RESUMO
Inter-patient molecular heterogeneity is the major declared driver of an expanding variety of anticancer drugs and personalizing their prescriptions. Here, we compared interpatient molecular heterogeneities of tumors and repertoires of drugs or their molecular targets currently in use in clinical oncology. We estimated molecular heterogeneity using genomic (whole exome sequencing) and transcriptomic (RNA sequencing) data for 4890 tumors taken from The Cancer Genome Atlas database. For thirteen major cancer types, we compared heterogeneities at the levels of mutations and gene expression with the repertoires of targeted therapeutics and their molecular targets accepted by the current guidelines in oncology. Totally, 85 drugs were investigated, collectively covering 82 individual molecular targets. For the first time, we showed that the repertoires of molecular targets of accepted drugs did not correlate with molecular heterogeneities of different cancer types. On the other hand, we found that the clinical recommendations for the available cancer drugs were strongly congruent with the gene expression but not gene mutation patterns. We detected the best match among the drugs usage recommendations and molecular patterns for the kidney, stomach, bladder, ovarian and endometrial cancers. In contrast, brain tumors, prostate and colorectal cancers showed the lowest match. These findings provide a theoretical basis for reconsidering usage of targeted therapeutics and intensifying drug repurposing efforts.
Assuntos
Sistemas de Liberação de Medicamentos , Heterogeneidade Genética , Oncologia/métodos , Terapia de Alvo Molecular/métodos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Antineoplásicos/uso terapêutico , Análise por Conglomerados , Tratamento Farmacológico , Genômica , Humanos , Mutação , Patologia Molecular , Medicina de Precisão/métodos , Transcriptoma , Sequenciamento do ExomaRESUMO
OncoboxPD (Oncobox pathway databank) available at https://open.oncobox.com is the collection of 51 672 uniformly processed human molecular pathways. Superposition of all pathways formed interactome graph of protein-protein interactions and metabolic reactions containing 361 654 interactions and 64 095 molecular participants. Pathways are uniformly classified by biological processes, and each pathway node is algorithmically functionally annotated by specific activator/repressor role. This enables online calculation of statistically supported pathway activation levels (PALs) with the built-in bioinformatic tool using custom RNA/protein expression profiles. Each pathway can be visualized as static or dynamic graph, where vertices are molecules participating in a pathway and edges are interactions or reactions between them. Differentially expressed nodes in a pathway can be visualized in two-color mode with user-defined color scale. For every comparison, OncoboxPD also generates a graph summarizing top up- and downregulated pathways.