Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
PLoS Pathog ; 19(9): e1011446, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37733807

RESUMO

Zika virus (ZIKV) is a Flavivirus responsible for recent epidemics in Pacific Islands and in the Americas. In humans, the consequences of ZIKV infection range from asymptomatic infection to severe neurological disease such as Guillain-Barré syndrome or fetal neurodevelopmental defects, suggesting, among other factors, the influence of host genetic variants. We previously reported similar diverse outcomes of ZIKV infection in mice of the Collaborative Cross (CC), a collection of inbred strains with large genetic diversity. CC071/TauUnc (CC071) was the most susceptible CC strain with severe symptoms and lethality. Notably, CC071 has been recently reported to be also susceptible to other flaviviruses including dengue virus, Powassan virus, West Nile virus, and to Rift Valley fever virus. To identify the genetic origin of this broad susceptibility, we investigated ZIKV replication in mouse embryonic fibroblasts (MEFs) from CC071 and two resistant strains. CC071 showed uncontrolled ZIKV replication associated with delayed induction of type-I interferons (IFN-I). Genetic analysis identified a mutation in the Irf3 gene specific to the CC071 strain which prevents the protein phosphorylation required to activate interferon beta transcription. We demonstrated that this mutation induces the same defective IFN-I response and uncontrolled viral replication in MEFs as an Irf3 knock-out allele. By contrast, we also showed that Irf3 deficiency did not induce the high plasma viral load and clinical severity observed in CC071 mice and that susceptibility alleles at other genes, not associated with the IFN-I response, are required. Our results provide new insight into the in vitro and in vivo roles of Irf3, and into the genetic complexity of host responses to flaviviruses.


Assuntos
Flavivirus , Interferon Tipo I , Infecção por Zika virus , Zika virus , Animais , Camundongos , Camundongos de Cruzamento Colaborativo , Fibroblastos , Fator Regulador 3 de Interferon/genética , Zika virus/genética , Infecção por Zika virus/genética
2.
J Neuroinflammation ; 19(1): 307, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539803

RESUMO

BACKGROUND: Zika virus (ZIKV) infection at postnatal or adult age can lead to neurological disorders associated with cognitive defects. Yet, how mature neurons respond to ZIKV remains substantially unexplored. METHODS: The impact of ZIKV infection on mature neurons and microglia was analyzed at the molecular and cellular levels, in vitro using immunocompetent primary cultured neurons and microglia, and in vivo in the brain of adult immunocompetent mice following intracranial ZIKV inoculation. We have used C57BL/6 and the genetically diverse Collaborative Cross mouse strains, displaying a broad range of susceptibility to ZIKV infection, to question the correlation between the effects induced by ZIKV infection on neurons and microglia and the in vivo susceptibility to ZIKV. RESULTS: As a result of a delayed induction of interferon beta (IFNB) expression and response, infected neurons displayed an inability to stop ZIKV replication, a trait that was further increased in neurons from susceptible mice. Alongside with an enhanced expression of ZIKV RNA, we observed in vivo, in the brain of susceptible mice, an increased level of active Iba1-expressing microglial cells occasionally engulfing neurons and displaying a gene expression profile close to the molecular signature of disease-associated microglia (DAM). In vivo as well as in vitro, only neurons and not microglial cells were identified as infected, raising the question of the mechanisms underlying microglia activation following brain ZIKV infection. Treatment of primary cultured microglia with conditioned media from ZIKV-infected neurons demonstrated that type-I interferons (IFNs-I) secreted by neurons late after infection activate non-infected microglial cells. In addition, ZIKV infection induced pathological phosphorylation of Tau (pTau) protein, a hallmark of neurodegenerative tauopathies, in vitro and in vivo with clusters of neurons displaying pTau surrounded by active microglial cells. CONCLUSIONS: We show that ZIKV-infected mature neurons display an inability to stop viral replication in link with a delayed IFNB expression and response, while signaling microglia for activation through IFNs-I secreted at late times post-infection. In the brain of ZIKV-infected susceptible mice, uninfected microglial cells adopt an active morphology and a DAM expression profile, surrounding and sometimes engulfing neurons while ZIKV-infected neurons accumulate pTau, overall reflecting a tauopathy-like phenotype.


Assuntos
Tauopatias , Infecção por Zika virus , Zika virus , Camundongos , Animais , Infecção por Zika virus/metabolismo , Zika virus/genética , Interferon beta/genética , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Tauopatias/patologia , Replicação Viral , Fenótipo
3.
J Virol ; 95(1)2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33087469

RESUMO

Rift Valley fever virus (RVFV) is a highly pathogenic zoonotic arbovirus endemic in many African countries and the Arabian Peninsula. Animal infections cause high rates of mortality and abortion among sheep, goats, and cattle. In humans, an estimated 1 to 2% of RVFV infections result in severe disease (encephalitis, hepatitis, or retinitis) with a high rate of lethality when associated with hemorrhagic fever. The RVFV NSs protein, which is the main virulence factor, counteracts the host innate antiviral response to favor viral replication and spread. However, the mechanisms underlying RVFV-induced cytopathic effects and the role of NSs in these alterations remain for the most part unknown. In this work, we have analyzed the effects of NSs expression on the actin cytoskeleton while conducting infections with the NSs-expressing virulent (ZH548) and attenuated (MP12) strains of RVFV and the non-NSs-expressing avirulent (ZH548ΔNSs) strain, as well as after the ectopic expression of NSs. In macrophages, fibroblasts, and hepatocytes, NSs expression prevented the upregulation of Abl2 (a major regulator of the actin cytoskeleton) expression otherwise induced by avirulent infections and identified here as part of the antiviral response. The presence of NSs was also linked to an increased mobility of ZH548-infected cells compared to ZH548ΔNSs-infected fibroblasts and to strong changes in cell morphology in nonmigrating hepatocytes, with reduction of lamellipodia, cell spreading, and dissolution of adherens junctions reminiscent of the ZH548-induced cytopathic effects observed in vivo Finally, we show evidence of the presence of NSs within long actin-rich structures associated with NSs dissemination from NSs-expressing toward non-NSs-expressing cells.IMPORTANCE Rift Valley fever virus (RVFV) is a dangerous human and animal pathogen that was ranked by the World Health Organization in 2018 as among the eight pathogens of most concern for being likely to cause wide epidemics in the near future and for which there are no, or insufficient, countermeasures. The focus of this work is to address the question of the mechanisms underlying RVFV-induced cytopathic effects that participate in RVFV pathogenicity. We demonstrate here that RVFV targets cell adhesion and the actin cytoskeleton at the transcriptional and cellular level, affecting cell mobility and inducing cell shape collapse, along with distortion of cell-cell adhesion. All these effects may participate in RVFV-induced pathogenicity, facilitate virulent RVFV dissemination, and thus constitute interesting potential targets for future development of antiviral therapeutic strategies that, in the case of RVFV, as with several other emerging arboviruses, are presently lacking.


Assuntos
Citoesqueleto de Actina/genética , Proteínas Tirosina Quinases/genética , Febre do Vale de Rift/patologia , Vírus da Febre do Vale do Rift/patogenicidade , Proteínas não Estruturais Virais/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Adesão Celular , Linhagem Celular , Movimento Celular , Forma Celular , Interações Hospedeiro-Patógeno , Imunidade Inata , Camundongos , Mutação , Proteínas Tirosina Quinases/metabolismo , Febre do Vale de Rift/metabolismo , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/genética , Vírus da Febre do Vale do Rift/metabolismo , Proteínas não Estruturais Virais/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Replicação Viral
4.
Nucleic Acids Res ; 46(21): 11405-11422, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30321409

RESUMO

Tauopathies such as Alzheimer's Disease (AD) are neurodegenerative disorders for which there is presently no cure. They are named after the abnormal oligomerization/aggregation of the neuronal microtubule-associated Tau protein. Besides its role as a microtubule-associated protein, a DNA-binding capacity and a nuclear localization for Tau protein has been described in neurons. While questioning the potential role of Tau-DNA binding in the development of tauopathies, we have carried out a large-scale analysis of the interaction of Tau protein with the neuronal genome under physiological and heat stress conditions using the ChIP-on-chip technique that combines Chromatin ImmunoPrecipitation (ChIP) with DNA microarray (chip). Our findings show that Tau protein specifically interacts with genic and intergenic DNA sequences of primary culture of neurons with a preference for DNA regions positioned beyond the ±5000 bp range from transcription start site. An AG-rich DNA motif was found recurrently present within Tau-interacting regions and 30% of Tau-interacting regions overlapped DNA sequences coding for lncRNAs. Neurological processes affected in AD were enriched among Tau-interacting regions with in vivo gene expression assays being indicative of a transcriptional repressor role for Tau protein, which was exacerbated in neurons displaying nuclear pathological oligomerized forms of Tau protein.


Assuntos
DNA Intergênico/genética , DNA/química , Neurônios/metabolismo , Proteínas tau/genética , Doença de Alzheimer/genética , Animais , Encéfalo/embriologia , Imunoprecipitação da Cromatina , Hipertermia Induzida , Camundongos , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação , Ligação Proteica , Tauopatias , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
5.
Adv Exp Med Biol ; 1184: 135-143, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32096035

RESUMO

Connections between tau and nucleic acids have been largely underestimated until recently when several reports highlighted new key roles of tau in relation with DNA and RNA structure, metabolism and integrity, and their implications in the context of tauopathies. Here we focus on recent advances involving tau and nucleic acids in neuronal and non-neuronal cells. Implication of tau and tau pathology in mechanisms regulating genome integrity, chromatin organization and RNA metabolism, highlight the connections between tau and nucleic acid as major mechanisms in neuronal homeostasis and the etiopathology of tauopathies.


Assuntos
Ácidos Nucleicos/metabolismo , Tauopatias/metabolismo , Tauopatias/patologia , Proteínas tau/metabolismo , Humanos , Neurônios/metabolismo , Neurônios/patologia , RNA/metabolismo
6.
Biochemistry ; 54(7): 1525-33, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25623359

RESUMO

The capacity of endogenous Tau to bind DNA has been recently identified in neurons under physiological or oxidative stress conditions. Characterization of the protein domains involved in Tau-DNA complex formation is an essential first step in clarifying the contribution of Tau-DNA interactions to neurological biological processes. To identify the amino acid residues involved in the interaction of Tau with oligonucleotides, we have characterized a Tau-DNA complex using nuclear magnetic resonance spectroscopy. Interaction of an AT-rich or GC-rich 22 bp oligonucleotide with Tau showed multiple points of anchoring along the intrinsically disordered Tau protein. The main sites of contact characterized here correspond to the second half of the proline-rich domain (PRD) of Tau and the R2 repeat in the microtubule binding domain. This latter interaction site includes the PHF6* sequence known to govern Tau aggregation. The characterization was pursued by studying the binding of phosphorylated forms of Tau, displaying multiple phosphorylation sites mainly in the PRD, to the same oligonucleotide. No interaction of phospho-Tau with the oligonucleotide was detected, suggesting that pathological Tau phosphorylation could affect the physiological function of Tau mediated by DNA binding.


Assuntos
DNA/metabolismo , Proteínas tau/metabolismo , Sítios de Ligação , DNA/química , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas tau/química
7.
Neurobiol Dis ; 82: 540-551, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26385829

RESUMO

The accumulation of DNA and RNA oxidative damage is observed in cortical and hippocampal neurons from Alzheimer's disease (AD) brains at early stages of pathology. We recently reported that Tau is a key nuclear player in the protection of neuronal nucleic acid integrity in vivo under physiological conditions and hyperthermia, a strong inducer of oxidative stress. In a mouse model of tauopathy (THY-Tau22), we demonstrate that hyperthermia selectively induces nucleic acid oxidative damage and nucleic acid strand breaks in the nucleus and cytoplasm of hippocampal neurons that display early Tau phosphorylation but no Tau fibrils. Nucleic acid-damaged neurons were exclusively immunoreactive for prefibrillar Tau oligomers. A similar association between prefibrillar Tau oligomers and nucleic acid oxidative damage was observed in AD brains. Pretreatment with Methylene Blue (MB), a Tau aggregation inhibitor and a redox cycler, reduced hyperthermia-induced Tau oligomerization as well as nucleic acid damage. This study clearly highlights the existence of an early and critical time frame for hyperthermia-induced Tau oligomerization, which most likely occurs through increased oxidative stress, and nucleic acid vulnerability during the progression of Tau pathology. These results suggest that at early stages of AD, Tau oligomerization triggers the loss of the nucleic acid protective function of monomeric Tau. This study highlights the existence of a short therapeutic window in which to prevent the formation of pathological forms of Tau and their harmful consequences on nucleic acid integrity during the progression of Tau pathology.


Assuntos
Hipocampo/metabolismo , Neurônios/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Citoplasma/patologia , Quebras de DNA/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Febre/tratamento farmacológico , Febre/metabolismo , Febre/patologia , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Humanos , Azul de Metileno/farmacologia , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Multimerização Proteica/efeitos dos fármacos , Multimerização Proteica/fisiologia , RNA/metabolismo , Tauopatias/tratamento farmacológico , Tauopatias/patologia
8.
Nucleic Acids Res ; 40(10): 4396-411, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22287632

RESUMO

Nuclear architecture as well as gene nuclear positioning can modulate gene expression. In this work, we have analyzed the nuclear position of the interferon-ß (IFN-ß) locus, responsible for the establishment of the innate antiviral response, with respect to pericentromeric heterochromatin (PCH) in correlation with virus-induced IFN-ß gene expression. Experiments were carried out in two different cell types either non-infected (NI) or during the time course of three different viral infections. In NI cells, we showed a monoallelic IFN-ß promoter association with PCH that strongly decreased after viral infection. Dissociation of the IFN-ß locus away from these repressive regions preceded strong promoter transcriptional activation and was reversible within 12 h after infection. No dissociation was observed after infection with a virus that abnormally maintained the IFN-ß gene in a repressed state. Dissociation induced after virus infection specifically targeted the IFN-ß locus without affecting the general structure and nuclear distribution of PCH clusters. Using cell lines stably transfected with wild-type or mutated IFN-ß promoters, we identified the proximal region of the IFN-ß promoter containing YY1 DNA-binding sites as the region regulating IFN-ß promoter association with PCH before as well as during virus infection.


Assuntos
Heterocromatina/química , Interferon beta/genética , Fator de Transcrição YY1/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , DNA Satélite/análise , Camundongos , Vírus da Doença de Newcastle/fisiologia , Regiões Promotoras Genéticas , Vírus da Febre do Vale do Rift/fisiologia , Ativação Transcricional
9.
J Virol ; 86(20): 11333-44, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22896612

RESUMO

Rift Valley fever virus (RVFV) is a highly pathogenic Phlebovirus that infects humans and ruminants. Initially confined to Africa, RVFV has spread outside Africa and presently represents a high risk to other geographic regions. It is responsible for high fatality rates in sheep and cattle. In humans, RVFV can induce hepatitis, encephalitis, retinitis, or fatal hemorrhagic fever. The nonstructural NSs protein that is the major virulence factor is found in the nuclei of infected cells where it associates with cellular transcription factors and cofactors. In previous work, we have shown that NSs interacts with the promoter region of the beta interferon gene abnormally maintaining the promoter in a repressed state. In this work, we performed a genome-wide analysis of the interactions between NSs and the host genome using a genome-wide chromatin immunoprecipitation combined with promoter sequence microarray, the ChIP-on-chip technique. Several cellular promoter regions were identified as significantly interacting with NSs, and the establishment of NSs interactions with these regions was often found linked to deregulation of expression of the corresponding genes. Among annotated NSs-interacting genes were present not only genes regulating innate immunity and inflammation but also genes regulating cellular pathways that have not yet been identified as targeted by RVFV. Several of these pathways, such as cell adhesion, axonal guidance, development, and coagulation were closely related to RVFV-induced disorders. In particular, we show in this work that NSs targeted and modified the expression of genes coding for coagulation factors, demonstrating for the first time that this hemorrhagic virus impairs the host coagulation cascade at the transcriptional level.


Assuntos
Fatores de Coagulação Sanguínea/genética , DNA/genética , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico , Vírus da Febre do Vale do Rift/genética , Vírus da Febre do Vale do Rift/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Chlorocebus aethiops , Imunoprecipitação da Cromatina , DNA/metabolismo , Estudo de Associação Genômica Ampla , Interações Hospedeiro-Patógeno/genética , Interferon beta/genética , Análise Serial de Proteínas , RNA Mensageiro/genética , Febre do Vale de Rift/genética , Febre do Vale de Rift/patologia , Vírus da Febre do Vale do Rift/patogenicidade , Transcrição Gênica , Células Vero , Proteínas não Estruturais Virais/análise
10.
J Biol Chem ; 286(6): 4566-75, 2011 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-21131359

RESUMO

Tau, a neuronal protein involved in neurodegenerative disorders such as Alzheimer disease, which is primarily described as a microtubule-associated protein, has also been observed in the nuclei of neuronal and non-neuronal cells. However, the function of the nuclear form of Tau in neurons has not yet been elucidated. In this work, we demonstrate that acute oxidative stress and mild heat stress (HS) induce the accumulation of dephosphorylated Tau in neuronal nuclei. Using chromatin immunoprecipitation assays, we demonstrate that the capacity of endogenous Tau to interact with neuronal DNA increased following HS. Comet assays performed on both wild-type and Tau-deficient neuronal cultures showed that Tau fully protected neuronal genomic DNA against HS-induced damage. Interestingly, HS-induced DNA damage observed in Tau-deficient cells was completely rescued after the overexpression of human Tau targeted to the nucleus. These results highlight a novel role for nuclear Tau as a key player in early stress response.


Assuntos
Núcleo Celular/metabolismo , DNA/metabolismo , Resposta ao Choque Térmico , Neurônios/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Núcleo Celular/genética , Núcleo Celular/patologia , Células Cultivadas , DNA/genética , Humanos , Camundongos , Camundongos Knockout , Neurônios/patologia , Fosforilação/genética , Proteínas tau/genética
11.
PLoS Pathog ; 4(1): e13, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18225953

RESUMO

Rift Valley fever virus (RVFV) nonstructural protein NSs acts as the major determinant of virulence by antagonizing interferon beta (IFN-beta) gene expression. We demonstrate here that NSs interacts with the host protein SAP30, which belongs to Sin3A/NCoR/HDACs repressor complexes and interacts with the transcription factor YY1 that regulates IFN-beta gene expression. Using confocal microscopy and chromatin immunoprecipitation, we show that SAP30, YY1, and Sin3A-associated corepressor factors strongly colocalize with nuclear NSs filaments and that NSs, SAP30 and Sin3A-associated factors are recruited on the IFN-beta promoter through YY1, inhibiting CBP recruitment, histone acetylation, and transcriptional activation. To ascertain the role of SAP30, we produced, by reverse genetics, a recombinant RVFV in which the interacting domain in NSs was deleted. The virus was unable to inhibit the IFN response and was avirulent for mice. We discuss here the strategy developed by the highly pathogenic RVFV to evade the host antiviral response, affecting nuclear organization and IFN-beta promoter chromatin structure.


Assuntos
Histona Desacetilases/metabolismo , Interferon beta/metabolismo , Proteínas Repressoras/metabolismo , Vírus da Febre do Vale do Rift/fisiologia , Proteínas não Estruturais Virais/metabolismo , Fator de Transcrição YY1/metabolismo , Animais , Núcleo Celular/metabolismo , Células Cultivadas , Chlorocebus aethiops , Regulação Viral da Expressão Gênica , Histona Desacetilases/genética , Interferon beta/genética , Camundongos , Microscopia Confocal , Mutação , Complexo Correpressor Histona Desacetilase e Sin3 , Técnicas do Sistema de Duplo-Híbrido , Células Vero , Proteínas não Estruturais Virais/genética , Virulência
12.
Mol Cell Biol ; 26(22): 8551-61, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16954376

RESUMO

Virus-induced activation of the beta interferon (IFN-beta) gene requires orderly recruitment of chromatin-remodeling complexes and time-regulated acetylation of histone residues K8H4 and K14H3 on the promoter region. We have previously shown that transcription factor Yin Yang 1 (YY1) binds the murine IFN-beta promoter at two sites (-122 and -90) regulating promoter transcriptional capacity with a dual activator/repressor role. In this work we demonstrate that both YY1 -122 and -90 sites are required for CBP recruitment and K8H4/K14H3 acetylation to take place on the IFN-beta promoter region after virus infection. A single point mutation introduced at either one of these two sites inhibiting YY1 binding completely disrupted CBP recruitment and K8H4/K14H3 acetylation independently of HMGI or IRF3 binding to the promoter. We have previously demonstrated that YY1 represses the transcriptional capacity of the IFN-beta promoter through its -90 site via histone deacetylation. Here we demonstrate that, in vivo, the binding of YY1 to the -90 site is constant all through virus infection whereas the binding of YY1 to the -122 site is activated after infection. We discuss here the capacity of YY1 to either repress (through histone deacetylase recruitment) or activate (through CBP recruitment) IFN-beta gene expression according to the occupancy of either only its -90 site or both its -122 and -90 sites.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Histona Acetiltransferases/metabolismo , Histonas/genética , Interferon beta/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Fator de Transcrição YY1/genética , Acetilação , Motivos de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Regulação da Expressão Gênica , Histona Acetiltransferases/genética , Histonas/metabolismo , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/metabolismo , Camundongos , Dados de Sequência Molecular , Fatores de Transcrição/genética , Transcrição Gênica , Transfecção , Fator de Transcrição YY1/metabolismo , Fatores de Transcrição de p300-CBP
13.
Biochim Biophys Acta Gene Regul Mech ; 1861(8): 762-772, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29966762

RESUMO

Tauopathies, such as Alzheimer's disease, are characterized by intracellular aggregates of insoluble Tau proteins. Originally described as a microtubule binding protein, recent studies demonstrated additional physiological roles for Tau. The fact that a single protein can regulate multiple cellular functions has posed challenge in terms of understanding mechanistic cues behind the pathology. Here, we used tandem-affinity purification methodology coupled to mass spectrometry to identify novel interaction partners. We found that Tau interacts with DDX6, a DEAD box RNA helicase involved in translation repression and mRNA decay as well as in the miRNA pathway. Our results demonstrate that Tau increases the silencing activity of the miRNA let-7a, miR-21 and miR-124 through DDX6. Importantly, Tau mutations (P301S, P301L) found in the inherited tauopathies, frontotemporal dementia and parkinsonism linked to chromosome 17, disrupt Tau/DDX6 interaction and impair gene silencing by let-7a. Altogether, these data demonstrated a new unexpected role for Tau in regulating miRNA activity.


Assuntos
RNA Helicases DEAD-box/metabolismo , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas tau/metabolismo , Encéfalo/metabolismo , Linhagem Celular Tumoral , RNA Helicases DEAD-box/química , Humanos , Mutação , Domínios e Motivos de Interação entre Proteínas , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas c-myc/metabolismo , Tauopatias/metabolismo , Proteínas tau/química , Proteínas tau/genética
14.
Nucleic Acids Res ; 32(14): 4390-9, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15316102

RESUMO

Pericentromeric gamma-satellite DNA is organized in constitutive heterochromatin structures. It comprises a 234 bp sequence repeated several thousands times surrounding the centromeric sequence of all murine chromosomes. Potential binding sites for transcription factor Yin Yang 1 (YY1), a repressor or activator of several cellular and viral genes, are present in pericentromeric gamma-satellite DNA. Using gel retardation and chromatin immunoprecipitation, we demonstrate in this work that YY1 specifically interacts in vitro and in vivo with gamma-satellite DNA. Using immunoFISH and confocal microscopy we show that YY1 specifically co-localizes with pericentromeric gamma-satellite DNA clusters organized in constitutive heterochromatin in murine L929 and 3T3 fibroblasts cell lines. Immunoelectron microscopy experiments further confirmed YY1 localization in heterochromatic areas. Overall, our results demonstrate for the first time that a fraction of YY1 is directly associated with constitutive heterochromatin structures. This association appears physiologically relevant since the association of YY1 with pericentromeric gamma-satellite DNA observed in cycling 3T3 fibroblasts strongly diminished in quiescent (G0) 3T3 fibroblasts. We discuss the implications of these results in the context of heterochromatin formation as well as with regard to the YY1-induced repression of euchromatic genes.


Assuntos
DNA Satélite/análise , Proteínas de Ligação a DNA/análise , Heterocromatina/química , Fatores de Transcrição/análise , Animais , Ciclo Celular , Divisão Celular , Núcleo Celular/química , Centrômero , DNA Satélite/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Ligação de DNA Eritroide Específicos , Eucromatina/química , Eucromatina/ultraestrutura , Heterocromatina/ultraestrutura , Camundongos , Modelos Genéticos , Células NIH 3T3 , Fase de Repouso do Ciclo Celular , Fatores de Transcrição/metabolismo , Fator de Transcrição YY1
15.
Mol Cell Biol ; 36(1): 13-29, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26459757

RESUMO

Rapid upregulation of interferon beta (IFN-ß) expression following virus infection is essential to set up an efficient innate antiviral response. Biological roles related to the antiviral and immune response have also been associated with the constitutive production of IFN-ß in naive cells. However, the mechanisms capable of modulating constitutive IFN-ß expression in the absence of infection remain largely unknown. In this work, we demonstrate that inhibition of the kinase glycogen synthase kinase 3 (GSK-3) leads to the upregulation of the constitutive level of IFN-ß expression in noninfected cells, provided that GSK-3 inhibition is correlated with the binding of ß-catenin to the IFN-ß promoter. Under these conditions, IFN-ß expression occurred through the T-cell factor (TCF) binding sites present on the IFN-ß promoter independently of interferon regulatory factor 3 (IRF3). Enhancement of the constitutive level of IFN-ß per se was able to confer an efficient antiviral state to naive cells and acted in synergy with virus infection to stimulate virus-induced IFN-ß expression. Further emphasizing the role of ß-catenin in the innate antiviral response, we show here that highly pathogenic Rift Valley fever virus (RVFV) targets the Wnt/ß-catenin pathway and the formation of active TCF/ß-catenin complexes at the transcriptional and protein level in RVFV-infected cells and mice.


Assuntos
Interferon beta/metabolismo , Regiões Promotoras Genéticas , Linfócitos T/metabolismo , Ativação Transcricional/fisiologia , Regulação para Cima , beta Catenina/metabolismo , Animais , Sítios de Ligação , Quinase 3 da Glicogênio Sintase/metabolismo , Interferon beta/genética , Camundongos , Vírus da Febre do Vale do Rift , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição TCF/genética , Ativação Transcricional/genética
16.
Sci Rep ; 6: 33047, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27605042

RESUMO

Pericentromeric heterochromatin (PCH) gives rise to highly dense chromatin sub-structures rich in the epigenetic mark corresponding to the trimethylated form of lysine 9 of histone H3 (H3K9me3) and in heterochromatin protein 1α (HP1α), which regulate genome expression and stability. We demonstrate that Tau, a protein involved in a number of neurodegenerative diseases including Alzheimer's disease (AD), binds to and localizes within or next to neuronal PCH in primary neuronal cultures from wild-type mice. Concomitantly, we show that the clustered distribution of H3K9me3 and HP1α, two hallmarks of PCH, is disrupted in neurons from Tau-deficient mice (KOTau). Such altered distribution of H3K9me3 that could be rescued by overexpressing nuclear Tau protein was also observed in neurons from AD brains. Moreover, the expression of PCH non-coding RNAs, involved in PCH organization, was disrupted in KOTau neurons that displayed an abnormal accumulation of stress-induced PCH DNA breaks. Altogether, our results demonstrate a new physiological function of Tau in directly regulating neuronal PCH integrity that appears disrupted in AD neurons.


Assuntos
Centrômero/genética , Reparo do DNA/genética , Heterocromatina/genética , Neurônios/metabolismo , Transcrição Gênica/genética , Proteínas tau/genética , Animais , Encéfalo/metabolismo , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Quebras de DNA , Epigênese Genética/genética , Histonas/genética , Humanos , Lisina/genética , Camundongos , Camundongos Knockout
17.
Autoimmunity ; 36(8): 447-55, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14984021

RESUMO

Transcriptional regulation is a consequence of the combination of both activation and repression for establishing specific patterns of eukaryotic gene expression. The regulation of the expression of type I interferon (IFN-A and -B) multigene family is controlled primarily at the transcriptional level and has been widely studied as a model to understand the mechanisms of stable repression, transient expression and postinduction repression of genes. The positive and negative regulatory elements required for this on/off switch have been defined within a complex 5' upstream region of their transcription start site. The differential expression pattern of IFN-A genes is thought to involve both substitutions in the virus responsive element (VRE-A) and presence or absence of the distal negative regulatory element (DNRE) which is delimited upstream of the VRE-A. The interferon regulatory factors (IRF)-3 and -7 binding to the VRE-A and interacting as homodimers or heterodimers participate in the virus-induced transcriptional activation of IFN-A family. This data and the presence of homeodomain protein pituitary homeobox 1 (Pitx1) binding to the distal DNRE, negatively regulating the IRF-3 and IRF-7 activities and interacting physically with IRF-3 and IRF-7 contribute to our understanding of the complex differential transcriptional activation and repression of the IFN-A genes.


Assuntos
Interferon-alfa/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Fator Regulador 3 de Interferon , Fator Regulador 7 de Interferon , Interferon-alfa/biossíntese , Camundongos , Dados de Sequência Molecular , Fatores de Transcrição Box Pareados , Sequências Reguladoras de Ácido Nucleico , Elementos de Resposta , Fatores de Transcrição/química , Fatores de Transcrição/genética
18.
Front Cell Neurosci ; 8: 84, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24672431

RESUMO

Nucleic acid protection is a substantial challenge for neurons, which are continuously exposed to oxidative stress in the brain. Neurons require powerful mechanisms to protect DNA and RNA integrity and ensure their functionality and longevity. Beside its well known role in microtubule dynamics, we recently discovered that Tau is also a key nuclear player in the protection of neuronal genomic DNA integrity under reactive oxygen species (ROS)-inducing heat stress (HS) conditions in primary neuronal cultures. In this report, we analyzed the capacity of Tau to protect neuronal DNA integrity in vivo in adult mice under physiological and HS conditions. We designed an in vivo mouse model of hyperthermia/HS to induce a transient increase in ROS production in the brain. Comet and Terminal deoxyribonucleotidyltransferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL) assays demonstrated that Tau protected genomic DNA in adult cortical and hippocampal neurons in vivo under physiological conditions in wild-type (WT) and Tau-deficient (KO-Tau) mice. HS increased DNA breaks in KO-Tau neurons. Notably, KO-Tau hippocampal neurons in the CA1 subfield restored DNA integrity after HS more weakly than the dentate gyrus (DG) neurons. The formation of phosphorylated histone H2AX foci, a double-strand break marker, was observed in KO-Tau neurons only after HS, indicating that Tau deletion did not trigger similar DNA damage under physiological or HS conditions. Moreover, genomic DNA and cytoplasmic and nuclear RNA integrity were altered under HS in hippocampal neurons exhibiting Tau deficiency, which suggests that Tau also modulates RNA metabolism. Our results suggest that Tau alterations lead to a loss of its nucleic acid safeguarding functions and participate in the accumulation of DNA and RNA oxidative damage observed in the Alzheimer's disease (AD) brain.

19.
J Cell Sci ; 119(Pt 10): 2025-34, 2006 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-16638814

RESUMO

The microtubule-associated tau protein participates in the organization and integrity of the neuronal cytoskeleton. A nuclear form of tau has been described in neuronal and non-neuronal cells, which displays a nucleolar localization during interphase but is associated with nucleolar-organizing regions in mitotic cells. In the present study, based on immunofluorescence, immuno-FISH and confocal microscopy, we show that nuclear tau is mainly present at the internal periphery of nucleoli, partially colocalizing with the nucleolar protein nucleolin and human AT-rich alpha-satellite DNA sequences organized as constitutive heterochromatin. By using gel retardation, we demonstrate that tau not only colocalizes with, but also specifically binds to, AT-rich satellite DNA sequences apparently through the recognition of AT-rich DNA stretches. Here we propose a functional role for nuclear tau in relation to the nucleolar organization and/or heterochromatinization of a portion of RNA genes. Since nuclear tau has also been found in neurons from patients with Alzheimer's disease (AD), aberrant nuclear tau could affect the nucleolar organization during the course of AD. We discuss nucleolar tau associated with AT-rich alpha-satellite DNA sequences as a potential molecular link between trisomy 21 and AD.


Assuntos
Nucléolo Celular/metabolismo , DNA Satélite/metabolismo , Proteínas tau/metabolismo , Animais , Ensaio de Desvio de Mobilidade Eletroforética , Fibroblastos/metabolismo , Células HeLa , Humanos , Hibridização in Situ Fluorescente , Linfócitos/metabolismo , Camundongos , Microscopia Confocal , Ligação Proteica
20.
J Virol ; 77(5): 2903-14, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12584314

RESUMO

The induction of the beta interferon (IFN-beta) gene constitutes one of the first responses of the cell to virus infection. Its regulation is achieved through an intricate combination of virus-induced binding of transcription factors and local chromatin remodeling. In this work, we demonstrate that transcription factor YY1, known to interact with histone deacetylases (HDAC) and histone acetyltransferases, has a dual activator/repressor role during the regulation of the IFN-beta promoter activity. We show that YY1 specifically binds in vitro and in vivo to the murine IFN-beta promoter at positions -90 and -122. Overexpression of YY1 strongly repressed the transcriptional capacity of a stably integrated IFN-beta promoter fused to a chloramphenicol acetyltransferase reporter gene as well as the endogenous IFN activity of murine L929 cells via an HDAC activity. Stably integrated IFN-beta promoters mutated at the -90 site were no longer repressed by YY1, could no longer be activated by trichostatin A, displayed a retarded postinduction turn off, and a reduced virus-induced activity. Introduction of a mutation at the -122 site did not affect YY1-induced repression, but promoters with this mutation displayed a reduced virus-induced activity. Stably integrated full-length promoters (from position -330 to +20) mutated at both YY1-binding sites displayed extremely reduced promoter activities. We conclude that YY1 has a dual activator/repressor role on IFN-beta promoter activity depending on its binding site and time after infection.


Assuntos
Regulação da Expressão Gênica , Interferon beta/metabolismo , Regiões Promotoras Genéticas/fisiologia , Proteínas Repressoras/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Fatores de Ligação de DNA Eritroide Específicos , Interferon beta/química , Interferon beta/genética , Camundongos , Dados de Sequência Molecular , Vírus da Doença de Newcastle/imunologia , Vírus da Doença de Newcastle/patogenicidade , Regiões Promotoras Genéticas/genética , Proteínas Repressoras/genética , Transativadores/genética , Fatores de Transcrição/genética , Transfecção , Fator de Transcrição YY1
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa