucleares , Doença de Crohn/genética , Doença de Crohn/patologia , Epigênese Genética , Regulação da Expressão Gênica , Macrófagos/patologia , Proteômica , Fatores de Transcrição
2.
Development ; 150(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36762625

RESUMO

Microglia, a resident immune cell of the central nervous system (CNS), play a pivotal role in facilitating neurovascular development through mechanisms that are not fully understood. Previous reports indicate a role for microglia in regulating astrocyte density. This current work resolves the mechanism through which microglia facilitate astrocyte spatial patterning and superficial vascular bed formation in the neuroretina during development. Ablation of microglia increased astrocyte density and altered spatial patterning. Mechanistically, we show that microglia regulate the formation of the spatially organized astrocyte template required for subsequent vascular growth, through the complement C3/C3aR axis during neuroretinal development. Lack of C3 or C3aR hindered the developmental phagocytic removal of astrocyte bodies and resulted in increased astrocyte density. In addition, increased astrocyte density was associated with elevated proangiogenic extracellular matrix gene expression in C3- and C3aR-deficient retinas, resulting in increased vascular density. These data demonstrate that microglia regulate developmental astrocyte and vascular network spatial patterning in the neuroretina via the complement axis.


Assuntos
Complemento C3 , Microglia , Astrócitos , Complemento C3/genética , Retina
3.
Nucleic Acids Res ; 50(W1): W246-W253, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35536332

RESUMO

Proteins with similar phylogenetic patterns of conservation or loss across evolutionary taxa are strong candidates to work in the same cellular pathways or engage in physical or functional interactions. Our previously published tools implemented our method of normalized phylogenetic sequence profiling to detect functional associations between non-homologous proteins. However, many proteins consist of multiple protein domains subjected to different selective pressures, so using protein domain as the unit of analysis improves the detection of similar phylogenetic patterns. Here we analyze sequence conservation patterns across the whole tree of life for every protein domain from a set of widely studied organisms. The resulting new interactive webserver, DEPCOD (DEtection of Phylogenetically COrrelated Domains), performs searches with either a selected pre-defined protein domain or a user-supplied sequence as a query to detect other domains from the same organism that have similar conservation patterns. Top similarities on two evolutionary scales (the whole tree of life or eukaryotic genomes) are displayed along with known protein interactions and shared complexes, pathway enrichment among the hits, and detailed visualization of sources of detected similarities. DEPCOD reveals functional relationships between often non-homologous domains that could not be detected using whole-protein sequences. The web server is accessible at http://genetics.mgh.harvard.edu/DEPCOD.


Assuntos
Domínios Proteicos , Proteínas , Software , Sequência de Aminoácidos , Filogenia , Proteínas/genética , Evolução Molecular
4.
Clin Gastroenterol Hepatol ; 19(3): 519-527.e5, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32184182

RESUMO

BACKGROUND & AIMS: Fatigue is frequent and disabling in patients with inflammatory bowel diseases (IBD) but its mechanisms are poorly understood. We investigated alterations in fecal microbiomes and serum metabolomes and proteomes in patients with quiescent IBD, with vs without fatigue. METHODS: We performed a prospective observational study of patients (44% women; mean age, 39.8 y) with clinically and endoscopically quiescent Crohn's disease (n = 106) or ulcerative colitis (n = 60) at a tertiary hospital, from March 2016 through December 2018. Fatigue was assessed using the functional assessment of chronic illness therapy-fatigue scoring system and defined as a score of 43 or less. We performed metabolomic analysis of serum samples using liquid chromatography-mass spectrometry methods and proteomic analysis using multiplex proximity extension assay (PEA) technology. Stool samples were obtained from 50 patients and analyzed by shotgun metagenomic sequencing on Illumina HiSeq platform. RESULTS: Of the 166 study participants, 91 (55%) were fatigued. Serum samples from patients with fatigue (n = 59) did not have significant increases in levels of inflammatory cytokines compared with serum samples from nonfatigued patients (n = 72). We found a statistically significant difference in a cluster of 18 serum metabolites between patients with fatigue (n = 84) vs without fatigue (n = 72) (P = .033); serum samples from patients with fatigue had significant reductions in levels of methionine (P = .020), tryptophan (P = .042), proline (P = .017), and sarcosine (P = .047). Fecal samples from patients with fatigue had a less diverse gut microbiome, with significant reductions in butyrate-producing bacteria, including Faecalibacterium prausnitzii (P = .0002, q =.007) and Roseburia hominis (P = .0079, q = 0.105). This fatigue-like microbiome was associated with fatigue scales and correlated with progressive depletion of metabolites from serum samples. CONCLUSIONS: In an analysis of fecal and serum samples from 166 patients with IBD, we found alterations in serum metabolites and fecal microbes that were associated with fatigue.


Assuntos
Colite Ulcerativa , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Adulto , Clostridiales , Colite Ulcerativa/complicações , Fadiga , Fezes , Feminino , Humanos , Doenças Inflamatórias Intestinais/complicações , Masculino , Metaboloma , Proteômica
5.
bioRxiv ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38496490

RESUMO

Molecular mechanisms driving clonal aggressiveness in leukemia are not fully understood. We tracked and analyzed two mouse MLL-rearranged leukemic clones independently evolving towards higher aggressiveness. More aggressive subclones lost their growth differential ex vivo but restored it upon secondary transplantation, suggesting molecular memory of aggressiveness. Development of aggressiveness was associated with clone-specific gradual modulation of chromatin states and expression levels across the genome, with a surprising preferential trend of reversing the earlier changes between normal and leukemic progenitors. To focus on the core aggressiveness program, we identified genes with consistent changes of expression and chromatin marks that were maintained in vivo and ex vivo in both clones. Overexpressing selected core genes (Smad1 as aggressiveness driver, Irx5 and Plag1 as suppressors) affected leukemic progenitor growth in the predicted way and had convergent downstream effects on central transcription factors and repressive epigenetic modifiers, suggesting a broader regulatory network of leukemic aggressiveness.

6.
Inflamm Bowel Dis ; 26(10): 1524-1532, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32766830

RESUMO

BACKGROUND: Inflammatory bowel diseases (IBD) are characterized by intermittent relapses, and their course is heterogeneous and unpredictable. Our aim was to determine the ability of protein, metabolite, or microbial biomarkers to predict relapse in patients with quiescent disease. METHODS: This prospective study enrolled patients with quiescent Crohn disease and ulcerative colitis, defined as the absence of clinical symptoms (Harvey-Bradshaw Index ≤ 4, Simple Clinical Colitis Activity Index ≤ 2) and endoscopic remission within the prior year. The primary outcome was relapse within 2 years, defined as symptomatic worsening accompanied by elevated inflammatory markers resulting in a change in therapy or IBD-related hospitalization or surgery. Biomarkers were tested in a derivation cohort, and their performance was examined in an independent validation cohort. RESULTS: Our prospective cohort study included 164 patients with IBD (108 with Crohn disease, 56 with ulcerative colitis). Upon follow-up for a median of 1 year, 22 patients (13.4%) experienced a relapse. Three protein biomarkers (interleukin-10, glial cell line-derived neurotrophic factor, and T-cell surface glycoprotein CD8 alpha chain) and 4 metabolomic markers (propionyl-L-carnitine, carnitine, sarcosine, and sorbitol) were associated with relapse in multivariable models. Proteomic and metabolomic risk scores independently predicted relapse with a combined area under the curve of 0.83. A high proteomic risk score (odds ratio = 9.11; 95% confidence interval, 1.90-43.61) or metabolomic risk score (odds ratio = 5.79; 95% confidence interval, 1.24-27.11) independently predicted a higher risk of relapse over 2 years. Fecal metagenomics showed an increased abundance of Proteobacteria (P = 0.0019, q = 0.019) and Fusobacteria (P = 0.0040, q = 0.020) and at the species level Lachnospiraceae_bacterium_2_1_58FAA (P = 0.000008, q = 0.0009) among the relapses. CONCLUSIONS: Proteomic, metabolomic, and microbial biomarkers identify a proinflammatory state in quiescent IBD that predisposes to clinical relapse.


Assuntos
Colite Ulcerativa/metabolismo , Doença de Crohn/metabolismo , Metabolômica/métodos , Metagenômica/métodos , Proteômica/métodos , Adulto , Biomarcadores/análise , Colite Ulcerativa/patologia , Colite Ulcerativa/terapia , Doença de Crohn/patologia , Doença de Crohn/terapia , Fezes/microbiologia , Feminino , Humanos , Masculino , Razão de Chances , Valor Preditivo dos Testes , Estudos Prospectivos , Recidiva , Indução de Remissão , Fatores de Risco
7.
Clin Rheumatol ; 21(3): 261-3, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12111635

RESUMO

Churg-Strauss syndrome (CSS) is a systemic small-vessel vasculitis characterised by the presence of asthma and eosinophilia. Central nervous system involvement (cerebral infarctions or intracerebral haemorrhage) is rare in CSS. Spontaneous subarachnoid hemorrhage (SAH) has been described in other systemic vasculitides. SAH is exceptional in CSS. We present a 47-year-old woman with CSS presenting as a spontaneous SAH with cerebral angiography findings consistent with vasculitis of the basilar artery and without aneurysms or arteriovenous malformations. She received treatment with prednisone and cyclophosphamide, and 2 months later the basilar artery was normal on magnetic resonance angiography.


Assuntos
Síndrome de Churg-Strauss/complicações , Hemorragia Subaracnóidea/etiologia , Artéria Basilar , Angiografia Cerebral , Feminino , Humanos , Angiografia por Ressonância Magnética , Pessoa de Meia-Idade , Vasculite/diagnóstico , Vasculite/etiologia
9.
Cell Rep ; 7(4): 1104-15, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24794435

RESUMO

The interspecies exchange of metabolites plays a key role in the spatiotemporal dynamics of microbial communities. This raises the question of whether ecosystem-level behavior of structured communities can be predicted using genome-scale metabolic models for multiple organisms. We developed a modeling framework that integrates dynamic flux balance analysis with diffusion on a lattice and applied it to engineered communities. First, we predicted and experimentally confirmed the species ratio to which a two-species mutualistic consortium converges and the equilibrium composition of a newly engineered three-member community. We next identified a specific spatial arrangement of colonies, which gives rise to what we term the "eclipse dilemma": does a competitor placed between a colony and its cross-feeding partner benefit or hurt growth of the original colony? Our experimentally validated finding that the net outcome is beneficial highlights the complex nature of metabolic interactions in microbial communities while at the same time demonstrating their predictability.


Assuntos
Ecossistema , Microbiota/fisiologia , Modelos Biológicos , Comportamento Espacial/fisiologia , Análise Espaço-Temporal
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa